Articles | Volume 23, issue 6
https://doi.org/10.5194/nhess-23-2001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-2001-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A methodological framework for the evaluation of short-range flash-flood hydrometeorological forecasts at the event scale
Maryse Charpentier-Noyer
CORRESPONDING AUTHOR
Univ Gustave Eiffel, GERS-LEE, 44344 Bouguenais, France
Daniela Peredo
UMR Metis, Sorbonne Université, 75252 Paris, France
INRAE, Université Paris-Saclay, UR HYCAR, 92160 Antony, France
Axelle Fleury
CNRM, Université de Toulouse, Météo-France, CNRS, 31000 Toulouse, France
Hugo Marchal
CNRM, Université de Toulouse, Météo-France, CNRS, 31000 Toulouse, France
François Bouttier
CNRM, Université de Toulouse, Météo-France, CNRS, 31000 Toulouse, France
Eric Gaume
Univ Gustave Eiffel, GERS-LEE, 44344 Bouguenais, France
Pierre Nicolle
Univ Gustave Eiffel, GERS-LEE, 44344 Bouguenais, France
Olivier Payrastre
Univ Gustave Eiffel, GERS-LEE, 44344 Bouguenais, France
Maria-Helena Ramos
INRAE, Université Paris-Saclay, UR HYCAR, 92160 Antony, France
Related authors
No articles found.
Annie Y.-Y. Chang, Shaun Harrigan, Maria-Helena Ramos, Massimiliano Zappa, Christian M. Grams, Daniela I. V. Domeisen, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3411, https://doi.org/10.5194/egusphere-2025-3411, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study presents a machine learning-aided hybrid forecasting framework to improve early warnings of low flows in the European Alps. It combines weather regime information, streamflow observations, and model simulations (EFAS). Even using only weather regime data improves predictions over climatology, while integrating different data sources yields the best result, emphasizing the value of integrating diverse data sources.
Cloé David, Clotilde Augros, Benoit Vié, François Bouttier, and Tony Le Bastard
Atmos. Meas. Tech., 18, 3715–3745, https://doi.org/10.5194/amt-18-3715-2025, https://doi.org/10.5194/amt-18-3715-2025, 2025
Short summary
Short summary
Simulations of storm characteristics and associated radar signatures were improved, especially under the freezing level, using an advanced cloud scheme. Discrepancies between observations and forecasts at and above the melting layer highlighted issues in both the radar forward operator and the microphysics. To overcome some of these issues, different parameterizations of the operator were suggested. This work aligns with the future integration of polarimetric data into assimilation systems.
Hugo Marchal, François Bouttier, and Olivier Nuissier
Nat. Hazards Earth Syst. Sci., 25, 2613–2628, https://doi.org/10.5194/nhess-25-2613-2025, https://doi.org/10.5194/nhess-25-2613-2025, 2025
Short summary
Short summary
This paper investigates the relationship between changes in weather forecasts and predictability, which has so far been considered weak. By studying how weather scenarios persist over successive forecasts, it appears that conclusions can be drawn about forecasts' reliability.
Gabriel Colas, Valéry Masson, François Bouttier, and Ludovic Bouilloud
EGUsphere, https://doi.org/10.5194/egusphere-2025-2777, https://doi.org/10.5194/egusphere-2025-2777, 2025
Short summary
Short summary
Each vehicle from road traffic is a source of heat and an obstacle that induce wind when it passes. It directly impacts the local atmospheric conditions and the road surface temperature. These impacts are included in the numerical model of the Town Energy Balance, used to simulate local conditions in urbanised environments. Simulations show that road traffic has a significant impact on the road surface temperature up to several degrees, and on local variables.
