Articles | Volume 23, issue 1
https://doi.org/10.5194/nhess-23-21-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-21-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time of emergence of compound events: contribution of univariate and dependence properties
Bastien François
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et l’Environnement (LSCE-IPSL) CNRS/CEA/UVSQ, UMR8212, Université Paris-Saclay, Gif-sur-Yvette, France
Mathieu Vrac
Laboratoire des Sciences du Climat et l’Environnement (LSCE-IPSL) CNRS/CEA/UVSQ, UMR8212, Université Paris-Saclay, Gif-sur-Yvette, France
Related authors
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
Earth Syst. Dynam., 16, 1029–1051, https://doi.org/10.5194/esd-16-1029-2025, https://doi.org/10.5194/esd-16-1029-2025, 2025
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3966, https://doi.org/10.5194/egusphere-2024-3966, 2025
Short summary
Short summary
To study floods and droughts are likely to change in the future, we use climate projections from climate models. However, we first need to adjust the systematic biases of these projections at the catchment scale before using them in hydrological models. Our study compares statistical methods that can adjust these biases, but specifically for climate projections that enable a quantification of internal climate variability. We provide recommendations on the most appropriate methods.
Joséphine Schmutz, Mathieu Vrac, Bastien François, and Burak Bulut
EGUsphere, https://doi.org/10.5194/egusphere-2025-461, https://doi.org/10.5194/egusphere-2025-461, 2025
Short summary
Short summary
In recent years, Europe has faced severe hot and dry events affecting biodiversity, agriculture, and health. Understanding past significant variation in their occurrence is key for adaptation. This paper identifies emerging hotspots in Europe and North Africa. Since the 1970s, the Iberian Peninsula, Maghreb, and Central Europe have seen more frequent events, driven by rising temperature maxima, while Eastern Europe has experienced a decline due to changes in drought.
Denis Allard, Mathieu Vrac, Bastien François, and Iñaki García de Cortázar-Atauri
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-102, https://doi.org/10.5194/hess-2024-102, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Atmospheric variables from climate models often present biases relative to the past. In order to use these models to assess the impact of climate change on processes of interest, it is necessary to correct these biases. We tested several Multivariate Bias Correction Methods (MBCMs) for 5 physical variables that are input variables for 4 process models. We provide recommendations regarding the use of MBCMs when multivariate and time dependent processes are involved.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
Weather Clim. Dynam., 6, 817–839, https://doi.org/10.5194/wcd-6-817-2025, https://doi.org/10.5194/wcd-6-817-2025, 2025
Short summary
Short summary
Properties of extreme meteorological and climatological events are changing under human-caused climate change. Extreme event attribution methods seek to estimate the contribution of global warming in the probability and intensity changes of extreme events. Here we propose a procedure to estimate these quantities for the flow analogue method, which compares the observed event to similar events in the past.
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025, https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
Short summary
This study compares the dynamical structures that characterise long-lasting (persistent) and short hot spells in Western Europe. We find differences in large-scale atmospheric flow patterns during the events and particular soil moisture evolutions, which can account for the variation in event duration. There is variability in how drivers combine in individual events. Understanding persistent heat extremes can help improve their representation in models and ultimately their prediction.
Germain Bénard, Marion Gehlen, and Mathieu Vrac
Earth Syst. Dynam., 16, 1085–1102, https://doi.org/10.5194/esd-16-1085-2025, https://doi.org/10.5194/esd-16-1085-2025, 2025
Short summary
Short summary
We introduce a novel approach to compare Earth system model output using a causality-based approach. The analysis of interactions between atmospheric, oceanic and biogeochemical variables in the North Atlantic subpolar gyre highlights the dynamics of each model. This method reveals potential underlying causes of model differences, offering a tool for enhanced model evaluation and improved understanding of complex Earth system dynamics under past and future climates.
Bastien François, Khalil Teber, Lou Brett, Richard Leeding, Luis Gimeno-Sotelo, Daniela I. V. Domeisen, Laura Suarez-Gutierrez, and Emanuele Bevacqua
Earth Syst. Dynam., 16, 1029–1051, https://doi.org/10.5194/esd-16-1029-2025, https://doi.org/10.5194/esd-16-1029-2025, 2025
Short summary
Short summary
Spatially compounding wind and precipitation (CWP) extremes can lead to severe impacts on society. We find that concurrent climate variability modes favor the occurrence of such wintertime spatially compounding events in the Northern Hemisphere and can even amplify the number of regions and population exposed. Our analysis highlights the importance of considering the interplay between variability modes to improve risk management of such spatially compounding events.
Ségolène Crossouard, Soulivanh Thao, Thomas Dubos, Masa Kageyama, Mathieu Vrac, and Yann Meurdesoif
EGUsphere, https://doi.org/10.5194/egusphere-2025-1418, https://doi.org/10.5194/egusphere-2025-1418, 2025
Short summary
Short summary
Current atmospheric models are limited by the computational time required for physical processes, known as physical parameterizations. To address this, we developed neural network-based emulators to replace these parameterizations in the IPSL climate model, using a simplified aquaplanet setup. We found that incorporating some physical knowledge, such as latent variables, into the learning process can improve predictions.
Yoann Robin, Mathieu Vrac, Aurélien Ribes, Occitane Barbaux, and Philippe Naveau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1121, https://doi.org/10.5194/egusphere-2025-1121, 2025
Short summary
Short summary
We describe an improved method and the associated free licensed package ANKIALE (ANalysis of Klimate with bayesian Inference: AppLication to extreme Events) for estimating the statistics of temperature extremes. This method uses climate model simulations (including multiple scenarios simultaneously) to provide a prior of the real-world changes, constrained by the observations. The method and the tool are illustrated via an application to temperature over Europe until 2100, for four scenarios.
