Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2333-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-2333-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam
Leon Scheiber
CORRESPONDING AUTHOR
Ludwig-Franzius-Institute for Hydraulics, Estuarine and Coastal
Engineering, Leibniz University Hannover, 30167 Hanover, Germany
Christoph Gabriel David
Division of Hydromechanics, Coastal and Ocean Engineering, Leichtweiß-Institute for Hydraulic Engineering and Water
Resources, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Junior Research Group “Future Urban Coastlines”, Leichtweiß-Institute for Hydraulic Engineering and Water
Resources, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Mazen Hoballah Jalloul
Ludwig-Franzius-Institute for Hydraulics, Estuarine and Coastal
Engineering, Leibniz University Hannover, 30167 Hanover, Germany
Jan Visscher
Ludwig-Franzius-Institute for Hydraulics, Estuarine and Coastal
Engineering, Leibniz University Hannover, 30167 Hanover, Germany
Hong Quan Nguyen
Institute for Circular Economy Development, Vietnam National
University Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam
Institute for Environment and Resources, Vietnam National
University Ho Chi Minh City, 700000 Ho Chi Minh City, Vietnam
Roxana Leitold
Institute of Geography, University of Cologne, 50923 Cologne, Germany
Global South Studies Center, University of Cologne, 50923 Cologne, Germany
Javier Revilla Diez
Institute of Geography, University of Cologne, 50923 Cologne, Germany
Global South Studies Center, University of Cologne, 50923 Cologne, Germany
Torsten Schlurmann
Ludwig-Franzius-Institute for Hydraulics, Estuarine and Coastal
Engineering, Leibniz University Hannover, 30167 Hanover, Germany
Related authors
Leon Scheiber, Mazen Hoballah Jalloul, Christian Jordan, Jan Visscher, Hong Quan Nguyen, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, https://doi.org/10.5194/nhess-23-2313-2023, 2023
Short summary
Short summary
Numerical models are increasingly important for assessing urban flooding, yet reliable input data are oftentimes hard to obtain. Taking Ho Chi Minh City as an example, this paper explores the usability and reliability of open-access data to produce preliminary risk maps that provide first insights into potential flooding hotspots. As a key novelty, a normalized flood severity index is presented which combines flood depth and duration to enhance the interpretation of hydro-numerical results.
Karen Garcia, Christian Jordan, Gregor Melling, Alexander Schendel, Mario Welzel, and Torsten Schlurmann
Wind Energ. Sci., 10, 2189–2216, https://doi.org/10.5194/wes-10-2189-2025, https://doi.org/10.5194/wes-10-2189-2025, 2025
Short summary
Short summary
Scour depths at nine British offshore wind farms (OWFs) were analysed. Site-specific scour drivers were identified, including the relative water depth, relative median grain size, Keulegan–Carpenter number, and sediment mobility. These findings improve our understanding of scour behaviour at different scales and lay the groundwork for enhancing scour prediction frameworks at future offshore wind farms, thereby supporting the expansion of sustainable energy.
Tim Hans Martin van Emmerik, Tim Willem Janssen, Tianlong Jia, Thank-Khiet L. Bui, Riccardo Taormina, Hong-Q. Nguyen, and Louise Jeanne Schreyers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2270, https://doi.org/10.5194/egusphere-2024-2270, 2024
Preprint archived
Short summary
Short summary
Plastic pollution has negative effects on the environment. Tropical rivers around the world suffer from both plastic pollution and invasive water hyacinths. Water hyacinths grow rapidly and form dense floating mats. Using drones, cameras and AI, we show that along the Saigon river, Vietnam, the majority of floating plastic pollution is carried by water hyacinths. Better understanding water hyacinth-plastic trapping supports improving pollution monitoring and management strategies.