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data, 17, 2963–2983, https://doi.org/10.5194/essd-17-2963-2025, https://doi.org/10.5194/essd-17-2963-2025, 2025
Short summary
Short summary
This paper describes a dataset that includes input, output, and validation data for the simulation of flash flood hazards and three specific flash flood events in the French Mediterranean region. This dataset is particularly valuable as flood mapping methods often lack sufficient benchmark data. Additionally, we demonstrate how the hydraulic method we used, named Floodos, produces highly satisfactory results.
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025, https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
Short summary
In winter, snow- and ice-covered artificial surfaces are important aspects of the urban climate. They may influence the magnitude of the urban heat island effect, but this is still unclear. In this study, we improved the representation of the snow and ice cover in the Town Energy Balance (TEB) urban climate model. Evaluations have shown that the results are promising for using TEB to study the climate of cold cities.
Juliette Godet, Eric Gaume, Pierre Javelle, Thomas Dias, Pierre Nicolle, and Olivier Payrastre
Abstr. Int. Cartogr. Assoc., 9, 16, https://doi.org/10.5194/ica-abs-9-16-2025, https://doi.org/10.5194/ica-abs-9-16-2025, 2025
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024, https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Short summary
This work was performed in order to precisely address a point that is often neglected by hydrologists: the allocation of points located on a river network to grid cells, which is often a mandatory step for hydrological modelling.
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023, https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Short summary
This article results from a master's research project which was part of a natural hazards programme developed by the French Ministry of Ecological Transition. The objective of this work was to investigate a possible way to improve the operational flash flood warning service by adding rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
Emixi Sthefany Valdez, François Anctil, and Maria-Helena Ramos
Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022, https://doi.org/10.5194/hess-26-197-2022, 2022
Short summary
Short summary
We investigated how a precipitation post-processor interacts with other tools for uncertainty quantification in a hydrometeorological forecasting chain. Four systems were implemented to generate 7 d ensemble streamflow forecasts, which vary from partial to total uncertainty estimation. Overall analysis showed that post-processing and initial condition estimation ensure the most skill improvements, in some cases even better than a system that considers all sources of uncertainty.
Samira Khodayar, Silvio Davolio, Paolo Di Girolamo, Cindy Lebeaupin Brossier, Emmanouil Flaounas, Nadia Fourrie, Keun-Ok Lee, Didier Ricard, Benoit Vie, Francois Bouttier, Alberto Caldas-Alvarez, and Veronique Ducrocq
Atmos. Chem. Phys., 21, 17051–17078, https://doi.org/10.5194/acp-21-17051-2021, https://doi.org/10.5194/acp-21-17051-2021, 2021
Short summary
Short summary
Heavy precipitation (HP) constitutes a major meteorological threat in the western Mediterranean. Every year, recurrent events affect the area with fatal consequences. Despite this being a well-known issue, open questions still remain. The understanding of the underlying mechanisms and the modeling representation of the events must be improved. In this article we present the most recent lessons learned from the Hydrological Cycle in the Mediterranean Experiment (HyMeX).
