Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1613-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1613-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Probabilistic projections and past trends of sea level rise in Finland
Havu Pellikka
CORRESPONDING AUTHOR
Department of Built Environment, School of Engineering, Aalto University, Espoo, Finland
Marine Research Unit, Finnish Meteorological Institute, Helsinki, Finland
Milla M. Johansson
Marine Research Unit, Finnish Meteorological Institute, Helsinki, Finland
Maaria Nordman
Department of Built Environment, School of Engineering, Aalto University, Espoo, Finland
Finnish Geospatial Research Institute, National Land Survey of Finland, Masala, Finland
Kimmo Ruosteenoja
Weather and Climate Change Impact Research Unit, Finnish Meteorological Institute, Helsinki, Finland
Related authors
No articles found.
Hedi Kanarik, Laura Tuomi, Pekka Alenius, Elina Miettunen, Milla Johansson, Tuomo Roine, Antti Westerlund, and Kimmo K. Kahma
Ocean Sci., 21, 2125–2147, https://doi.org/10.5194/os-21-2125-2025, https://doi.org/10.5194/os-21-2125-2025, 2025
Short summary
Short summary
The Archipelago Sea (AS), part of the Baltic Sea off the northwest coast of Finland, is a fragmented area with intense human activity. This study presents an overview of the observed currents and their main drivers in the area. While local winds primarily drive the AS currents, simultaneous sea level variations in the Bay of Bothnia and Gulf of Finland also significantly impact the area's dynamics.
Laura Tuomi, Milla Johansson, Andrew Twelves, Mika Rantanen, Priidik Lagemaa, Hedi Kanarik, Jani Särkkä, Urmas Raudsepp, and Antti Westerlund
State Planet Discuss., https://doi.org/10.5194/sp-2025-12, https://doi.org/10.5194/sp-2025-12, 2025
Preprint under review for SP
Short summary
Short summary
A record low sea level of -153 cm, 34 cm below the previous minimum, was measured in the Bothnian Bay in November 2024. This extreme event was caused by a strong and long-lasting windstorm that followed an unusual track. The BAL MFC NRT physical forecast system was able to accurately predict this sea level event 3–4 days in advance. However, forecasts with longer lead times failed to predict the record low sea level, although they did indicate a significant drop in sea levels during the storm.
Laura Rautiainen, Milla Johansson, Mikko Lensu, Jani Tyynelä, Jukka-Pekka Jalkanen, Ken Stenbäck, Harry Lonka, and Lauri Laakso
EGUsphere, https://doi.org/10.5194/egusphere-2025-1790, https://doi.org/10.5194/egusphere-2025-1790, 2025
Short summary
Short summary
We present an experimental Automatic Identification System (AIS) receiver set-up to study anomalous signal propagation over coastal and marine waters in the northern Baltic Sea. Anomalous atmospheric conditions can allow for the AIS messages to be received from farther distances than under normal conditions. The results show that under anomalous conditions, the messages can be received up to 600 km away and have both diurnal and seasonal cycles.
Kristiina Verro, Cecilia Äijälä, Roberta Pirazzini, Ruzica Dadic, Damien Maure, Willem Jan van de Berg, Giacomo Traversa, Christiaan T. van Dalum, Petteri Uotila, Xavier Fettweis, Biagio Di Mauro, and Milla Johansson
EGUsphere, https://doi.org/10.5194/egusphere-2025-386, https://doi.org/10.5194/egusphere-2025-386, 2025
Short summary
Short summary
A realistic representation of Antarctic sea ice is crucial for accurate climate and ocean model predictions. We assessed how different models capture the sunlight reflectivity, snow cover, and ice thickness. Most performed well under mild weather conditions, but overestimated snow/ice reflectivity during cold, with patchy/thin snow conditions. High-resolution satellite imagery revealed spatial albedo variability that models failed to replicate.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Cited articles
Andersson, H. C.: Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level, Tellus A, 54, 76–88, 2002. a
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, P. Natl. Acad. Sci. USA, 116,
11195–11200, 2019. a
Behar, D., Kopp, R., DeConto, R., Weaver, C., White, K., May, K., and Bindschadler, R.: Planning for sea level rise: An AGU talk in the form of a co-production experiment exploring recent science, in: AGU Fall Meeting, 11–15 December 2017, New Orleans, Louisiana, USA,
