Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2333-2023
https://doi.org/10.5194/nhess-23-2333-2023
Research article
 | 
26 Jun 2023
Research article |  | 26 Jun 2023

Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam

Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann

Related authors

The potential of open-access data for flood estimations: uncovering inundation hotspots in Ho Chi Minh City, Vietnam, through a normalized flood severity index
Leon Scheiber, Mazen Hoballah Jalloul, Christian Jordan, Jan Visscher, Hong Quan Nguyen, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023,https://doi.org/10.5194/nhess-23-2313-2023, 2023
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024,https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024,https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024,https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Simulating multi-hazard event sets for life cycle consequence analysis
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024,https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024,https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary

Cited articles

Abidin, H. Z., Andreas, H., Gumilar, I., and Wibowo, I. R. R.: On correlation between urban development, land subsidence and flooding phenomena in Jakarta, Proc. IAHS, 370, 15–20, https://doi.org/10.5194/piahs-370-15-2015, 2015. 
ADB: Ho Chi Minh City – Adaptation to Climate Change: Summary Report, Asian Development Bank, Manila, the Philippines, ISBN 978-971-561-893-9, 2010. 
Barragán, J. M. and de Andrés, M.: Analysis and trends of the world's coastal cities and agglomerations, Ocean Coast. Manage., 114, 11–20, https://doi.org/10.1016/j.ocecoaman.2015.06.004, 2015. 
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by tide gauges from global oceans – the Joint Archive for Sea Level holdings (NCEI Accession 0019568), Version 5.5, NOAA National Centers for Environmental Information (NOAA), https://doi.org/10.7289/v5v40s7w, 2015. 
Chen, S., van de Ven, F. H. M., Zevenbergen, C., Verbeeck, S., Ye, Q., Zhang, W., and Wei, L.: Revisiting China's Sponge City Planning Approach: Lessons From a Case Study on Qinhuai District, Nanjing, Front. Environ. Sci., 9, 748231, https://doi.org/10.3389/fenvs.2021.748231, 2021. 
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Altmetrics
Final-revised paper
Preprint