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Nabil Hocini, Olivier Payrastre, François Bourgin, Eric Gaume, Philippe Davy, Dimitri Lague, Lea Poinsignon, and Frederic Pons
Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, https://doi.org/10.5194/hess-25-2979-2021, 2021
Short summary
Short summary
Efficient flood mapping methods are needed for large-scale, comprehensive identification of flash flood inundation hazards caused by small upstream rivers. An evaluation of three automated mapping approaches of increasing complexity, i.e., a digital terrain model (DTM) filling and two 1D–2D hydrodynamic approaches, is presented based on three major flash floods in southeastern France. The results illustrate some limits of the DTM filling method and the value of using a 2D hydrodynamic approach.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Pierre Nicolle, François Besson, Olivier Delaigue, Pierre Etchevers, Didier François, Matthieu Le Lay, Charles Perrin, Fabienne Rousset, Dominique Thiéry, François Tilmant, Claire Magand, Timothée Leurent, and Élise Jacob
Proc. IAHS, 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, https://doi.org/10.5194/piahs-383-381-2020, 2020
Cited articles
Addor, N., Jaun, S., Fundel, F., and Zappa, M.: An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios, Hydrol. Earth Syst. Sci., 15, 2327–2347, https://doi.org/10.5194/hess-15-2327-2011, 2011. a, b, c
Alfieri, L. and Thielen, J.: A European precipitation index for extreme rain-storm and flash flood early warning, Meteorol. Appl., 22, 3–13, https://doi.org/10.1002/met.1328, 2012. a
Amengual, A., Carrió, D. S., Ravazzani, G., and Homar, V.: A Comparison of Ensemble Strategies for Flash Flood Forecasting: The 12 October 2007 Case Study in Valencia, Spain, J. Hydrometeorol., 18, 1143–1166, https://doi.org/10.1175/JHM-D-16-0281.1, 2017. a, b
Amengual, A., Hermoso, A., Carrió, D. S., and Homar, V.: The sequence of heavy precipitation and flash flooding of 12 and 13 September 2019 in eastern Spain. Part II: A hydro-meteorological predictability analysis based on convection-permitting ensemble strategies, J. Hydrometeorol., 22, 2153–2177, https://doi.org/10.1175/jhm-d-20-0181.1, 2021. a
Anctil, F. and Ramos, M.-H.: Verification Metrics for Hydrological Ensemble Forecasts, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–30, https://doi.org/10.1007/978-3-642-40457-3_3-1, 2017. a
Anderson, S. R., Csima, G., Moore, R. J., Mittermaier, M., and Cole, S. J.: Towards operational joint river flow and precipitation ensemble verification: considerations and strategies given limited ensemble records, J. Hydrol., 577, 123966, https://doi.org/10.1016/j.jhydrol.2019.123966, 2019. a, b, c, d
Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., and Morin, E.: Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model, Hydrol. Earth Syst. Sci., 24, 1227–1249, https://doi.org/10.5194/hess-24-1227-2020, 2020. a
Aubert, Y., Arnaud, P., Ribstein, P., and Fine, J. A.: La méthode SHYREG débit—application sur 1605 bassins versants en France métropolitaine, Hydrolog. Sci. J., 59, 993–1005, https://doi.org/10.1080/02626667.2014.902061, 2014. a
Auger, L., Dupont, O., Hagelin, S., Brousseau, P., and Brovelli, P.: AROME-NWC: A new nowcasting tool based on an operational mesoscale forecasting system, Q. J. Roy. Meteor. Soc., 141, 1603–1611, https://doi.org/10.1002/qj.2463, 2015. a, b
Ayphassorho, H., Pipien, G., De Meritens, I., and Lacroix, D.: Retour d'expérience des inondations du 14 au 17 octobre 2018 dans l'Aude, Tech. rep., Ministère de la transition écologique et solidaire et Ministère de l'intérieur, http://www.cgedd.developpement-durable.gouv.fr/IMG/pdf/012561-p_rapport_cle1e876a.pdf (last access: 15 May 2023), 2019. a, b
