Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling
Climate System Research, Finnish Meteorological Institute, Helsinki, Finland
Emma D. Thomassen
National Centre for Climate Research, Danish Meteorological Institute, Copenhagen, Denmark
Department of Environmental Engineering, Technical University of Denmark, Copenhagen, Denmark
Danijel Belušić
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia
Petter Lind
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Peter Berg
Hydrology Research, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Jens H. Christensen
National Centre for Climate Research, Danish Meteorological Institute, Copenhagen, Denmark
Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Norwegian Research Centre AS (NORCE), Bjerknes Centre for Climate Research, Bergen, Norway
Ole B. Christensen
National Centre for Climate Research, Danish Meteorological Institute, Copenhagen, Denmark
Andreas Dobler
Research and Development, Norwegian Meteorological Institute, Oslo, Norway
Erik Kjellström
Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Jonas Olsson
Hydrology Research, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Hydrology Research, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
Related authors
No articles found.
Meri Virman, Taru Olsson, Petter Lind, and Kirsti Jylhä
EGUsphere, https://doi.org/10.5194/egusphere-2025-3663, https://doi.org/10.5194/egusphere-2025-3663, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We use a kilometer-scale regional climate model to investigate the occurrence and intensity of sea-effect snowfall in the Baltic Sea area in northern Europe in the period 1998–2018. Sea-effect snowbands occur most frequently in November–February when low-level winds have an easterly component near the eastern coast of Sweden and the southern coast of Finland. Over the southern Baltic Sea, snowbands tend to occur when the low-level winds have a northerly component and typically in December–March.
Johanne Kristine Haandbæk Øelund, Jens Hesselbjerg Christensen, Rune Magnus Koktvedgaard Zeitzen, Henrik Vedel, and Henrik Feddersen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3173, https://doi.org/10.5194/egusphere-2025-3173, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study explores how a powerful storm like Anatol, which hit Denmark in 1999, could change in a warmer future climate. Using a weather model, the storm was simulated under future temperature conditions. Results show stronger winds affecting larger areas for longer periods. A new index was introduced to measure storm severity. The findings highlight the growing risks to infrastructure and the need for better storm preparedness.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025, https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary
Short summary
By compositing trends in multiple climate variables, this study presents emerging regimes that are relevant for solar energy applications. It is shown that the favourable conditions for exploiting solar energy are emerging during spring and early summer. The study also underscores the increasingly important role of clouds in regulating surface solar radiation as the aerosol concentrations are decreasing over Europe and the societal value of satellite-based climate monitoring.
Louise Petersson Wårdh, Hasan Hosseini, Remco van de Beek, Jafet C. M. Andersson, Hossein Hashemi, and Jonas Olsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2820, https://doi.org/10.5194/egusphere-2025-2820, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Extreme rainfall can cause severe damage, especially in cities. However, national meteorological institutes have difficulties to observe such events. In this study we show that rainfall observations collected by local actors, such as municipalities and even citizens, can contribute to better rainfall observations. Sweden’s official monitoring network could not capture the event under study, whereas the complementary sensors contributed to a better understanding of the magnitude of the event.
Gustav Strandberg, August Thomasson, Lars Bärring, Erik Kjellström, Michael Sahlin, Renate Wilcke, and Grigory Nikulin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2002, https://doi.org/10.5194/egusphere-2025-2002, 2025
Short summary
Short summary
The need for information about climate change is ever increasing. Therefore, it is important to have knowledge about climate change, along with an understanding of the uncertainties of climate model ensembles. Here, climate change in Sweden and neighbouring countries and its relation to global warming is described. Global warming results in higher temperature, more warm days and fewer cold days. The local and global warming suggest that climate change in Sweden may currently be at its fastest.
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025, https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary
Short summary
We compared hourly and daily extreme precipitation across Norway from HARMONIE Climate models at convection-permitting 3 km (HCLIM3) and 12 km (HCLIM12) resolutions. HCLIM3 more accurately captures the extremes in most regions and seasons (except in summer). Its advantages are more pronounced for hourly extremes than for daily extremes. The results highlight the value of convection-permitting models in improving extreme-precipitation predictions and in helping the local society brace for extreme weather.