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Louise J. Schreyers, Tim H. M. van Emmerik, Thanh-Khiet L. Bui, Khoa L. van Thi, Bart Vermeulen, Hong-Q. Nguyen, Nicholas Wallerstein, Remko Uijlenhoet, and Martine van der Ploeg
Hydrol. Earth Syst. Sci., 28, 589–610, https://doi.org/10.5194/hess-28-589-2024, https://doi.org/10.5194/hess-28-589-2024, 2024
Short summary
Short summary
River plastic emissions into the ocean are of global concern, but the transfer dynamics between fresh water and the marine environment remain poorly understood. We developed a simple Eulerian approach to estimate the net and total plastic transport in tidal rivers. Applied to the Saigon River, Vietnam, we found that net plastic transport amounted to less than one-third of total transport, highlighting the need to better integrate tidal dynamics in plastic transport and emission models.
Leon Scheiber, Mazen Hoballah Jalloul, Christian Jordan, Jan Visscher, Hong Quan Nguyen, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, https://doi.org/10.5194/nhess-23-2313-2023, 2023
Short summary
Short summary
Numerical models are increasingly important for assessing urban flooding, yet reliable input data are oftentimes hard to obtain. Taking Ho Chi Minh City as an example, this paper explores the usability and reliability of open-access data to produce preliminary risk maps that provide first insights into potential flooding hotspots. As a key novelty, a normalized flood severity index is presented which combines flood depth and duration to enhance the interpretation of hydro-numerical results.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Cited articles
Abidin, H. Z., Andreas, H., Gumilar, I., and Wibowo, I. R. R.: On correlation between urban development, land subsidence and flooding phenomena in Jakarta, Proc. IAHS, 370, 15–20, https://doi.org/10.5194/piahs-370-15-2015, 2015.
ADB: Ho Chi Minh City – Adaptation to Climate Change: Summary Report, Asian
Development Bank, Manila, the Philippines, ISBN 978-971-561-893-9, 2010.
Barragán, J. M. and de Andrés, M.: Analysis and trends of the
world's coastal cities and agglomerations, Ocean Coast. Manage.,
114, 11–20, https://doi.org/10.1016/j.ocecoaman.2015.06.004, 2015.
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings
(NCEI Accession 0019568), Version 5.5, NOAA National Centers for
Environmental Information (NOAA), https://doi.org/10.7289/v5v40s7w, 2015.
Chen, S., van de Ven, F. H. M., Zevenbergen, C., Verbeeck, S., Ye, Q.,
Zhang, W., and Wei, L.: Revisiting China's Sponge City Planning Approach:
Lessons From a Case Study on Qinhuai District, Nanjing, Front. Environ.
Sci., 9, 748231, https://doi.org/10.3389/fenvs.2021.748231, 2021.
Crameri, F.: Scientific colour maps (7.0.1), Zenodo [data set], https://doi.org/10.5281/zenodo.5501399, 2021.
Dang, A. T. N. and Kumar, L.: Application of remote sensing and GIS-based
hydrological modelling for flood risk analysis: a case study of District 8,
Ho Chi Minh city, Vietnam, Geomatics, Natural Hazards and Risk, 8,
1792–1811, https://doi.org/10.1080/19475705.2017.1388853, 2017.
David, C. G., Hennig, A., Ratter, B. M. W., Roeber, V., Zahid, and
Schlurmann, T.: Considering socio-political framings when analyzing coastal
climate change effects can prevent maldevelopment on small islands, Nat.
Commun., 12, 5882, https://doi.org/10.1038/s41467-021-26082-5, 2021.
Dong, X., Guo, H., and Zeng, S.: Enhancing future resilience in urban
drainage system: Green versus grey infrastructure, Water Res., 124,
280–289, https://doi.org/10.1016/j.watres.2017.07.038, 2017.
Doocy, S., Daniels, A., Murray, S., and Kirsch, T. D.: The human impact of
floods: a historical review of events 1980–2009 and systematic literature
review, PLoS Curr., 5, 23857425, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644291/ (last access: 21 June 2023), 2013.
Downes, N. K. and Storch, H.: Current Constraints and Future Directions for
Risk Adapted Land-Use Planning Practices in the High-Density Asian Setting
of Ho Chi Minh City, Planning Practice & Research, 29, 220–237,
https://doi.org/10.1080/02697459.2014.929835, 2014.