Pradeebane Vaittinada Ayar, Stella Bourdin, Davide Faranda, and Mathieu Vrac
EGUsphere, https://doi.org/10.5194/egusphere-2025-252, https://doi.org/10.5194/egusphere-2025-252, 2025
Short summary
Short summary
The tracking of Tropical cyclones (TCs) remains a matter of interest for the investigation of observed and simulated tropical cyclones. In this study, Random Forest (RF), a machine learning approach, is considered to track TCs. RF associates TC occurrence or absence to different atmospheric configurations. Compared to trackers found in the literature, it shows similar performance for tracking TCs, better control over false alarm, more flexibility and reveal key variables allowing to detect TCs.
Paul C. Astagneau, Raul R. Wood, Mathieu Vrac, Sven Kotlarski, Pradeebane Vaittinada Ayar, Bastien François, and Manuela I. Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3966, https://doi.org/10.5194/egusphere-2024-3966, 2025
Short summary
Short summary
To study floods and droughts are likely to change in the future, we use climate projections from climate models. However, we first need to adjust the systematic biases of these projections at the catchment scale before using them in hydrological models. Our study compares statistical methods that can adjust these biases, but specifically for climate projections that enable a quantification of internal climate variability. We provide recommendations on the most appropriate methods.
Joséphine Schmutz, Mathieu Vrac, Bastien François, and Burak Bulut
EGUsphere, https://doi.org/10.5194/egusphere-2025-461, https://doi.org/10.5194/egusphere-2025-461, 2025
Short summary
Short summary
In recent years, Europe has faced severe hot and dry events affecting biodiversity, agriculture, and health. Understanding past significant variation in their occurrence is key for adaptation. This paper identifies emerging hotspots in Europe and North Africa. Since the 1970s, the Iberian Peninsula, Maghreb, and Central Europe have seen more frequent events, driven by rising temperature maxima, while Eastern Europe has experienced a decline due to changes in drought.
Denis Allard, Mathieu Vrac, Bastien François, and Iñaki García de Cortázar-Atauri
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-102, https://doi.org/10.5194/hess-2024-102, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Atmospheric variables from climate models often present biases relative to the past. In order to use these models to assess the impact of climate change on processes of interest, it is necessary to correct these biases. We tested several Multivariate Bias Correction Methods (MBCMs) for 5 physical variables that are input variables for 4 process models. We provide recommendations regarding the use of MBCMs when multivariate and time dependent processes are involved.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Mathieu Vrac, Denis Allard, Grégoire Mariéthoz, Soulivanh Thao, and Lucas Schmutz
Earth Syst. Dynam., 15, 735–762, https://doi.org/10.5194/esd-15-735-2024, https://doi.org/10.5194/esd-15-735-2024, 2024
Short summary
Short summary
We aim to combine multiple global climate models (GCMs) to enhance the robustness of future projections. We introduce a novel approach, called "α pooling", aggregating the cumulative distribution functions (CDFs) of the models into a CDF more aligned with historical data. The new CDFs allow us to perform bias adjustment of all the raw climate simulations at once. Experiments with European temperature and precipitation demonstrate the superiority of this approach over conventional techniques.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Proc. IAHS, 385, 121–127, https://doi.org/10.5194/piahs-385-121-2024, https://doi.org/10.5194/piahs-385-121-2024, 2024
Short summary
Short summary
This study assesses the impact of climate change on the timing, seasonality and magnitude of mean annual minimum (MAM) flows and annual maximum flows (AMF) in the Volta River basin (VRB). Several climate change projection data are use to simulate river flow under multiple greenhouse gas emission scenarios. Future projections show that AMF could increase with various magnitude but negligible shift in time across the VRB, while MAM could decrease with up to 14 days of delay in occurrence.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
Antoine Grisart, Mathieu Casado, Vasileios Gkinis, Bo Vinther, Philippe Naveau, Mathieu Vrac, Thomas Laepple, Bénédicte Minster, Frederic Prié, Barbara Stenni, Elise Fourré, Hans Christian Steen-Larsen, Jean Jouzel, Martin Werner, Katy Pol, Valérie Masson-Delmotte, Maria Hoerhold, Trevor Popp, and Amaelle Landais
Clim. Past, 18, 2289–2301, https://doi.org/10.5194/cp-18-2289-2022, https://doi.org/10.5194/cp-18-2289-2022, 2022
Short summary
Short summary
This paper presents a compilation of high-resolution (11 cm) water isotopic records, including published and new measurements, for the last 800 000 years from the EPICA Dome C ice core, Antarctica. Using this new combined water isotopes (δ18O and δD) dataset, we study the variability and possible influence of diffusion at the multi-decadal to multi-centennial scale. We observe a stronger variability at the onset of the interglacial interval corresponding to a warm period.
Moctar Dembélé, Mathieu Vrac, Natalie Ceperley, Sander J. Zwart, Josh Larsen, Simon J. Dadson, Grégoire Mariéthoz, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 1481–1506, https://doi.org/10.5194/hess-26-1481-2022, https://doi.org/10.5194/hess-26-1481-2022, 2022
Short summary
Short summary
Climate change impacts on water resources in the Volta River basin are investigated under various global warming scenarios. Results reveal contrasting changes in future hydrological processes and water availability, depending on greenhouse gas emission scenarios, with implications for floods and drought occurrence over the 21st century. These findings provide insights for the elaboration of regional adaptation and mitigation strategies for climate change.