https://www.wucaonline.org/assets/pdf/pubs-sfpuc-agu-consensus-statement.pdf (last access: 21 April 2023), 2017. a, b
Chen, D., Rojas, M., Samset, B. H., Cobb, K., Niang, A. D., Edwards, P., Emori, S., Faria, S. H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S. K., Plattner, G.-K., and Tréguier, A.-M.: Framing, context, and methods, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 147–286, https://doi.org/10.1017/9781009157896.003, 2021. a
CISL Research Data Archive: Daily Northern Hemisphere Sea Level Pressure Grids, continuing from 1899, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, University Corporation for Atmospheric Research, Boulder, CO [data set], https://doi.org/10.5065/7NB6-RJ33, 1979. a
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., and Riva, R.: Reassessment of 20th century global mean sea level rise,
P. Natl. Acad. Sci. USA, 114, 5946–5951, 2017. a
den Elzen, M. G., Dafnomilis, I., Forsell, N., Fragkos, P., Fragkiadakis, K.,
Höhne, N., Kuramochi, T., Nascimento, L., Roelfsema, M., van Soest, H.,
and Sperling, F.: Updated nationally determined contributions collectively
raise ambition levels but need strengthening further to keep Paris goals
within reach, Mitig. Adapt. Strat. Gl., 27, 1–29, 2022. a
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, 2019. a
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Adalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, cryosphere and sea level change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021. a, b, c, d, e, f, g, h, i, j, k, l
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.-H.: The
causes of sea-level rise since 1900, Nature, 584, 393–397, 2020. a
Hausfather, Z. and Peters, G. P.: Emissions – the “business as usual” story is misleading, Nature, 577, 618–620, 2020. a
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Probabilistic
reanalysis of twentieth-century sea-level rise, Nature, 517, 481–484, 2015. a
Hieronymus, M. and Kalén, O.: Sea-level rise projections for Sweden based
on the new IPCC special report: The ocean and cryosphere in a changing
climate, Ambio, 49, 1587–1600, 2020. a
Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., and Peijun, S.:
Sea-level rise scenarios and coastal risk management, Nat. Clim. Change,
5, 188–190, 2015. a
Ho, E., Budescu, D. V., Bosetti, V., van Vuuren, D. P., and Keller, K.: Not all carbon dioxide emission scenarios are equally likely: a subjective expert
assessment, Climatic Change, 155, 545–561, 2019. a
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions between mean sea level, tide, surge, waves and flooding: mechanisms and contributions to sea level variations at the coast, Surv. Geophys., 40, 1603–1630, 2019. a
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., ISBN 978-1-107-05799-1, 2013. a
Jevrejeva, S., Moore, J. C., and Grinsted, A.: Sea level projections to AD2500 with a new generation of climate change scenarios, Global Planet. Change, 80, 14–20, 2012. a
Jevrejeva, S., Grinsted, A., and Moore, J. C.: Upper limit for sea level
projections by 2100, Environ. Res. Lett., 9, 104008, https://doi.org/10.1088/1748-9326/9/10/104008, 2014. a, b, c, d
Johansson, M., Boman, H., Kahma, K. K., and Launiainen, J.: Trends in sea level variability in the Baltic Sea, Boreal Environ. Res., 6, 159–179,
2001. a
Jylhä, K., Kämäräinen, M., Fortelius, C., Gregow, H., Helander, J., Hyvärinen, O., Johansson, M., Karppinen, A., Korpinen, A., Kouznetsov, R., Kurzeneva, E., Leijala, U., Mäkelä, A., Pellikka, H., Saku, S., Sandberg, J., Sofiev, M., Vajda, A., Venäläinen, A., and Vira, J.: Recent meteorological and marine studies to support nuclear power
plant safety in Finland, Energy, 165, 1102–1118, 2018. a
Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P.,
Gehrels, W. R., Hay, C. C., Mitrovica, J. X., Morrow, E. D., and Rahmstorf,
S.: Temperature-driven global sea-level variability in the Common Era,
P. Natl. Acad. Sci. USA, 113, E1434–E1441, 2016. a
Le Bars, D., Drijfhout, S., and de Vries, H.: A high-end sea level rise
probabilistic projection including rapid Antarctic ice sheet mass loss,
Environ. Res. Lett., 12, 044013, https://doi.org/10.1088/1748-9326/aa6512, 2017. a, b, c, d
Lee, J., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., and Zhou, T.: Future global climate: scenario-based projections and near-term information, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 553–672, https://doi.org/10.1017/9781009157896.006, 2021. a
