Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-869-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-869-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monitoring the daily evolution and extent of snow drought
Benjamin J. Hatchett
CORRESPONDING AUTHOR
Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, USA
Alan M. Rhoades
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Daniel J. McEvoy
Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada 89512, USA
Related authors
Benjamin J. Hatchett
Geosci. Commun., 8, 167–173, https://doi.org/10.5194/gc-8-167-2025, https://doi.org/10.5194/gc-8-167-2025, 2025
Short summary
Short summary
Fire progression maps (FPMs) provide information regarding wildland fire spread (progress) through time to broad audiences. However, information regarding the best use of color to denote fire progression via maps is limited. This can potentially limit a map's ability to effectively communicate information by creating inconsistent messaging and accessibility challenges. Here, I provide color map recommendations to open a discussion towards consistent and accessible fire progression mapping.
Kathryn Lambrecht, Benjamin J. Hatchett, Kristin VanderMolen, and Bianca Feldkircher
Geosci. Commun., 4, 517–525, https://doi.org/10.5194/gc-4-517-2021, https://doi.org/10.5194/gc-4-517-2021, 2021
Short summary
Short summary
This paper presents an analysis of public responses to U.S. National Weather Service heat-related Facebook posts for the Phoenix (Arizona) County Warning Area to identify community norms that may present challenges to the effectiveness of heat risk communication. Findings suggest that local audiences tend to view heat as normal and the ability to withstand heat as a marker of community identity. Recommendations are provided for harnessing those norms to promote positive behavioral change.
Benjamin J. Hatchett
Geosci. Commun., 8, 167–173, https://doi.org/10.5194/gc-8-167-2025, https://doi.org/10.5194/gc-8-167-2025, 2025
Short summary
Short summary
Fire progression maps (FPMs) provide information regarding wildland fire spread (progress) through time to broad audiences. However, information regarding the best use of color to denote fire progression via maps is limited. This can potentially limit a map's ability to effectively communicate information by creating inconsistent messaging and accessibility challenges. Here, I provide color map recommendations to open a discussion towards consistent and accessible fire progression mapping.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Fadji Z. Maina, Alan Rhoades, Erica R. Siirila-Woodburn, and Peter-James Dennedy-Frank
Hydrol. Earth Syst. Sci., 26, 3589–3609, https://doi.org/10.5194/hess-26-3589-2022, https://doi.org/10.5194/hess-26-3589-2022, 2022
Short summary
Short summary
In this work, we assess the effects of end-of-century extreme dry and wet conditions on the hydrology of California. Our results, derived from cutting-edge and high-resolution climate and hydrologic models, highlight that (1) water storage will be larger and increase earlier in the year, yet the summer streamflow will decrease as a result of high evapotranspiration rates, and that (2) groundwater and lower-order streams are very sensitive to decreases in snowmelt and higher evapotranspiration.
Kathryn Lambrecht, Benjamin J. Hatchett, Kristin VanderMolen, and Bianca Feldkircher
Geosci. Commun., 4, 517–525, https://doi.org/10.5194/gc-4-517-2021, https://doi.org/10.5194/gc-4-517-2021, 2021
Short summary
Short summary
This paper presents an analysis of public responses to U.S. National Weather Service heat-related Facebook posts for the Phoenix (Arizona) County Warning Area to identify community norms that may present challenges to the effectiveness of heat risk communication. Findings suggest that local audiences tend to view heat as normal and the ability to withstand heat as a marker of community identity. Recommendations are provided for harnessing those norms to promote positive behavioral change.
Travis A. O'Brien, Mark D. Risser, Burlen Loring, Abdelrahman A. Elbashandy, Harinarayan Krishnan, Jeffrey Johnson, Christina M. Patricola-DiRosario, John P. O'Brien, Ankur Mahesh, Prabhat, Sarahí Arriaga Ramirez, Alan M. Rhoades, Alexander Charn, Héctor Inda Díaz, and William D. Collins
Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020, https://doi.org/10.5194/gmd-13-6131-2020, 2020
Short summary
Short summary
Researchers utilize various algorithms to identify extreme weather features in climate data, and we seek to answer this question: given a
plausibleweather event detector, how does uncertainty in the detector impact scientific results? We generate a suite of statistical models that emulate expert identification of weather features. We find that the connection between El Niño and atmospheric rivers – a specific extreme weather type – depends systematically on the design of the detector.
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall...
Altmetrics
Final-revised paper
Preprint