Yoann Robin and Mathieu Vrac
Earth Syst. Dynam., 12, 1253–1273, https://doi.org/10.5194/esd-12-1253-2021, https://doi.org/10.5194/esd-12-1253-2021, 2021
Short summary
Short summary
We propose a new multivariate downscaling and bias correction approach called
time-shifted multivariate bias correction, which aims to correct temporal dependencies in addition to inter-variable and spatial ones. Our method is evaluated in a
perfect model experimentcontext where simulations are used as pseudo-observations. The results show a large reduction of the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly adjusted.
Cedric G. Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, Philippe Peyrillé, and Cyrille Flamant
Weather Clim. Dynam., 2, 893–912, https://doi.org/10.5194/wcd-2-893-2021, https://doi.org/10.5194/wcd-2-893-2021, 2021
Short summary
Short summary
This work assesses the forecast of the temperature over the Sahara, a key driver of the West African Monsoon, at a seasonal timescale. The seasonal models are able to reproduce the climatological state and some characteristics of the temperature during the rainy season in the Sahel. But, because of errors in the timing, the forecast skill scores are significant only for the first 4 weeks.
Anna Denvil-Sommer, Marion Gehlen, and Mathieu Vrac
Ocean Sci., 17, 1011–1030, https://doi.org/10.5194/os-17-1011-2021, https://doi.org/10.5194/os-17-1011-2021, 2021
Short summary
Short summary
In this work we explored design options for a future Atlantic-scale observational network enabling the release of carbon system estimates by combining data streams from various platforms. We used outputs of a physical–biogeochemical global ocean model at sites of real-world observations to reconstruct surface ocean pCO2 by applying a non-linear feed-forward neural network. The results provide important information for future BGC-Argo deployment, i.e. important regions and the number of floats.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Cited articles
Abatzoglou, J. T., Dobrowski, S. Z., and Parks, S. A.: Multivariate climate
departures have outpaced univariate changes across global lands, Sci. Rep.,
10, 3891, https://doi.org/10.1038/s41598-020-60270-5, 2020. a
Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy), Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, 2017. a
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M.,
Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from
precipitation and storm surge in Europe under anthropogenic climate change,
Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. a, b, c, d
Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S.,
Ramos, A. M., Vignotto, E., Bastos, A., Blesic, S., Durante, F., et al.:
Bottom-up identification of key elements of compound events, ESS Open Archive [preprint], 29, https://doi.org/10.1002/essoar.10507809.1, 23 August 2021. a
Bevacqua, E., Zappa, G., Lehner, F., and Zscheischler, J.: Precipitation trends
determine future occurrences of compound hot–dry events, Nat. Clim. Chang., 12, 350–355,
https://doi.org/10.1038/s41558-022-01309-5, 2022. a
Bindoff, N., Stott, P., AchutaRao, K., Allen, M., Gillett, N., Gutzler, D.,
Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I., Overland, J.,
Perlwitz, J., Sebbari, R., and Zhang, X.: Detection and Attribution of
Climate Change: from Global to Regional, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. Allen,
S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Sect. 10,
Cambridge University Press, pp. 867–952, https://doi.org/10.1017/CBO9781107415324.022, 2013. a
Bonhomme, R.: Bases and limits to using ‘degree.day’ units, Eur. J. Agron.,
13, 1–10, https://doi.org/10.1016/S1161-0301(00)00058-7, 2000. a
Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols,
M.-A., Meurdesoif, Y., Cadule, P., Devilliers, M., Ghattas, J., Lebas, N.,
Lurton, T., Mellul, L., Musat, I., Mignot, J., and Cheruy, F.: IPSL
IPSL-CM6A-LR model output prepared for CMIP6 CMIP,
https://doi.org/10.22033/ESGF/CMIP6.1534, 2018. a
Brunner, M. I., Swain, D. L., Gilleland, E., and Wood, A. W.: Increasing
importance of temperature as a contributor to the spatial extent of
streamflow drought, Environ. Res. Lett., 16, 024038,
https://doi.org/10.1088/1748-9326/abd2f0, 2021. a
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe
storm surge extremes match the rate of sea-level rise, Nature, 603,
841–845, https://doi.org/10.1038/s41586-022-04426-5, 2022. a
Cannon, A. J.: Multivariate quantile mapping bias correction: an
N-dimensional probability density function transform for climate model
simulations of multiple variables, Clim. Dynam., 50, 31–49,
https://doi.org/10.1007/s00382-017-3580-6, 2018. a, b
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S.,
Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.:
Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled
Model, J. Adv. Model. Earth Syst., 11, 185–209, https://doi.org/10.1029/2018MS001369,
2019. a
Chiang, F., Greve, P., Mazdiyasni, O., Wada, Y., and AghaKouchak, A.: A