Danijel Belušić and Petter Lind
EGUsphere, https://doi.org/10.5194/egusphere-2025-1281, https://doi.org/10.5194/egusphere-2025-1281, 2025
Short summary
Short summary
Km-scale climate models have large added value for modeling precipitation, but their benefits for winds are less studied. We show that the km-scale model better reproduces strong winds in complex terrain, which are up to twice stronger than in a coarser model, and can also capture downslope glacier winds in higher terrain. Future changes in mean and strong winds are governed by the large-scale circulation change, while for weak winds by the temperature change, which is less uncertain.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
Hydrol. Earth Syst. Sci., 29, 45–65, https://doi.org/10.5194/hess-29-45-2025, https://doi.org/10.5194/hess-29-45-2025, 2025
Short summary
Short summary
We present a new method to calculate the chance of heavy downpour and the maximum rainfall expected over a 25-year period. It is designed to analyse global climate models' reproduction of past and future climates. For the Nordic countries, it projects a wetter climate in the future with increased intensity but not necessarily more wet days. The analysis also shows that rainfall intensity is sensitive to future greenhouse gas emissions, while the number of wet days appears to be less affected.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
Hideo Amaguchi, Jonas Olsson, Akira Kawamura, and Yoshiyuki Imamura
Proc. IAHS, 386, 133–140, https://doi.org/10.5194/piahs-386-133-2024, https://doi.org/10.5194/piahs-386-133-2024, 2024
Short summary
Short summary
In this research, event-based simulations were conducted using inputs from a regional climate model, providing a resolution of 5 km and updating every 10 min for both present and future climate scenarios. The findings suggest that future storms may lead to increased flooding in the watershed. This study highlights the importance of using high-resolution data to understand and prepare for the potential impacts of climate change on urban rivers.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Gustav Strandberg, Jie Chen, Ralph Fyfe, Erik Kjellström, Johan Lindström, Anneli Poska, Qiong Zhang, and Marie-José Gaillard
Clim. Past, 19, 1507–1530, https://doi.org/10.5194/cp-19-1507-2023, https://doi.org/10.5194/cp-19-1507-2023, 2023
Short summary
Short summary
The impact of land use and land cover change (LULCC) on the climate around 2500 years ago is studied using reconstructions and models. The results suggest that LULCC impacted the climate in parts of Europe. Reconstructed LULCC shows up to 1.5 °C higher temperature in parts of Europe in some seasons. This relatively strong response implies that anthropogenic LULCC that had occurred by the late prehistoric period may have already affected the European climate by 2500 years ago.
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023, https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
Jafet C. M. Andersson, Jonas Olsson, Remco (C. Z.) van de Beek, and Jonas Hansryd
Earth Syst. Sci. Data, 14, 5411–5426, https://doi.org/10.5194/essd-14-5411-2022, https://doi.org/10.5194/essd-14-5411-2022, 2022
Short summary
Short summary
This article presents data from three types of sensors for rain measurement, i.e. commercial microwave links (CMLs), gauges, and weather radar. Access to CML data is typically restricted, which limits research and applications. We openly share a large CML database (364 CMLs at 10 s resolution with true coordinates), along with 11 gauges and one radar composite. This opens up new opportunities to study CMLs, to benchmark algorithms, and to investigate how multiple sensors can best be combined.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Changgui Lin, Erik Kjellström, Renate Anna Irma Wilcke, and Deliang Chen
Earth Syst. Dynam., 13, 1197–1214, https://doi.org/10.5194/esd-13-1197-2022, https://doi.org/10.5194/esd-13-1197-2022, 2022
Short summary
Short summary
This study endorses RCMs' added value on the driving GCMs in representing observed heat wave magnitudes. The future increase of heat wave magnitudes projected by GCMs is attenuated when downscaled by RCMs. Within the downscaling, uncertainties can be attributed almost equally to choice of RCMs and to the driving data associated with different GCMs. Uncertainties of GCMs in simulating heat wave magnitudes are transformed by RCMs in a complex manner rather than simply inherited.