Duffy, C. E., Braun, A., and Hochschild, V.: Surface Subsidence in Urbanized
Coastal Areas: PSI Methods Based on Sentinel-1 for Ho Chi Minh City, Remote
Sens., 12, 4130, https://doi.org/10.3390/rs12244130, 2020.
Duvat, V. K. E. and Magnan, A. K.: Rapid human-driven undermining of atoll
island capacity to adjust to ocean climate-related pressures, Sci. Rep., 9, 15129, https://doi.org/10.1038/s41598-019-51468-3, 2019.
Duy, P. N., Chapman, L., Tight, M., Linh, P. N., and Le Thuong, V.:
Increasing vulnerability to floods in new development areas: evidence from
Ho Chi Minh City, Int. J. Clim. Chang. Str., 10, 197–212,
https://doi.org/10.1108/IJCCSM-12-2016-0169, 2018.
Erkens, G., Bucx, T., Dam, R., de Lange, G., and Lambert, J.: Sinking coastal cities, Proc. IAHS, 372, 189–198, https://doi.org/10.5194/piahs-372-189-2015, 2015.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Gugliotta, M., Saito, Y., Ta, T. K. O., and van Nguyen, L.:
Valley-Confinement and River-Tidal Controls on Channel Morphology Along the
Fluvial to Marine Transition Zone of the Ðong Nai River System, Vietnam,
Front. Earth Sci., 7, 202, https://doi.org/10.3389/feart.2019.00202, 2019.
Haasnoot, M., Kwakkel, J. H., Walker, W. E., and ter Maat, J.: Dynamic
adaptive policy pathways: A method for crafting robust decisions for a
deeply uncertain world, Glob. Environ. Change, 23, 485–498,
https://doi.org/10.1016/j.gloenvcha.2012.12.006, 2013.
Haasnoot, M., Brown, S., Scussolini, P., Jimenez, J. A., Vafeidis, A. T.,
and Nicholls, R. J.: Generic adaptation pathways for coastal archetypes
under uncertain sea-level rise, Environ. Res. Commun., 1, 71006,
https://doi.org/10.1088/2515-7620/ab1871, 2019.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Chang., 3, 802–806,
https://doi.org/10.1038/NCLIMATE1979, 2013.
Hamel, P. and Tan, L.: Blue-Green Infrastructure for Flood and Water Quality
Management in Southeast Asia: Evidence and Knowledge Gaps, Environ.
Manage., 69, 699–718, https://doi.org/10.1007/s00267-021-01467-w, 2022.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J.,
Herweijer, C., and Chateau, J.: A global ranking of port cities with high
exposure to climate extremes, Climatic Change, 104, 89–111,
https://doi.org/10.1007/s10584-010-9977-4, 2011.
Hawken, S., Sepasgozar, S., Prodanovic, V., Jing, J., Bakelmun, A.,
Avazpour, B., Che, S., and Zhang, K.: What makes a successful Sponge City
project? Expert perceptions of critical factors in integrated urban water
management in the Asia-Pacific, Sustain. Cities Soc., 75, 103317,
https://doi.org/10.1016/j.scs.2021.103317, 2021.
He, B.-J., Zhu, J., Zhao, D.-X., Gou, Z.-H., Qi, J.-D., and Wang, J.:
Co-benefits approach: Opportunities for implementing sponge city and urban
heat island mitigation, Land Use Policy, 86, 147–157,
https://doi.org/10.1016/j.landusepol.2019.05.003, 2019.
Hino, M. and Nance, E.: Five ways to ensure flood-risk research helps the
most vulnerable, Nature, 595, 27–29, https://doi.org/10.1038/d41586-021-01750-0, 2021.
Huong, H. T. L. and Pathirana, A.: Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam, Hydrol. Earth Syst. Sci., 17, 379–394, https://doi.org/10.5194/hess-17-379-2013, 2013.
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate
Change Adaptation. A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., ISBN 978-1-107-02506-6, 2012.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp., ISBN 978-1-107-05807-1, 2014.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp.
https://www.ipcc.ch/report/ar6/wg1/ (last access: 21 June 2023), 2021.