Multivariate Conditional Probability Ratio Framework for the Detection and
Attribution of Compound Climate Extremes, Geophys. Res. Lett., 48,
e2021GL094361, https://doi.org/10.1029/2021GL094361, 2021. a
Christensen, J., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones,
R., Kolli, R., Kwon, W.-T., Laprise, R., Rueda, V., Mearns, L., Menéndez,
C., Räisänen, J., Rinke, A., Sarr, A., and Whetton, P.: Regional climate
projections. Climate change 2007: The physical science basis, Contribution
of Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and
Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, pp. 847–940, ISBN: 978-0-521-88009-1, 2007. a
De Luca, P., Messori, G., Pons, F. M. E., and Faranda, D.: Dynamical systems
theory sheds new light on compound climate extremes in Europe and Eastern
North America, Q. J. Roy. Meteor. Soc., 146, 1636–1650,
https://doi.org/10.1002/qj.3757, 2020a. a
De Luca, P., Messori, G., Wilby, R. L., Mazzoleni, M., and Di Baldassarre, G.: Concurrent wet and dry hydrological extremes at the global scale, Earth Syst. Dynam., 11, 251–266, https://doi.org/10.5194/esd-11-251-2020, 2020b. a
Diffenbaugh, N. and Scherer, M.: Observational and model evidence of global
emergence of permanent, unprecedented heat in the 20th and 21st centuries,
Clim. Change, 107, 615–624, https://doi.org/10.1007/s10584-011-0112-y, 2011. a
Diffenbaugh, N. S., Swain, D. L., and Touma, D.: Anthropogenic warming has
increased drought risk in California, Proc. Natl. Acad. Sci. USA, 112,
3931–3936, https://doi.org/10.1073/pnas.1422385112, 2015. a
EC-Earth: EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6
ScenarioMIP ssp585, https://doi.org/10.22033/ESGF/CMIP6.4912, 2019. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Faranda, D., Vrac, M., Yiou, P., Jézéquel, A., and Thao, S.: Changes in
Future Synoptic Circulation Patterns: Consequences for Extreme Event
Attribution, Geophys. Res. Lett., 47, e2020GL088002,
https://doi.org/10.1029/2020GL088002, 2020. a
Fink, A. H., Brücher, T., Ermert, V., Krüger, A., and Pinto, J. G.: The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change, Nat. Hazards Earth Syst. Sci., 9, 405–423, https://doi.org/10.5194/nhess-9-405-2009, 2009. a
Fischer, E. M., Sedláček, J., Hawkins, E., and Knutti, R.: Models agree on
forced response pattern of precipitation and temperature extremes, Geophys.
Res. Lett., 41, 8554–8562, https://doi.org/10.1002/2014GL062018, 2014. a, b
Frame, D., Joshi, M., Hawkins, E., Harrington, L., and Róiste, M.:
Population-based emergence of unfamiliar climates, Nat. Clim. Chang., 7,
407–411, https://doi.org/10.1038/nclimate3297, 2017. a
François, B. and Vrac, M.: Codes for the article “Time of emergence of compound events:
contribution of univariate and dependence properties”, Zenodo [code],
https://doi.org/10.5281/zenodo.7509302, 2023. a
François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: which benefits for which losses?, Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, 2020. a
François, B., Thao, S., and Vrac, M.: Adjusting spatial dependence of climate
model outputs with cycle-consistent adversarial networks, Clim. Dynam., 57,
3323–3353, https://doi.org/10.1007/s00382-021-05869-8, 2021. a
Gaetani, M., Janicot, S., Vrac, M., Famien, A. M., and Sultan, B.:
Robust assessment of the time of emergence of precipitation change in
West Africa, Sci. Rep., 10, 7670, https://doi.org/10.1038/s41598-020-63782-2, 2020. a, b
Garcia de Cortazar-Atauri, I., Brisson, N., and Gaudillere, J.: Performance of
several models for predicting budburst date of grapevine (Vitis vinifera
L.), Int. J. Biometeorol., 53, 317–326, https://doi.org/10.1007/s00484-009-0217-4,
2009. a, b
Genest, C., Remillard, B., and Beaudoin, D.: Goodness-of-fit tests for
copulas: A review and a power study, Insur. Math. Econ., 44, 199–213,
https://doi.org/10.1016/j.insmatheco.2007.10.005, 2009. a
Giorgi, F. and Bi, X.: Time of emergence (TOE) of GHG-forced precipitation
change hot-spots, Geophys. Res. Lett., 36, L06709, https://doi.org/10.1029/2009GL037593, 2009. a
Guo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., Radhakrishnan, A.,
Rand, K., Zadeh, N. T., Balaji, V., Durachta, J., Dupuis, C., Menzel, R.,
Robinson, T., Underwood, S., Vahlenkamp, H., Dunne, K. A., Gauthier, P. P.,
Ginoux, P., Griffies, S. M., Hallberg, R., Harrison, M., Hurlin, W., Lin, P.,
Malyshev, S., Naik, V., Paulot, F., Paynter, D. J., Ploshay, J., Schwarzkopf,
D. M., Seman, C. J., Shao, A., Silvers, L., Wyman, B., Yan, X., Zeng, Y.,
Adcroft, A., Dunne, J. P., Held, I. M., Krasting, J. P., Horowitz, L. W.,
Milly, C., Shevliakova, E., Winton, M., Zhao, M., and Zhang, R.: NOAA-GFDL
GFDL-CM4 model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.9268, 2018. a
Guo, Q., Chen, J., Zhang, X., Shen, M., Chen, H., and Guo, S.: A new two-stage
multivariate quantile mapping method for bias correcting climate model
outputs, Clim. Dynam., 53, 3603–3623, https://doi.org/10.1007/s00382-019-04729-w,
2019. a
Hawkins, E. and Sutton, R.: Time of emergence of climate signals, Geophys. Res.