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022, https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
Short summary
When performing impact analyses with climate models, one is often confronted with the issue that the models have significant bias. Commonly, the modelled climatological temperature deviates from the observed climate by a few degrees or it rains excessively in the model. MIdAS employs a novel statistical model to translate the model climatology toward that observed using novel methodologies and modern tools. The coding platform allows opportunities to develop methods for high-resolution models.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Katja Weigel, Lisa Bock, Bettina K. Gier, Axel Lauer, Mattia Righi, Manuel Schlund, Kemisola Adeniyi, Bouwe Andela, Enrico Arnone, Peter Berg, Louis-Philippe Caron, Irene Cionni, Susanna Corti, Niels Drost, Alasdair Hunter, Llorenç Lledó, Christian Wilhelm Mohr, Aytaç Paçal, Núria Pérez-Zanón, Valeriu Predoi, Marit Sandstad, Jana Sillmann, Andreas Sterl, Javier Vegas-Regidor, Jost von Hardenberg, and Veronika Eyring
Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, https://doi.org/10.5194/gmd-14-3159-2021, 2021
Short summary
Short summary
This work presents new diagnostics for the Earth System Model Evaluation Tool (ESMValTool) v2.0 on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The ESMValTool v2.0 diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) with a focus on the ESMs participating in the Coupled Model Intercomparison Project (CMIP).
Jonas Olsson, Peter Berg, and Remco van de Beek
Adv. Sci. Res., 18, 59–64, https://doi.org/10.5194/asr-18-59-2021, https://doi.org/10.5194/asr-18-59-2021, 2021
Short summary
Short summary
We have developed a tool to visualize rainfall observations, based on a combination of meteorological stations and weather radars, over Sweden in near real-time. By accumulating the rainfall in time (1–12 h) and space (hydrological basins), the tool is designed mainly for hydrological applications, e.g. to support flood forecasters and to facilitate post-event analyses. Despite evident uncertainties, different users have confirmed an added value of the tool in case studies.
Peter Berg, Fredrik Almén, and Denica Bozhinova
Earth Syst. Sci. Data, 13, 1531–1545, https://doi.org/10.5194/essd-13-1531-2021, https://doi.org/10.5194/essd-13-1531-2021, 2021
Short summary
Short summary
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set of daily precipitation and temperature intended for use in hydrological modelling. The method uses different observational data sources to correct the variables from a model estimation of precipitation and temperature. An openly available data set covers the years 1979–2019, and times after this are available by request.
Gustav Strandberg and Petter Lind
Weather Clim. Dynam., 2, 181–204, https://doi.org/10.5194/wcd-2-181-2021, https://doi.org/10.5194/wcd-2-181-2021, 2021
Short summary
Short summary
Precipitation is a key climate variable with a large impact on society but also difficult to simulate as it depends largely on temporal and spatial scales. We look here at the effect of model resolution on precipitation in Europe, from coarse-scale global model to small-scale regional models. Higher resolution improves simulated precipitation generally, but individual models may over- or underestimate precipitation even at higher resolution.
Aslak Grinsted and Jens Hesselbjerg Christensen
Ocean Sci., 17, 181–186, https://doi.org/10.5194/os-17-181-2021, https://doi.org/10.5194/os-17-181-2021, 2021
Short summary
Short summary
As we warm our planet, oceans expand, ice on land melts, and sea levels rise. On century timescales, we find that the sea level response to warming can be characterized by a single metric: the transient sea level sensitivity. Historical sea level exhibits substantially higher sensitivity than model-based estimates of future climates in authoritative climate assessments, implying recent projections could well underestimate the likely sea level rise by the end of this century.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Renate Anna Irma Wilcke, Erik Kjellström, Changgui Lin, Daniela Matei, Anders Moberg, and Evangelos Tyrlis
Earth Syst. Dynam., 11, 1107–1121, https://doi.org/10.5194/esd-11-1107-2020, https://doi.org/10.5194/esd-11-1107-2020, 2020
Short summary
Short summary
Two long-lasting high-pressure systems in summer 2018 led to heat waves over Scandinavia and an extended summer period with devastating impacts on both agriculture and human life. Using five climate model ensembles, the unique 263-year Stockholm temperature time series and a composite 150-year time series for the whole of Sweden, we found that anthropogenic climate change has strongly increased the probability of a warm summer, such as the one observed in 2018, occurring in Sweden.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Cited articles
Adam, J. C. and Lettenmeier, D. P.:
Adjustment of global gridded precipitation for systematic bias,
J. Geophys. Res.,
108, 4257, https://doi.org/10.1029/2002JD002499, 2003.
Ban, N., Schmidli, J., and Schär, C.:
Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?,
Geophys. Res. Lett.,
42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015.
Ban, N., Rajczak, J., Schmidli, J., and Schär, C.:
Analysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations,
Clim. Dynam.,
55, 61–75, https://doi.org/10.1007/s00382-018-4339-4, 2020.