Luomaranta, A., Ruosteenoja, K., Jylhä, K., Gregow, H., Haapala, J., and
Laaksonen, A.: Multimodel estimates of the changes in the Baltic Sea ice
cover during the present century, Tellus A, 66, 22617, https://doi.org/10.3402/tellusa.v66.22617, 2014. a
Lyu, K., Zhang, X., and Church, J. A.: Regional dynamic sea level simulated in the CMIP5 and CMIP6 models: Mean biases, future projections, and their
linkages, J. Climate, 33, 6377–6398, 2020. a
Madsen, K. S., Høyer, J. L., Suursaar, Ü., She, J., and Knudsen, P.:
Sea level trends and variability of the Baltic Sea from 2D statistical
reconstruction and altimetry, Front. Earth Sci., 7, 243, https://doi.org/10.3389/feart.2019.00243, 2019. a, b, c, d
McEvoy, S., Haasnoot, M., and Biesbroek, R.: How are European countries
planning for sea level rise?, Ocean Coast. Manage., 203, 105512, https://doi.org/10.1016/j.ocecoaman.2020.105512, 2021. a
Mengel, M., Levermann, A., Frieler, K., Robinson, A., Marzeion, B., and
Winkelmann, R.: Future sea level rise constrained by observations and
long-term commitment, P. Natl. Acad. Sci. USA, 113, 2597–2602, 2016. a
Mitrovica, J., Gomez, N., Morrow, E., Hay, C., Latychev, K., and Tamisiea, M.: On the robustness of predictions of sea level fingerprints, Geophys. J. Int., 187, 729–742, 2011. a
Mitrovica, J. X., Tamisiea, M. E., Davis, J. L., and Milne, G. A.: Recent mass balance of polar ice sheets inferred from patterns of global sea-level
change, Nature, 409, 1026–1029, 2001. a
Passaro, M., Müller, F. L., Oelsmann, J., Rautiainen, L., Dettmering, D., Hart-Davis, M. G., Abulaitijiang, A., Andersen, O. B., Høyer, J. L., Madsen, K. S., Ringgaard, I. M., Särkkä, J., Scarrott, R., Schwatke, C., Seitz, F., Tuomi, L., Restano, M., and Benveniste, J.: Absolute Baltic sea level trends in the satellite altimetry era: A revisit, Front. Mar. Sci., 8, 647607, https://doi.org/10.3389/fmars.2021.647607, 2021. a, b, c, d
Pellikka, H., Johansson, M. M., Nordman, M., and Ruosteenoja, K.: Probabilistic projections of mean sea level change in Finland by 2100, Zenodo [data set], https://doi.org/10.5281/zenodo.7752521, 2023. a
Ruosteenoja, K., Vihma, T., and Venäläinen, A.: Projected changes in
European and North Atlantic seasonal wind climate derived from CMIP5
simulations, J. Climate, 32, 6467–6490, 2019. a
Saaranen, V., Lehmuskoski, P., Rouhiainen, P., Takalo, M., Mäkinen, J., and Poutanen, M.: The new Finnish height reference N2000, in: Geodetic Reference Frames – IAG Symposium, Munich, Germany, 9–14 October 2006, edited by: Drewes, H., vol. 134 of International Association of Geodesy Symposia, Springer, 297–302, https://doi.org/10.1007/978-3-642-00860-3_46, 2009. a, b
Siegert, M., Alley, R. B., Rignot, E., Englander, J., and Corell, R.:
Twenty-first century sea-level rise could exceed IPCC projections for
strong-warming futures, One Earth, 3, 691–703, 2020. a
Simpson, M. J., Nilsen, J. E. Ø., Ravndal, O. R., Breili, K., Sande, H.,
Kierulf, H. P., Steffen, H., Jansen, E., Carson, M., and Vestøl, O.: Sea
Level Change for Norway: Past and Present Observations and Projections to
2100, Report 1/2015, Norwegian Centre for Climate Services, Oslo, Norway, ISSN 2387-3027, 2015. a
Slangen, A., Carson, M., Katsman, C., Van de Wal, R., Köhl, A., Vermeersen, L., and Stammer, D.: Projecting twenty-first century regional sea-level changes, Climatic Change, 124, 317–332, 2014. a
Stramska, M. and Chudziak, N.: Recent multiyear trends in the Baltic Sea level, Oceanologia, 55, 319–337, 2013. a
Suursaar, U., Jaagus, J., and Kullas, T.: Past and future changes in sea level near the Estonian coast in relation to changes in wind climate, Boreal
Environ. Res., 11, 123–142, 2006. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, 2012. a
Short summary
We explore the rate of past and future sea level rise at the Finnish coast, northeastern Baltic Sea, in 1901–2100. For this analysis, we use tide gauge observations, modelling results, and a probabilistic method to combine information from several sea level rise projections. We provide projections of local mean sea level by 2100 as probability distributions. The results can be used in adaptation planning in various sectors with different risk tolerance, e.g. land use planning or nuclear safety.
We explore the rate of past and future sea level rise at the Finnish coast, northeastern Baltic...
Altmetrics
Final-revised paper
Preprint