Lett., 39, L01702, https://doi.org/10.1029/2011GL050087, 2012. a, b, c
Hillier, J., Matthews, T., Wilby, R., and Murphy, C.: Multi-hazard
dependencies can increase or decrease risk, Nat. Clim. Chang., 10, 1–4,
https://doi.org/10.1038/s41558-020-0832-y, 2020. a
Hofert, M., Mächler, M., and McNeil, A. J.: Likelihood inference for
Archimedean copulas in high dimensions under known margins, J. Multivar.
Anal., 110, 133–150, https://doi.org/10.1016/j.jmva.2012.02.019, 2012. a
Hofert, M., Kojadinovic, I., Maechler, M., and Yan, J.: copula: Multivariate
Dependence with Copulas, R package version 1.0-1, https://CRAN.R-project.org/package=copula (last access: 9 March 2022), 2020. a
Huang, W. and Prokhorov, A.: A Goodness-of-fit Test for Copulas, Econom.
Rev., 33, 751–771, https://doi.org/10.1080/07474938.2012.690692, 2014. a
IPCC: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, in press, 2023. a, b
Jézéquel, A., Bevacqua, E., d'Andrea, F., Thao, S., Vautard, R.,
Vrac, M., and Yiou, P.: Conditional and residual trends of singular hot days
in Europe, Environ. Res. Lett., 15, 064018,
https://doi.org/10.1088/1748-9326/ab76dd, 2020. a, b
Jiang, F., Hu, R.-j., Zhang, Y.-w., Li, X., and Tong, L.: Variations and
trends of onset, cessation and length of climatic growing season over
Xinjiang, NW China, Theor. Appl. Climatol., 106, 449–458,
https://doi.org/10.1007/s00704-011-0445-5, 2011. a
King, A. D., Donat, M. G., Fischer, E. M., Hawkins, E., Alexander, L. V.,
Karoly, D. J., Dittus, A. J., Lewis, S. C., and Perkins, S. E.: The timing
of anthropogenic emergence in simulated climate extremes, Environ. Res.
Lett., 10, 094015, https://doi.org/10.1088/1748-9326/10/9/094015, 2015. a
Kiriliouk, A. and Naveau, P.: Climate extreme event attribution using
multivariate peaks-over-thresholds modeling and counterfactual theory, Ann.
Appl. Stat., 14, 1342–1358, https://doi.org/10.1214/20-AOAS1355, 2020. a
Lamichhane, J.-R.: Rising risks of late-spring frosts in a changing climate,
Nat. Clim. Chang., 11, 554–555, https://doi.org/10.1038/s41558-021-01090-x, 2021. a
Leonard, M., Westra, S., Phatak, A., Lambert, M., Hurk, B., Mcinnes, K.,
Risbey, J., Schuster, S., Jakob, D., and Stafford Smith, M.: A compound event
framework for understanding extreme impacts, Wiley Interdiscip. Rev. Clim.
Change, 5, 113–128, 2014. a
Li, L.: CAS FGOALS-g3 model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.3503, 2019. a
Liberato, M. L.: The 19 January 2013 windstorm over the North Atlantic:
large-scale dynamics and impacts on Iberia, Weather. Clim. Extremes, 5–6,
16–28, https://doi.org/10.1016/j.wace.2014.06.002, 2014. a
Liu, Q., Piao, S., Janssens, I., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni,
R., Penuelas, J., and Wang, T.: Extension of the growing season increases
vegetation exposure to frost, Nat. Commun., 9, 426,
https://doi.org/10.1038/s41467-017-02690-y, 2018a. a
Liu, Y., Cheng, Y., Zhang, X., Li, X., and Cao, S.: Combined Exceedance
Probability Assessment of Water Quality Indicators Based on Multivariate
Joint Probability Distribution in Urban Rivers, Water, 10, 971,
https://doi.org/10.3390/w10080971, 2018b. a
Lobell, D. B. and Burke, M. B.: Why are agricultural impacts of climate change
so uncertain? The importance of temperature relative to precipitation,
Environ. Res. Lett., 3, 034007, https://doi.org/10.1088/1748-9326/3/3/034007, 2008. a
Mahlstein, I., Knutti, R., Solomon, S., and Portmann, R. W.: Early onset of
significant local warming in low latitude countries, Environ. Res. Lett., 6,
034009, https://doi.org/10.1088/1748-9326/6/3/034009, 2011. a
Mahlstein, I., Hegerl, G., and Solomon, S.: Emerging local warming signals in
observational data, Geophys. Res. Lett., 39, L21711, https://doi.org/10.1029/2012GL053952,
2012. a
Manning, C., Widmann, M., Bevacqua, E., Loon, A. F. V., Maraun, D., and Vrac,
M.: Soil Moisture Drought in Europe: A Compound Event of Precipitation and
Potential Evapotranspiration on Multiple Time Scales, J. Hydrometeorol., 19,
1255–1271, https://doi.org/10.1175/JHM-D-18-0017.1, 2018. a, b
Manning, C., Widmann, M., Bevacqua, E., Loon, A. F. V., Maraun, D., and Vrac,
M.: Increased probability of compound long-duration dry and hot events in
Europe during summer (1950–2013), Environ. Res. Lett., 14,
094006, https://doi.org/10.1088/1748-9326/ab23bf, 2019. a
Maraun, D.: When will trends in European mean and heavy daily precipitation
emerge?, Environ. Res. Lett., 8, 014004,
https://doi.org/10.1088/1748-9326/8/1/014004, 2013. a, b, c
Martius, O., Pfahl, S., and Chevalier, C.: A global quantification of compound
precipitation and wind extremes, Geophys. Res. Lett., 43, 7709–7717,
https://doi.org/10.1002/2016GL070017, 2016. a
Mazdiyasni, O. and AghaKouchak, A.: Substantial increase in concurrent
droughts and heatwaves in the United States, P. Natl. Acad. Sci. USA,
112, 11484–11489, https://doi.org/10.1073/pnas.1422945112, 2015. a
Mehrotra, R. and Sharma, A.: A Resampling Approach for Correcting Systematic