Jia, H., Wang, Z., Zhen, X., Clar, M., and Yu, S. L.: China's sponge city
construction: A discussion on technical approaches, Front. Environ. Sci.
Eng., 11, 18, https://doi.org/10.1007/s11783-017-0984-9, 2017.
Jia, H., Hu, J., Huang, T., Chen, A. S., and Ma, Y.: Urban Runoff Control
and Sponge City Construction, Water, 14, 1910, https://doi.org/10.3390/w14121910, 2022.
Jiang, Y., Qiu, L., Gao, T., and Zhang, S.: Systematic Application of Sponge
City Facilities at Community Scale Based on SWMM, Water, 14, 591,
https://doi.org/10.3390/w14040591, 2022.
Kaneko, S. and Toyota, T.: Long-Term Urbanization and Land Subsidence in
Asian Megacities: An Indicators System Approach, in: Groundwater and
Subsurface Environments, edited by: Taniguchi, M., Springer, Tokyo, 249–270, https://doi.org/10.1007/978-4-431-53904-9_13, 2011.
Kind, J., Botzen, W. J. W., and Aerts, J. C. J. H.: Social vulnerability in
cost-benefit analysis for flood risk management, Envir. Dev. Econ., 25,
115–134, https://doi.org/10.1017/S1355770X19000275, 2020.
Köster, S.: How the Sponge City becomes a supplementary water supply
infrastructure, Water-Energy Nexus, 4, 35–40,
https://doi.org/10.1016/j.wen.2021.02.002, 2021.
Kulp, S. A. and Strauss, B. H.: CoastalDEM: A global coastal digital
elevation model improved from SRTM using a neural network, Remote Sens.
Environ., 206, 231–239, https://doi.org/10.1016/j.rse.2017.12.026, 2018.
Kulp, S. A. and Strauss, B. H.: New elevation data triple estimates of
global vulnerability to sea-level rise and coastal flooding, Nat.
Commun., 10, 4844, https://doi.org/10.1038/s41467-019-12808-z, 2019.
Kumar, N., Liu, X., Narayanasamydamodaran, S., and Pandey, K. K.: A
Systematic Review Comparing Urban Flood Management Practices in India to
China's Sponge City Program, Sustainability, 13, 6346,
https://doi.org/10.3390/su13116346, 2021.
Kwakkel, J. H., Haasnoot, M., and Walker, W. E.: Developing dynamic adaptive
policy pathways: a computer-assisted approach for developing adaptive
strategies for a deeply uncertain world, Climatic Change, 132, 373–386,
https://doi.org/10.1007/s10584-014-1210-4, 2015.
Lasage, R., Veldkamp, T. I. E., de Moel, H., Van, T. C., Phi, H. L., Vellinga, P., and Aerts, J. C. J. H.: Assessment of the effectiveness of flood adaptation strategies for HCMC, Nat. Hazards Earth Syst. Sci., 14, 1441–1457, https://doi.org/10.5194/nhess-14-1441-2014, 2014.
Leitold, R. and Revilla Diez, J.: Exposure of manufacturing firms to future
sea level rise in Ho Chi Minh City, Vietnam, J. Maps, 15, 13–20,
https://doi.org/10.1080/17445647.2018.1548385, 2019.
Leitold, R., Garschagen, M., van Tran, and Revilla Diez, J.: Flood risk
reduction and climate change adaptation of manufacturing firms: Global
knowledge gaps and lessons from Ho Chi Minh City, Int. J. Disast. Risk Re., 61, 102351, https://doi.org/10.1016/j.ijdrr.2021.102351, 2021.
Lempert, R. J.: Robust Decision Making (RDM), in: Decision Making under Deep
Uncertainty, Springer International Publishing, Cham, 23–51,
https://doi.org/10.1007/978-3-030-05252-2_2, 2019.