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J. E., Hodnebrog, Ø., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa, M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.:
The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation,
Clim. Dynam.,
57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021.
Belušić, D., de Vries, H., Dobler, A., Landgren, O., Lind, P., Lindstedt, D., Pedersen, R. A., Sánchez-Perrino, J. C., Toivonen, E., van Ulft, B., Wang, F., Andrae, U., Batrak, Y., Kjellström, E., Lenderink, G., Nikulin, G., Pietikäinen, J.-P., Rodríguez-Camino, E., Samuelsson, P., van Meijgaard, E., and Wu, M.: HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales, Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, 2020.
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.:
The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System,
Mon. Weather Rev.,
145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017.
Beranová, R., Kyselý, J., and Hanel, M.:
Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations,
Theor. Appl. Climatol.,
132, 515–527, https://doi.org/10.1007/s00704-017-2102-0, 2018.
Berg, P., Norin, L., and Olsson, J.:
Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden,
J. Hydrol.,
541, 6–13, https://doi.org/10.1016/j.jhydrol.2015.11.031, 2016.
Berg, P., Christensen, O. B., Klehmet, K., Lenderink, G., Olsson, J., Teichmann, C., and Yang, W.: Summertime precipitation extremes in a EURO-CORDEX 0.11∘ ensemble at an hourly resolution, Nat. Hazards Earth Syst. Sci., 19, 957–971, https://doi.org/10.5194/nhess-19-957-2019, 2019.
Berthou, S., Kendon, E., Chan, S., Ban, N., Leutwyler, D., Schär, C., and Fosser, G.:
Pan-European climate at convection-permitting scale: a model intercomparison study,
Clim. Dynam.,
55, 35–59, https://doi.org/10.1007/s00382-018-4114-6, 2020.
Boberg, F., Berg, P., Thejll, P., Gutowski, W. J., and Christensen, J. H.:
Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models,
Clim. Dynam.,
35, 1509–1520, https://doi.org/10.1007/s00382-009-0683-8, 2010.
Brockhaus, P., Lüthi, D., and Schär, C.:
Aspects of the diurnal cycle in a regional climate model,
Meteorol. Z.,
17, 433–443, https://doi.org/10.1127/0941-2948/2008/0316, 2008.
Carver, G.: OpenIFS Home, 2020, https://confluence.ecmwf.int/display/OIFS, last access: 23 February 2022.
Caillaud, C., Somot, S., Alias, A., Bernard-Bouissières, I., Fumière, Q., Seity, Y., and Ducrocq, V.:
Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model,
Clim. Dynam.,
56, 1717–1752, https://doi.org/10.1007/s00382-020-05558-y, 2021.
Chen, C.-T. and Knutson, T.:
On the verification and comparison of extreme rainfall indices from climate models,
J. Climate,
21, 1605–1621, https://doi.org/10.1175/2007JCLI1494.1, 2008.
Christensen, J. and Christensen, O.:
Severe summertime flooding in Europe,
Nature,
421, 805–806, https://doi.org/10.1038/421805a, 2003.
Christensen, J. H., Kjellström, E., Giorgi, F., Lenderink, G., and Rummukainen, M.:
Weight assignment in Regional Climate Models,
Clim. Res.,
44, 179–194, https://doi.org/10.3354/cr00916, 2010.
Coles, S.:
An Introduction to Statistical Modeling of Extreme Values,
Springer-Verlag, London, Berlin, Heidelberg, 209 pp., 2001.
Copernicus Climate Change Service (C3S): E-OBS daily gridded meteorological data for Europe from 1950 to present derived from in-situ observations, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.151d3ec6, 2020.
Copernicus Climate Change Service (C3S): Nordic gridded temperature and precipitation data from 1971 to present derived from in-situ observations, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e8f4a10c, 2021.
Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders, I., Ban, N., Bastin, S., Belda, M., Belusic, D., Caldas-Alvarez, A., Cardoso, R., Davolio, S., Dobler, A., Fernandez, J., Fita, L., Fumiere, Q., Giorgi, F., Goergen, K., Güttler, I., Halenka, T., Heinzeller, D., Hodnebrog, Ø., Jacob, D., Kartsios, S., Katragkou, E., Kendon, E., Khodayar, S., Kunstmann, H., Knist, S., Lavín-Gullón, A., Lind, P., Lorenz, T., Maraun, D., Marelle, L., van Meijgaard, E., Milovac, J., Myhre, G., Panitz, H., Piazza, M., Raffa, M., Raub, T., Rockel, B., Schär, C., Sieck, K., Soares, P., Somot, S., Srnec, L., Stocchi, P., Tölle, M., Truhetz, H., Vautard, R., de Vries, H., and Warrach-Sagi, K.:
A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean,
Clim. Dynam.,
55, 3–34, https://doi.org/10.1007/s00382-018-4521-8, 2020.