Barredo, J. I.: Major flood disasters in Europe: 1950–2005, Nat. Hazards, 42, 125–148, https://doi.org/10.1007/s11069-006-9065-2, 2006. a
Bellier, J., Zin, I., and Bontron, G.: Sample Stratification in Verification of Ensemble Forecasts of Continuous Scalar Variables: Potential Benefits and Pitfalls, Mon. Weather Rev., 145, 3529–3544, https://doi.org/10.1175/MWR-D-16-0487.1, 2017. a
Bellier, J., Bontron, G., and Zin, I.: Selecting components in a probabilistic hydrological forecasting chain: the benefits of an integrated evaluation, LHB Hydrosci. J., 107, 1938352, https://doi.org/10.1080/27678490.2021.1936825, 2021. a
Berenguer, M., Corral, C., Sánchez-Diezma, R., and Sempere-Torres, D.: Hydrological validation of a Radar-Based nowcasting technique, J. Hydrometeorol., 6, 532–549, https://doi.org/10.1175/JHM433.1, 2005. a
Berenguer, M., Sempere-Torres, D., and Pegram, G. G.: SBMcast – An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation, J. Hydrol., 404, 226–240, https://doi.org/10.1016/j.jhydrol.2011.04.033, 2011. a
Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying flash floods: gauging the ungauged extremes, Hydrol. Process., 22, 3883–3885, https://doi.org/10.1002/hyp.7111, 2008. a
Bouttier, F., Vié, B., Nuissier, O., and Raynaud, L.: Impact of stochastic physics in a convection-permitting ensemble, Mon. Weather Rev., 140, 3706–3721, https://doi.org/10.1175/MWR-D-12-00031.1, 2012. a, b
Brousseau, P., Seity, Y., Ricard, D., and Léger, J.: Improvement of the forecast of convective activity from the AROME-France system, Q. J. Roy. Meteor. Soc., 142, 2231–2243, https://doi.org/10.1002/qj.2822, 2016. a
Caumont, O., Mandement, M., Bouttier, F., Eeckman, J., Lebeaupin Brossier, C., Lovat, A., Nuissier, O., and Laurantin, O.: The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations, Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, 2021. a
CCR: Les inondations du 14 et 15 octobre 2018 dans le Languedoc, Tech. Rep. 11, Caisse Centrale de Réassurance, https://www.ccr.fr/-/inondations-du-14-et-15-octobre-2018-aude-languedoc (last access: 15 May 2023), 2018. a
CCR: Les catastrophes naturelles en France - Bilan 1982-2019, Tech. rep., Caisse Centrale de Réassurance (CCR), https://catastrophes-naturelles.ccr.fr/-/bilan-cat-nat-1982-2019 (last access: 15 May 2023), 2020. a
Christensen, H. M.: Decomposition of a New Proper Score for Verification of Ensemble Forecasts, Mon. Weather Rev., 143, 1517–1532, https://doi.org/10.1175/MWR-D-14-00150.1, 2015. a
Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.: Convection-permitting models: a step-change in rainfall forecasting, Meteorol. Appl., 23, 165–181, https://doi.org/10.1002/met.1538, 2016. a, b
Clark, R. A., Gourley, J. J., Flamig, Z. L., Hong, Y., and Clark, E.: CONUS-Wide Evaluation of National Weather Service Flash Flood Guidance Products, Weather Forecast., 29, 377–392, https://doi.org/10.1175/WAF-D-12-00124.1, 2014. a
Collier, C. G.: Flash flood forecasting: What are the limits of predictability?, Q. J. Roy. Meteor. Society, 133, 3–23, https://doi.org/10.1002/qj.29, 2007. a
Coughlan de Perez, E., van den Hurk, B., van Aalst, M. K., Jongman, B., Klose, T., and Suarez, P.: Forecast-based financing: an approach for catalyzing humanitarian action based on extreme weather and climate forecasts, Nat. Hazards Earth Syst. Sci., 15, 895–904, https://doi.org/10.5194/nhess-15-895-2015, 2015. a