Spatiotemporal Biases for Multiple Variables in a Changing Climate, Water
Resour. Res., 55, 754–770, https://doi.org/10.1029/2018WR023270, 2019. a
Messmer, M. and Simmonds, I.: Global analysis of cyclone-induced compound
precipitation and wind extreme events, Weather. Clim. Extremes, 32,
100324, https://doi.org/10.1016/j.wace.2021.100324, 2021. a
Nasr, A. A., Wahl, T., Rashid, M. M., Camus, P., and Haigh, I. D.: Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline, Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, 2021. a
Nelsen, R. B.: An Introduction to Copulas, Springer Series in
Statistics, 2nd edn., Springer, https://doi.org/10.1007/0-387-28678-0, 2006. a
Ossó, A., Allan, R., Hawkins, E., Shaffrey, L., and Maraun, D.: Emerging new
climate extremes over Europe, Clim. Dyn., 58, 487–501,
https://doi.org/10.1007/s00382-021-05917-3, 2022. a, b, c, d
Pfleiderer, P., Menke, I., and Schleussner, C.-F.: Increasing risks of apple
tree frost damage under climate change, Clim. Change, 157, 515–525,
https://doi.org/10.1007/s10584-019-02570-y, 2019. a
Pohl, E., Grenier, C., Vrac, M., and Kageyama, M.: Emerging climate signals in the Lena River catchment: a non-parametric statistical approach, Hydrol. Earth Syst. Sci., 24, 2817–2839, https://doi.org/10.5194/hess-24-2817-2020, 2020. a
Rana, A., Hamid, M., and Qin, Y.: Understanding the Joint Behavior of
Temperature and Precipitation for Climate Change Impact Studies, Theor.
Appl. Climatol., 129, https://doi.org/10.1007/s00704-016-1774-1, 2017. a
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes in
the Mediterranean: a climatological analysis for 1979–2012, Q. J. Roy.
Meteor. Soc., 141, 2404–2417, https://doi.org/10.1002/qj.2531, 2015. a
Raymond, C., Matthews, T., and Horton, R. M.: The emergence of heat and
humidity too severe for human tolerance, Sci. Adv., 6, eaaw1838,
https://doi.org/10.1126/sciadv.aaw1838, 2020. a
Raymond, C., Suarez-Gutierrez, L., Kornhuber, K., Pascolini-Campbell, M.,
Sillmann, J., and Waliser, D. E.: Increasing spatiotemporal proximity of heat
and precipitation extremes in a warming world quantified by a large model
ensemble, Environ. Res. Lett., 17, 035005, https://doi.org/10.1088/1748-9326/ac5712,
2022. a, b
Reinert, M., Pineau-Guillou, L., Raillard, N., and Chapron, B.: Seasonal Shift
in Storm Surges at Brest Revealed by Extreme Value Analysis, J. Geophys.
Res. Oceans, 126, e2021JC017794, https://doi.org/10.1029/2021JC017794, 2021. a
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp,
A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S.,
Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Global Environ. Chang., 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009,
2017. a
Ridder, N., Pitman, A., and Ukkola, A.: Do CMIP6 Climate Models simulate
Global or Regional Compound Events skilfully?, Geophys. Res. Lett., 48, e2020GL091152,
https://doi.org/10.1029/2020GL091152, 2021. a, b
Ridder, N., Ukkola, A., Pitman, A., and Perkins-Kirkpatrick, S.: Increased
occurrence of high impact compound events under climate change, NPJ Clim.
Atmos. Sci., 5, 3, https://doi.org/10.1038/s41612-021-00224-4, 2022. a
Robin, Y., Vrac, M., Naveau, P., and Yiou, P.: Multivariate stochastic bias corrections with optimal transport, Hydrol. Earth Syst. Sci., 23, 773–786, https://doi.org/10.5194/hess-23-773-2019, 2019. a
Ruosteenoja, K., Räisänen, J., Venäläinen, A., and Kämäräinen, M.:
Projections for the duration and degree days of the thermal growing season
in Europe derived from CMIP5 model output, Int. J. Climatol., 36,
3039–3055, https://doi.org/10.1002/joc.4535, 2016. a
Russo, S., Sillmann, J., and Sterl, A.: Humid heat waves at different warming
levels, Sci. Rep., 7, 7477, https://doi.org/10.1038/s41598-017-07536-7, 2017. a
Sadegh, M., Ragno, E., and AghaKouchak, A.: Multivariate Copula Analysis
Toolbox (MvCAT): Describing dependence and underlying uncertainty using a
Bayesian framework, Water Resour. Res., 53, 5166–5183,
https://doi.org/10.1002/2016WR020242, 2017. a
Salvadori, G., de Michele, C., Kottegoda, N., and Rosso, R.: Extremes in
Nature: An Approach Using Copulas, Water Science and
Technology Library, Springer, Dordrecht, the Netherlands,
https://doi.org/10.1007/1-4020-4415-1, 2007. a
Salvadori, G., De Michele, C., and Durante, F.: On the return period and design in a multivariate framework, Hydrol. Earth Syst. Sci., 15, 3293–3305, https://doi.org/10.5194/hess-15-3293-2011, 2011. a
Salvadori, G., Durante, F., De Michele, C., Bernardi, M., and Petrella, L.: A
multivariate copula-based framework for dealing with hazard scenarios and
failure probabilities, Water Resour. Res., 52, 3701–3721,
https://doi.org/10.1002/2015WR017225, 2016. a
Schölzel, C. and Friederichs, P.: Multivariate non-normally distributed random variables in climate research – introduction to the copula approach, Nonlin. Processes Geophys., 15, 761–772, https://doi.org/10.5194/npg-15-761-2008, 2008. a
Schär, C.: Climate extremes: The worst heat waves to come, Nat. Clim.