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.:
An Ensemble Version of the E-OBS Temperature and Precipitation Datasets,
J. Geophys. Res.-Atmos.,
123, 9381–9409, https://doi.org/10.1029/2017JD028200, 2020.
Crespi, A., Lussana, C., Brunetti, M., Dobler, A., Maugeri, M., and Tveito, O. E.:
High-resolution monthly precipitation climatologies over Norway (1981–2010): joining numerical model data sets and in situ observations,
Int. J. Climatol.,
39, 2057–2070, https://doi.org/10.1002/joc.5933, 2019.
Crossett, C. C., Betts, A. K., Dupigny-Giroux, L.-A. L., and Bomblies, A.:
Evaluation of Daily Precipitation from the ERA5 Global Reanalysis against GHCN Observations in the Northeastern United States,
Climate,
8, 148, https://doi.org/10.3390/cli8120148, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J., Park, B., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denis, B., Laprise, R., Caya, D., and Côté, J.:
Downscaling ability of one-way nested regional climate models: the Big-Brother Experiment,
Clim. Dynam.,
18, 627–646, https://doi.org/10.1007/s00382-001-0201-0, 2002.
Dyrrdal, A.: Annual maximum daily precipitation for the Nordic-Baltic countries, NIRD [data set], https://doi.org/10.11582/2020.00023, 2020.
Du, H., Alexander, L., Donat, M., Lippmann, T., Srivastava, A., Salinger, J., Kruger, A., Choi, G., He, H. S., Fujibe, F., Rusticucci, M., Nandintsetseg, B., Manzanas, R., Rehman, S., Abbas, F., Zhai, P., Yabi, I., Stambaugh, M. C., Wang, S., Batbold, A., de Oliveira, P. T., Adrees, M., Hou, W., Zong, S., Santos e Silva, C. M. S., Lucio, P. S., and Wu, F.:
Precipitation From Persistent Extremes is Increasing in Most Regions and Globally,
Geophys. Res. Lett.,
46, 6041–6049, https://doi.org/10.1029/2019gl081898, 2019.
Dyrrdal, A., Olsson, J., Médus, E., Arnbjerg-Nielsen, K., Post, P., Aņiskeviča, S., Førland, E. J., Thorndahl, S., Lennart, W., Mačiulytė, V., and Mäkelä, A.:
Observed changes in heavy daily precipitation over the Nordic-Baltic region,
J. Hydrol. Reg. Stud.,
38, 100965, https://doi.org/10.1016/j.ejrh.2021.100965, 2021.
Eggert, B., Berg, P., Haerter, J. O., Jacob, D., and Moseley, C.: Temporal and spatial scaling impacts on extreme precipitation, Atmos. Chem. Phys., 15, 5957–5971, https://doi.org/10.5194/acp-15-5957-2015, 2015.
Fosser, G., Khodayar, S., and Berg, P.:
Benefit of convection permitting climate model simulations in the representation of convective precipitation,
Clim. Dynam.,
44, 45–60, https://doi.org/10.1007/s00382-014-2242-1, 2015.
Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P., Ban, N., Barbero, R., Berg, P., Blenkinsop, S., Do, H. X., Guerreiro, S., Haerter, J. O., Kendon, E. J., Lewis, E., Schär, C., Sharma, A., Villarini, G., Wasko, C., and Zhang, X.:
Anthropogenic intensification of short-duration rainfall extremes,
Nat. Rev. Earth Environ.,
2, 107–122, https://doi.org/10.1038/s43017-020-00128-6, 2021.
Førland, E. J., Alexandersson, H., Drebs, A., Hanssen-Bauer, I., Vedin, H., and Tveito, O. E.:
Trends in maximum 1-day precipitation in the Nordic region, MET Norway report 14/98, 53 pp.,
Norwegian Meteorological Institute, Oslo, Norway, 1998.