Li, F. and Zhang, J.: A review of the progress in Chinese Sponge City
programme: challenges and opportunities for urban stormwater management,
Water Supp., 22, 1638–1651, https://doi.org/10.2166/ws.2021.327, 2022.
Loc, H. H., Babel, M. S., Weesakul, S., Irvine, K. N., and Duyen, P. M.: Exploratory assessment of SUDS feasibility in Nhieu Loc-Thi Nghe Basin, Ho Chi Minh City, Vietnam, British Journal of Environment and Climate Change, 5, 91–103, https://doi.org/10.9734/BJECC/2015/11534, 2015.
Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M., and Popper, S. W.: Decision Making under Deep Uncertainty – From Theory to
Practice, Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-030-05252-2, 2019.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal
zones, Environ. Urban., 19, 17–37,
https://doi.org/10.1177/0956247807076960, 2007.
MONRE: Climate change and sea level rise scenarios for Viet Nam, Ministry of Natural Resources and Environment (MONRE), Technical Report, http://coastal-protection-mekongdelta.com/download/library/135.CC_SLR2016_EN.pdf (last access: 13 June 2023), 2016.
Morris, R. L., Konlechner, T. M., Ghisalberti, M., and Swearer, S. E.: From
grey to green: Efficacy of eco-engineering solutions for nature-based
coastal defence, Glob. Change Biol., 24, 1827–1842,
https://doi.org/10.1111/gcb.14063, 2018.
Mukul, M., Srivastava, V., and Mukul, M.: Analysis of the accuracy of
Shuttle Radar Topography Mission (SRTM) height models using International
Global Navigation Satellite System Service (IGS) Network, J. Earth
Syst. Sci., 124, 1343–1357, https://doi.org/10.1007/s12040-015-0597-2, 2015.
Muthusamy, M., Rivas Casado, M., Salmoral, G., Irvine, T., and Leinster, P.:
A Remote Sensing Based Integrated Approach to Quantify the Impact of Fluvial
and Pluvial Flooding in an Urban Catchment, Remote Sens., 11, 577,
https://doi.org/10.3390/rs11050577, 2019.
Neise, T., Revilla Diez, J., and Garschagen, M.: Firms as drivers of
integrative adaptive regional development in the context of environmental
hazards in developing countries and emerging economies – A conceptual
framework, Environ. Plann. C, 36, 1522–1541,
https://doi.org/10.1177/2399654418771079, 2018.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future
coastal population growth and exposure to sea-level rise and coastal
flooding–a global assessment, PloS one, 10, e0118571,
https://doi.org/10.1371/journal.pone.0118571, 2015.
Nguyen, T. T., Ngo, H. H., Guo, W., Wang, X. C., Ren, N., Li, G., Ding, J.,
and Liang, H.: Implementation of a specific urban water management – Sponge
City, Sci. Total Environ., 652, 147–162, https://doi.org/10.1016/j.scitotenv.2018.10.168, 2019.
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T.,
Meyssignac, B., Hanson, S. E., Merkens, J.-L., and Fang, J.: A global
analysis of subsidence, relative sea-level change and coastal flood
exposure, Nat. Clim. Chang., 11, 338–342, https://doi.org/10.1038/s41558-021-00993-z, 2021.
Patel, D. P., Ramirez, J. A., Srivastava, P. K., Bray, M., and Han, D.:
Assessment of flood inundation mapping of Surat city by coupled 1D/2D
hydrodynamic modeling: a case application of the new HEC-RAS 5, Nat. Hazards,
89, 93–130, https://doi.org/10.1007/s11069-017-2956-6, 2017.
Phi, H. L.: Climate change and urban flooding in Ho Chi Minh City, in: Proceedings of the 3rd International Conference on Climate and Water, 3–6 September 2007, Helsinki, Finland, Finnish Environment Institute, 194–199, ISBN 978-952-11-2790-8194-199, http://hdl.handle.net/10138/233271, 2007.
Phi, H. L., Hermans, L. M., Douven, W. J., van Halsema, G. E., and Khan, M.