Chang., 6, 128–129, https://doi.org/10.1038/nclimate2864, 2015. a
Serinaldi, F.: Dismissing return periods!, Stoch. Environ. Res. Risk Assess.,
29, 1179–1189, https://doi.org/10.1007/s00477-014-0916-1, 2014. a
Serinaldi, F.: Can we tell more than we can know? The limits of bivariate
drought analyses in the United States, Stoch. Environ. Res. Risk Assess.,
30, 1691–1704, 2015. a
Sgubin, G., Swingedouw, D., Dayon, G., Garcia de Cortazar-Atauri, I., Ollat,
N., Page, C., and van Leeuwen, C.: The risk of tardive frost damage in
French vineyards in a changing climate, Agric. For. Meteorol., 250–251,
226–242, https://doi.org/10.1016/j.agrformet.2017.12.253, 2018. a
Shepherd, T. G.: A Common Framework for Approaches to Extreme Event
Attribution, Curr. Clim. Change Rep., 2, 28–38,
https://doi.org/10.1007/s40641-016-0033-y, 2016. a
Shiau, J.: Return Period of Bivariate Distributed Hydrological Events, Stoch.
Environ. Res. Risk Assess., 17, 42–57, https://doi.org/10.1007/s00477-003-0125-9,
2003. a
Shiogama, H., Abe, M., and Tatebe, H.: MIROC MIROC6 model output prepared for
CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.898, 2019. a
Singh, H., Najafi, M., and Cannon, A.: Characterizing non-stationary compound
extreme events in a changing climate based on large-ensemble climate
simulations, Clim. Dynam., 56, 1–17, https://doi.org/10.1007/s00382-020-05538-2,
2021a. a, b, c
Singh, J., Ashfaq, M., Skinner, C. B., Anderson, W. B., and Singh, D.:
Amplified risk of spatially compounding droughts during co-occurrences of
modes of natural ocean variability, NPJ Clim. Atmos. Sci., 4, 7,
https://doi.org/10.1038/s41612-021-00161-2, 2021b. a
Skaugen, T. E. and Tveito, O. E.: Growing-season and degree-day scenario in
Norway for 2021–2050, Clim. Res., 26, 221–232, 2004. a
Sklar, A.: Fonctions de Répartition à n Dimensions et Leurs Marges,
Publications de l’Institut Statistique de l’Université de Paris, 8,
229–231, 1959. a
Stott, P. A., Stone, D. A., and Allen, M. R.: Human contribution to the
European heatwave of 2003, Nature, 432, 610–614, https://doi.org/10.1038/nature03089,
2004. a
Stott, P. A., Christidis, N., Otto, F. E. L., Sun, Y., Vanderlinden, J.-P., van
Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and
Zwiers, F. W.: Attribution of extreme weather and climate-related events,
Wiley Interdiscip. Rev. Clim. Change, 7, 23–41, https://doi.org/10.1002/wcc.380, 2016. a
Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett,
N. P., Anstey, J., Arora, V., Christian, J. R., Jiao, Y., Lee, W. G.,
Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Solheim, L.,
von Salzen, K., Yang, D., Winter, B., and Sigmond, M.: CCCma CanESM5 model
output prepared for CMIP6 ScenarioMIP, https://doi.org/10.22033/ESGF/CMIP6.1317, 2019. a
Tavakol, A., Rahmani, V., and Harrington Jr., J.: Probability of compound climate extremes
in a changing climate: A copula-based study of hot, dry, and windy events in
the central United States, Environ. Res. Lett., 15, 104058,
https://doi.org/10.1088/1748-9326/abb1ef, 2020. a
Unterberger, C., Brunner, L., Nabernegg, S., Steininger, K. W., Steiner, A. K.,
Stabentheiner, E., Monschein, S., and Truhetz, H.: Spring frost risk for
regional apple production under a warmer climate, PLOS ONE, 13, 1–18,
https://doi.org/10.1371/journal.pone.0200201, 2018. a
Vautard, R., van Oldenborgh, G. J., Bonnet, R., Li, S., Robin, Y., Kew, S., Philip, S., Soubeyroux, J.-M., Dubuisson, B., Viovy, N., Reichstein, M., Otto, F., and Garcia de Cortazar-Atauri, I.: Human influence on growing-period frosts like the early April 2021 in Central France, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2022-41, in review, 2022. a, b, c, d
Venzon, D. J. and Moolgavkar, S. H.: A Method for Computing
Profile-Likelihood-Based Confidence Intervals, J. R. Stat. Soc. Ser. C Appl.
