Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-869-2022
https://doi.org/10.5194/nhess-22-869-2022
Research article
 | 
16 Mar 2022
Research article |  | 16 Mar 2022

Monitoring the daily evolution and extent of snow drought

Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy

Related authors

Identifying community values related to heat: recommendations for forecast and health risk communication
Kathryn Lambrecht, Benjamin J. Hatchett, Kristin VanderMolen, and Bianca Feldkircher
Geosci. Commun., 4, 517–525, https://doi.org/10.5194/gc-4-517-2021,https://doi.org/10.5194/gc-4-517-2021, 2021
Short summary
Technical note: Precipitation-phase partitioning at landscape scales to regional scales
Elissa Lynn, Aaron Cuthbertson, Minxue He, Jordi P. Vasquez, Michael L. Anderson, Peter Coombe, John T. Abatzoglou, and Benjamin J. Hatchett
Hydrol. Earth Syst. Sci., 24, 5317–5328, https://doi.org/10.5194/hess-24-5317-2020,https://doi.org/10.5194/hess-24-5317-2020, 2020
Short summary
Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019,https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Brief Communication: Synoptic-scale differences between Sundowner and Santa Ana wind regimes in the Santa Ynez Mountains, California
Benjamin J. Hatchett, Craig M. Smith, Nicholas J. Nauslar, and Michael L. Kaplan
Nat. Hazards Earth Syst. Sci., 18, 419–427, https://doi.org/10.5194/nhess-18-419-2018,https://doi.org/10.5194/nhess-18-419-2018, 2018
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Shallow and deep learning of extreme rainfall events from convective atmospheres
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023,https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Linking reported drought impacts with drought indices, water scarcity and aridity: the case of Kenya
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023,https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Future heat extremes and impacts in a convection-permitting climate ensemble over Germany
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023,https://doi.org/10.5194/nhess-23-2873-2023, 2023
Short summary
Assessment of subseasonal-to-seasonal (S2S) ensemble extreme precipitation forecast skill over Europe
Pauline Rivoire, Olivia Martius, Philippe Naveau, and Alexandre Tuel
Nat. Hazards Earth Syst. Sci., 23, 2857–2871, https://doi.org/10.5194/nhess-23-2857-2023,https://doi.org/10.5194/nhess-23-2857-2023, 2023
Short summary
A long record of European windstorm losses and its comparison to standard climate indices
Stephen Cusack
Nat. Hazards Earth Syst. Sci., 23, 2841–2856, https://doi.org/10.5194/nhess-23-2841-2023,https://doi.org/10.5194/nhess-23-2841-2023, 2023
Short summary
Download
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Altmetrics
Final-revised paper
Preprint