Dasgupta, A., Arnal, L., Emerton, R., Harrigan, S., Matthews, G., Muhammad, A., O'Regan, K., Pérez-Ciria, T., Valdez, E., van Osnabrugge, B., Werner, M., Buontempo, C., Cloke, H., Pappenberger, F., Pechlivanidis, I. G., Prudhomme, C., Ramos, M.-H., and Salamon, P.: Connecting hydrological modelling and forecasting from global to local scales: Perspectives from an international joint virtual workshop, J. Flood Risk Manag., e12880, https://doi.org/10.1111/jfr3.12880, 2023. a
Davolio, S., Miglietta, M. M., Diomede, T., Marsigli, C., and Montani, A.: A flood episode in northern Italy: multi-model and single-model mesoscale meteorological ensembles for hydrological predictions, Hydrol. Earth Syst. Sci., 17, 2107–2120, https://doi.org/10.5194/hess-17-2107-2013, 2013. a, b, c
Davolio, S., Silvestro, F., and Malguzzi, P.: Effects of Increasing Horizontal Resolution in a Convection-Permitting Model on Flood Forecasting: The 2011 Dramatic Events in Liguria, Italy, J. Hydrometeorol., 16, 1843–1856, https://doi.org/10.1175/JHM-D-14-0094.1, 2015. a, b
Davolio, S., Silvestro, F., and Gastaldo, T.: Impact of Rainfall Assimilation on High-Resolution Hydrometeorological Forecasts over Liguria, Italy, J. Hydrometeorol., 18, 2659–2680, https://doi.org/10.1175/JHM-D-17-0073.1, 2017. a, b, c
de Lavenne, A., Thirel, G., Andréassian, V., Perrin, C., and Ramos, M.-H.: Spatial variability of the parameters of a semi-distributed hydrological model, Proc. IAHS, 373, 87–94, https://doi.org/10.5194/piahs-373-87-2016, 2016. a
de Saint-Aubin, C., Garandeau, L., Janet, B., and Javelle, P.: A new French flash flood warning service, E3S Web Conf., 7, 18024, https://doi.org/10.1051/e3sconf/20160718024, 2016. a
Delaigue, O., Brigode, P., Génot, B., and Lobligeois, F.: Summary sheets of watershed-scale hydroclimatic observed data for France, Tech. rep., INRAE, https://doi.org/10.15454/UV01P1, 2020. a
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C., Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V.,
Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle, B. Am. Meteorol. Soc., 95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014. a
Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework, Meteorol. Appl., 15, 51–64, https://doi.org/10.1002/met.25, 2008. a
ECMWF: Summary and recommendations from Working Group 3: Surface-related uncertainties and comprehensive evaluation of Model Uncertainty representations, Workshop on model uncertainty, Reading, 9–12 May 2022, Tech. rep., ECMWF, https://events.ecmwf.int/event/290/attachments/1794/3439/WS2022_ModelUnc_WG3_summary.pdf (last access: 15 May 2023), 2022. a
Ehret, U. and Zehe, E.: Series distance – an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events, Hydrol. Earth Syst. Sci., 15, 877–896, https://doi.org/10.5194/hess-15-877-2011, 2011. a
Furnari, L., Mendicino, G., and Senatore, A.: Hydrometeorological Ensemble Forecast of a Highly Localized Convective Event in the Mediterranean, Water, 12, 1545, https://doi.org/10.3390/w12061545, 2020. a
Gaume, E., Livet, M., Desbordes, M., and Villeneuve, J.-P.: Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999, J. Hydrol., 286, 135–154, https://doi.org/10.1016/j.jhydrol.2003.09.015, 2004. a
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., and Viglione, A.: A compilation of data on European flash floods, J. Hydrol., 367, 70–78, https://doi.org/10.1016/j.jhydrol.2008.12.028, 2009. a
Georgakakos, K. P.: On the Design of National, Real-Time Warning Systems with
Capability for Site-Specific, Flash-Flood Forecasts, B. Am. Meteorol. Soc., 67, 1233–1239, https://doi.org/10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2, 1986. a