Stat., 37, 87–94, 1988. a
Villalobos-Herrera, R., Bevacqua, E., Ribeiro, A. F. S., Auld, G., Crocetti, L., Mircheva, B., Ha, M., Zscheischler, J., and De Michele, C.: Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards, Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, 2021. a
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 CMIP,
https://doi.org/10.22033/ESGF/CMIP6.1375, 2018. a
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6
ScenarioMIP ssp585, https://doi.org/10.22033/ESGF/CMIP6.4225, 2019. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM4-8 model output prepared for CMIP6 ScenarioMIP,
https://doi.org/10.22033/ESGF/CMIP6.12321, 2019a. a
Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N.,
Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S.: INM
INM-CM5-0 model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.12338, 2019b. a
Vrac, M.: Multivariate bias adjustment of high-dimensional climate simulations: the Rank Resampling for Distributions and Dependences (R2D2) bias correction, Hydrol. Earth Syst. Sci., 22, 3175–3196, https://doi.org/10.5194/hess-22-3175-2018, 2018. a
Vrac, M. and Thao, S.: R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling, Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, 2020. a
Vrac, M., Chédin, A., and Diday, E.: Clustering a Global Field of Atmospheric
Profiles by Mixture Decomposition of Copulas, J. Atmos. Ocean Technol., 22,
1445–1459, https://doi.org/10.1175/JTECH1795.1, 2005. a
Vrac, M., Thao, S., and Yiou, P.: Changes in temperature-precipitation
correlations over Europe: Are climate models reliable?, Clim. Dynam.,
https://doi.org/10.1007/s00382-022-06436-5, 2022a. a, b, c, d
Vrac, M., Thao, S., and Yiou, P.: Should multivariate bias corrections of
climate simulations account for changes of rank correlation over time?, J. Geophys. Res.-Atmos., 127, e2022JD036562, https://doi.org/10.1029/2022JD036562,
2022b. a
Wahl, T., Jain, S., Bender, J., Meyers, S., and Luther, M.: Increasing risk of
compound flooding from storm surge and rainfall for major US cities, Nat.
Clim. Chang., 5, 1093–1097, https://doi.org/10.1038/nclimate2736, 2015. a, b
White, H.: Maximum Likelihood Estimation of Misspecified Models,
Econometrica, 50, 1–25, 1982. a
Wieners, K.-H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M.,
Gayler, V., Haak, H., de Vrese, P., Raddatz, T., Mauritsen, T., von Storch,
J.-S., Behrens, J., Brovkin, V., Claussen, M., Crueger, T., Fast, I.,
Fiedler, S., Hagemann, S., Hohenegger, C., Jahns, T., Kloster, S., Kinne, S.,
Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K.,
Mikolajewicz, U., Modali, K., Müller, W., Nabel, J., Notz, D., Peters-von
Gehlen, K., Pincus, R., Pohlmann, H., Pongratz, J., Rast, S., Schmidt, H.,
Schnur, R., Schulzweida, U., Six, K., Stevens, B., Voigt, A., and Roeckner,
E.: MPI-M MPI-ESM1.2-LR model output prepared for CMIP6 ScenarioMIP ssp585,
https://doi.org/10.22033/ESGF/CMIP6.6705, 2019. a
Yue, S. and Rasmussen, P.: Bivariate frequency analysis: Discussion of some
useful concepts in hydrological application, Hydrol. Process., 16,
2881–2898, https://doi.org/10.1002/hyp.1185, 2002. a, b
Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yoshimura, H., Shindo, E.,
Mizuta, R., Ishii, M., Obata, A., and Adachi, Y.: MRI MRI-ESM2.0 model output
prepared for CMIP6 CMIP, https://doi.org/10.22033/ESGF/CMIP6.621, 2019.
a
Zscheischler, J. and Lehner, F.: Attributing compound events to anthropogenic
climate change, B. Am. Meteorol. Soc., 103, E936–E953,
https://doi.org/10.1175/BAMS-D-21-0116.1, 2021. a, b, c
Zscheischler, J. and Seneviratne, S.: Dependence of drivers affects risks
associated with compound events, Sci. Adv., 3, e1700263,
https://doi.org/10.1126/sciadv.1700263, 2017. a, b, c, d
Zscheischler, J., Michalak, A. M., Schwalm, C., Mahecha, M. D., Huntzinger,
D. N., Reichstein, M., Berthier, G., Ciais, P., Cook, R. B., El-Masri, B.,
Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S.,
Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W.,
Wei, Y., Yang, J., and Zeng, N.: Impact of large-scale climate extremes on
biospheric carbon fluxes: An intercomparison based on MsTMIP data, Glob.
Biogeochem. Cycles, 28, 585–600, https://doi.org/10.1002/2014GB004826, 2014. a
Zscheischler, J., Westra, S., Hurk, B., Seneviratne, S., Ward, P., Pitman, A.,
AghaKouchak, A., Bresch, D., Leonard, M., Wahl, T., and Zhang, X.: Future
climate risk from compound events, Nat. Clim. Chang., 8, 469–477,
https://doi.org/10.1038/s41558-018-0156-3, 2018. a
Zscheischler, J., Fischer, E. M., and Lange, S.: The effect of univariate bias adjustment on multivariate hazard estimates, Earth Syst. Dynam., 10, 31–43, https://doi.org/10.5194/esd-10-31-2019, 2019. a
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CE probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering changes in both marginal and dependence properties for future risk assessments related to CEs.
Compound events (CEs) result from a combination of several climate phenomena. In this study, we...
Altmetrics
Final-revised paper
Preprint