F.: A framework to assess plan implementation maturity with an application
to flood management in Vietnam, Water Int., 40, 984–1003,
https://doi.org/10.1080/02508060.2015.1101528, 2015.
Qi, Y., Chan, F. K. S., Thorne, C., O'Donnell, E., Quagliolo, C., Comino,
E., Pezzoli, A., Li, L., Griffiths, J., Sang, Y., and Feng, M.: Addressing
Challenges of Urban Water Management in Chinese Sponge Cities via
Nature-Based Solutions, Water, 12, 2788, https://doi.org/10.3390/w12102788, 2020.
Rangari, V. A., Umamahesh, N. V., and Bhatt, C. M.: Assessment of inundation
risk in urban floods using HEC RAS 2D, Model. Earth Syst. Environ., 5,
1839–1851, https://doi.org/10.1007/s40808-019-00641-8, 2019.
Rözer, V., Kreibich, H., Schröter, K., Müller, M., Sairam, N.,
Doss-Gollin, J., Lall, U., and Merz, B.: Probabilistic Models Significantly
Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates, Earths
Future, 7, 384–394, https://doi.org/10.1029/2018EF001074, 2019.
Scheiber, L., Hoballah Jalloul, M., Jordan, C., Visscher, J., Nguyen, H. Q., and Schlurmann,
T.: The potential of open-access data for flood estimations: uncovering inundation hotspots in Ho Chi Minh City, Vietnam, through a normalized flood severity index, Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, 2023.
Schumann, G. J.-P. and Bates, P. D.: The Need for a High-Accuracy,
Open-Access Global DEM, Front. Earth Sci., 6, 225,
https://doi.org/10.3389/feart.2018.00225, 2018.
Scussolini, P., van Tran, T. T., Koks, E., Diaz-Loaiza, A., Ho, P. L., and
Lasage, R.: Adaptation to Sea Level Rise: A Multidisciplinary Analysis for
Ho Chi Minh City, Vietnam, Water Resour. Res., 53, 10841–10857,
https://doi.org/10.1002/2017WR021344, 2017.
Sun, Y., Deng, L., Pan, S.-Y., Chiang, P.-C., Sable, S. S., and Shah, K. J.:
Integration of green and gray infrastructures for sponge city: Water and
energy nexus, Water-Energy Nexus, 3, 29–40, https://doi.org/10.1016/j.wen.2020.03.003, 2020.
Tran Ngoc, T. D., Perset, M., Strady, E., Phan, T. S. H., Vachaud, G., Quertamp, F., and Gratiot, N.: Ho Chi Minh City growing with water related challenges, in: Water, megacities and global change: portraits of 15 emblematic cities of the world, UNESCO/ARCEAU, Paris, France, 46–49, ISBN 978-92-3-100161-1, 2016.
USACE: HEC-RAS Version 6.0, Hydrologic Engineering Center's River Analysis System, US Army Corps of Engineers Hydrologic Engineering Center, Davis [code], https://www.hec.usace.army.mil/software/hec-ras/ (last access: 13 June 2023), 2021.
VCAPS: Climate Adaptation Strategy Ho Chi Minh City – moving
towards the sea with climate change adaptation, Vietnam Climate
Adaptation PartnerShip (VCAPS),
2013.
Vernimmen, R., Hooijer, A., and Pronk, M.: New ICESat-2 Satellite LiDAR Data
Allow First Global Lowland DTM Suitable for Accurate Coastal Flood Risk
Assessment, Remote Sens., 12, 2827, https://doi.org/10.3390/rs12172827, 2020.
Yalcin, E.: Assessing the impact of topography and land cover data
resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for
urban flood hazard analysis, Nat. Hazards, 101, 995–1017,
https://doi.org/10.1007/s11069-020-03906-z, 2020.
Yin, D., Xu, C., Jia, H., Yang, Y., Sun, C., Wang, Q., and Liu, S.: Sponge
City Practices in China: From Pilot Exploration to Systemic Demonstration,
Water, 14, 1531, https://doi.org/10.3390/w14101531, 2022.
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam...
Special issue
Altmetrics
Final-revised paper
Preprint