Gourley, J. J., Flamig, Z. L., Vergara, H., Kirstetter, P.-E., Clark, R. A., Argyle, E., Arthur, A., Martinaitis, S., Terti, G., Erlingis, J. M., Hong, Y., and Howard, K. W.: The FLASH Project: Improving the Tools for Flash Flood Monitoring and Prediction across the United States, B. Am. Meteorol. Soc., 98, 361–372, https://doi.org/10.1175/bams-d-15-00247.1, 2017. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrology, 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Hally, A., Caumont, O., Garrote, L., Richard, E., Weerts, A., Delogu, F., Fiori, E., Rebora, N., Parodi, A., Mihalović, A., Ivković, M., Dekić, L., van Verseveld, W., Nuissier, O., Ducrocq, V., D'Agostino, D., Galizia, A., Danovaro, E., and Clematis, A.: Hydrometeorological multi-model ensemble simulations of the 4 November 2011 flash flood event in Genoa, Italy, in the framework of the DRIHM project, Nat. Hazards Earth Syst. Sci., 15, 537–555, https://doi.org/10.5194/nhess-15-537-2015, 2015. a, b, c
Hamill, T. M.: Interpretation of rank histograms for verifying ensemble forecasts, Mon. Weather Rev., 129, 550–560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2, 2001. a, b
Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.: A review of advances in flash flood forecasting, Hydrol. Process., 25, 2771–2784, https://doi.org/10.1002/hyp.8040, 2011. a
Hocini, N., Payrastre, O., Bourgin, F., Gaume, E., Davy, P., Lague, D., Poinsignon, L., and Pons, F.: Performance of automated methods for flash flood inundation mapping: a comparison of a digital terrain model (DTM) filling and two hydrodynamic methods, Hydrol. Earth Syst. Sci., 25, 2979–2995, https://doi.org/10.5194/hess-25-2979-2021, 2021. a
Hopson, T. M.: Assessing the ensemble spread-error relationship, Mon. Weather
Rev., 142, 1125–1142, https://doi.org/10.1175/MWR-D-12-00111.1, 2014. a
Javelle, P., Organde, D., Demargne, J., Saint-Martin, C., de Saint-Aubin, C., Garandeau, L., and Janet, B.: Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method, E3S Web Conf., 7, 18010, https://doi.org/10.1051/e3sconf/20160718010, 2016. a
Jolliffe, I. and Stephenson, D.: Forecast Verification: A Practitionner's Guide in Atmospheric Science, John Wiley & Sons, Ltd, ISBN: 978-0-470-66071-3, 2012. a
Lagasio, M., Silvestro, F., Campo, L., and Parodi, A.: Predictive Capability of a High-Resolution Hydrometeorological Forecasting Framework Coupling WRF Cycling 3DVAR and Continuum, J. Hydrometeorol., 20, 1307–1337, https://doi.org/10.1175/jhm-d-18-0219.1, 2019. a, b, c
Laurantin, O.: Hourly rainfall analysis merging radar and rain gauge data, in: Proceedings of the International Symposium on Weather Radar and Hydrology, Grenoble, France, 10–12 March 2008, 2–8, 2008. a
Le Bihan, G.: Modèles hydrologiques régionaux pour la prévision 15
distribuée des crues rapides: vers une estimation des impacts et
desdommagespotentiel, PhD thesis, Université Bretagne Loire, HAL Id: tel-01461682, 2016. a
Le Moine, N., Andréassian, V., and Mathevet, T.: Confronting surface- and groundwater balances on the La Rochefoucauld-Touvre karstic system (Charente, France), Water Resour. Res., 44, 1–10, https://doi.org/10.1029/2007WR005984, 2008. a
Leleu, I., Tonnelier, I., Puechberty, R., Gouin, P., Viquendi, I., Cobos, L., Foray, A., Baillon, M., and Ndima, P.-O.: La refonte du système d'information national pour la gestion et la mise à disposition des données hydrométriques, La Houille Blanche, 100, 25–32, https://doi.org/10.1051/lhb/2014004, 2014. a
Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., and Nicolaides, K.: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database, Adv. Geosci., 23, 47–55, https://doi.org/10.5194/adgeo-23-47-2010, 2010. a
Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., and Boissier, L.: Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project, Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, 2013. a
Lobligeois, F.: Mieux connaître la distribution spatiale des pluies
améliore-t-il la modélisation des crues, PhD thesis, AgroParis Tech, HAL Id: tel-01134990, 2014. a
Lovat, A., Vincendon, B., and Ducrocq, V.: Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations, Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, 2022. a, b
Lu, C., Yuan, H., Schwartz, B. E., and Benjamin, S. G.: Short-Range Numerical Weather Prediction Using Time-Lagged Ensembles, Weather Forecast., 22, 580–595, https://doi.org/10.1175/WAF999.1, 2007. a
Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation of selected extreme flash floods in Europe and implications for flood risk management, J. Hydrol., 394, 118–133, https://doi.org/10.1016/j.jhydrol.2010.07.017, 2010. a
Mason, I.: A model for assessment of weather forecasts, Aust. Meteorol. Mag.,
30, 291–303, 1982. a
Naulin, J. P., Payrastre, O., and Gaume, E.: Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France, J. Hydrol., 486, 88–99, https://doi.org/10.1016/j.jhydrol.2013.01.044, 2013. a, b
Nuissier, O., Marsigli, C., Vincendon, B., Hally, A., Bouttier, F., Montani, A., and Paccagnella, T.: Evaluation of two convection-permitting ensemble systems in the HyMeX Special Observation Period (SOP1) framework, Q. J. Roy. Meteor. Soc., 142, 404–418, https://doi.org/10.1002/qj.2859, 2016. a, b
Osinski, R. and Bouttier, F.: Short-range probabilistic forecasting of convective risks for aviation based on a lagged-average-forecast ensemble approach, Meteorol. Appl., 25, 105–118, https://doi.org/10.1002/met.1674, 2018. a
Oudin, L., Hervieu, F., Michel, C., and Perrin, C.: Which Potential Evapotranspiration Input for a Lumped Rainfall–Runoff Model?: Part 2 – Towards a Simple and Efficient Potential Evapotranspiration Model for Rainfall–Runoff Modeling, J. Hydrol., 303, 290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005. a
Pappenberger, F., Cloke, H. L., Persson, A., and Demeritt, D.: HESS Opinions “On forecast (in)consistency in a hydro-meteorological chain: curse or blessing?”, Hydrol. Earth Syst. Sci., 15, 2391–2400, https://doi.org/10.5194/hess-15-2391-2011, 2011. a
Park, S., Berenguer, M., and Sempere-Torres, D.: Long-term analysis of gauge-adjusted radar rainfall accumulations at European scale, J. Hydrol., 573, 768–777, https://doi.org/10.1016/j.jhydrol.2019.03.093, 2019. a
Peredo, D., Ramos, M.-H., Andréassian, V., and Oudin, L.: Investigating hydrological model versatility to simulate extreme flood events, Hydrolog. Sci. J., 67, 628–645, https://doi.org/10.1080/02626667.2022.2030864, 2022. a, b
Petrucci, O., Aceto, L., Bianchi, C., Bigot, V., Brázdil, R., Pereira, S., Kahraman, A., Kılıç, Ö., Kotroni, V., Llasat, M. C., Llasat-Botija, M., Papagiannaki, K., Pasqua, A. A., Řehoř, J., Rossello Geli, J., Salvati, P., Vinet, F., and Zêzere, J. L.: Flood Fatalities in Europe, 1980–2018: Variability, Features, and Lessons to Learn, Water, 11, 1682, https://doi.org/10.3390/w11081682, 2019. a
Poletti, M. L., Silvestro, F., Davolio, S., Pignone, F., and Rebora, N.: Using nowcasting technique and data assimilation in a meteorological model to improve very short range hydrological forecasts, Hydrol. Earth Syst. Sci., 23, 3823–3841, https://doi.org/10.5194/hess-23-3823-2019, 2019. a, b, c
Price, D., Hudson, K., Boyce, G., Schellekens, J., Moore, R. J., Clark, P., Harrison, T., Connolly, E., and Pilling, C.: Operational use of a grid-based model for flood forecasting, P. I. Civil Eng.-Wat. M., 165, 65–77,
https://doi.org/10.1680/wama.2012.165.2.65, 2012. a
Raynaud, L. and Bouttier, F.: Comparison of initial perturbation methods for ensemble prediction at convective scale, Q. J. Roy. Meteor. Soc., 142, 854–866, https://doi.org/10.1002/qj.2686, 2016. a, b
Richardson, D. S., Cloke, H. L., and Pappenberger, F.: Evaluation of the Consistency of ECMWF Ensemble Forecasts, Geophys. Res. Lett., 47, e2020GL087934, https://doi.org/10.1029/2020GL087934, 2020. a
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events, Mon. Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1, 2008. a
Sayama, T., Yamada, M., Sugawara, Y., and Yamazaki, D.: Ensemble flash flood predictions using a high-resolution nationwide distributed rainfall-runoff model: case study of the heavy rain event of July 2018 and Typhoon Hagibis in 2019, Progress in Earth and Planetary Science, 7, 75, https://doi.org/10.1186/s40645-020-00391-7, 2020. a, b, c, d, e
Schwartz, C. S. and Sobash, R. A.: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations, Mon. Weather Rev., 145, 3397–3418, https://doi.org/10.1175/MWR-D-16-0400.1, 2017. a
Seity, Y., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France convective-scale operational model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011. a
Silvestro, F. and Rebora, N.: Operational verification of a framework for the probabilistic nowcasting of river discharge in small and medium size basins, Nat. Hazards Earth Syst. Sci., 12, 763–776, https://doi.org/10.5194/nhess-12-763-2012, 2012. a, b, c
Silvestro, F., Rebora, N., and Ferraris, L.: Quantitative Flood Forecasting on Small- and Medium-Sized Basins: A Probabilistic Approach for Operational Purposes, J. Hydrometeorol., 12, 1432–1446, https://doi.org/10.1175/JHM-D-10-05022.1, 2011. a, b
Talagrand, O. and Vautard, R.: Evaluation of probabilistic prediction systems
for a scalar variable, ISSN: 00359009, 1997. a
Thiboult, A., Anctil, F., and Ramos, M. H.: How does the quantification of uncertainties affect the quality and value of flood early warning systems?, J. Hydrol., 551, 365–373, https://doi.org/10.1016/j.jhydrol.2017.05.014, 2017. a
Valdez, E. S., Anctil, F., and Ramos, M.-H.: Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems, Hydrol. Earth Syst. Sci., 26, 197–220, https://doi.org/10.5194/hess-26-197-2022, 2022. a
Verkade, J. S. and Werner, M. G. F.: Estimating the benefits of single value and probability forecasting for flood warning, Hydrol. Earth Syst. Sci., 15, 3751–3765, https://doi.org/10.5194/hess-15-3751-2011, 2011. a
Versini, P.-A., Gaume, E., and Andrieu, H.: Application of a distributed hydrological model to the design of a road inundation warning system for flash flood prone areas, Nat. Hazards Earth Syst. Sci., 10, 805–817, https://doi.org/10.5194/nhess-10-805-2010, 2010. a
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, 2010. a
Vié, B., Molinié, G., Nuissier, O., Vincendon, B., Ducrocq, V., Bouttier, F., and Richard, E.: Hydro-meteorological evaluation of a convection-permitting ensemble prediction system for Mediterranean heavy precipitating events, Nat. Hazards Earth Syst. Sci., 12, 2631–2645, https://doi.org/10.5194/nhess-12-2631-2012, 2012. a, b
Wilks, D. S.: Chapter 8 - Forecast Verification, Vol. 100, Elsevier, https://doi.org/10.1016/B978-0-12-385022-5.00008-7, 2011. a, b, c, d
Zanchetta, A. and Coulibaly, P.: Recent Advances in Real-Time Pluvial Flash Flood Forecasting, Water, 12, 570, https://doi.org/10.3390/w12020570, 2020. a
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
This paper proposes a methodological framework designed for event-based evaluation in the...
Altmetrics
Final-revised paper
Preprint