Frei, C., Schöll, R., Fukutome, S., Schmidli, J., and Vidale, P.:
Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models,
J. Geophys. Res.-Atmos.,
111, D06105, https://doi.org/10.1029/2005JD005965, 2006.
Fumière, Q., Déqué, M., Nuissier, O., Somot, S., Alias, A., Caillaud, C., Laurantin, O., and Seity, Y.:
Extreme rainfall in Mediterranean France during the fall: added value of the CNRM-AROME Convection-Permitting Regional Climate Model,
Clim. Dynam.,
55, 77–91, https://doi.org/10.1007/s00382-019-04898-8, 2020.
Gregersen, I., Sørup, H., Madsen, H., Rosbjerg, D., Mikkelsen, P., and Arnbjerg-Nielsen, K.:
Assessing future climatic changes of rainfall extremes at small spatio-temporal scales,
Climatic Change,
118, 783–797, https://doi.org/10.1007/s10584-012-0669-0, 2013.
Hanel, M. and Buishand, T.:
On the value of hourly precipitation extremes in regional climate model simulations,
J. Hydrol.,
393, 265–273, https://doi.org/10.1016/j.jhydrol.2010.08.024, 2010.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018 (updated 2022).
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.:
The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
HIRLAM: Access to the models, http://hirlam.org/index.php/hirlam-programme-53/access-to-the-models, last access: 23 February 2022.
Hofstra, N., New, M., and McSweeney, C.:
The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data,
Clim. Dynam.,
35, 841–858, https://doi.org/10.1007/s00382-009-0698-1, 2010.
Hu, G. and Franzke, C. L. E.:
Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over Germany,
Geophys. Res. Lett.,
47, e2020GL089624, https://doi.org/10.1029/2020GL089624, 2020.
Johansson, B. and Chen, D.:
The influence of wind and topography on precipitation distribution in Sweden: statistical analysis and modelling,
Int. J. Climatol.,
23, 1523–1535, https://doi.org/10.1002/joc.951, 2003.
Kendon, E., Roberts, N., Fowler, H., Roberts, M., Chan, S., and Senior, C.:
Heavier summer downpours with climate change revealed by weather forecast resolution model,
Nat. Clim. Change,
4, 570–576, https://doi.org/10.1038/nclimate2258, 2014.
Kendon, E., Ban, N., Roberts, N., Fowler, H., Roberts, M., Chan, S., Evans, J., Fosser, G., and Wilkinson, J.:
Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?,
B. Am. Meteorol. Soc.,
98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Kotlarski, S., Szabó, P., Herrera, S., Räty, O., Keuler, K., Soares, P. M., Cardoso, R. M., Bosshard, T., Pagé, C., Boberg, F., Gutiérrez, J. M., Isotta, F. A., Jaczewski, A., Kreienkamp, F., Liniger, M. A., Lussana, C., and Pianko-Kluczyńska, K.:
Observational uncertainty and Regional Climate Model Evaluation: A pan-European Perspective,
Int. J. Climatol.,
39, 3730–3749, https://doi.org/10.1002/joc.5249, 2019.
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y.:
Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?,
J. Econometrics,
54, 159–178, https://doi.org/10.1016/0304-4076(92)90104-Y, 1992.
Landgren, O.:
Impacts on Norwegian coastal precipitation by aerosol forcing, conference presentation,
Joint 30th ALADIN Workshop and HIRLAM ASM 2020, Online, 30 April–4 March 2020, http://www.umr-cnrm.fr/aladin/IMG/pdf/landgren_hirlam-asm_2020-04-01_impacts_on_norwegian_coastal_precipitation_by_aerosol_forcing.pdf (last access: 23 February 2022), 2020.
Lantsheer, F.: About the HIRLAM programme, http://hirlam.org/index.php/hirlam-programme-53 (last access: 23 February 2022), 2016.
Lenderink, G. and van Meijgaard, E.:
Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes,
Environ. Res. Lett.,
5, 025208, https://doi.org/10.1088/1748-9326/5/2/025208, 2010.
Leutwyler, D., Lüthi, D., Ban, N., Fuhrer, O., and Schär, C.:
Evaluation of the convection-resolving climate modeling approach on continental scales,
J. Geophys. Res.-Atmos.,
122, 5237–5258, https://doi.org/10.1002/2016jd026013, 2017.
Lind, P., Lindstedt, D., Kjellström, E., and Jones, C.:
Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models,
J. Climate,
29, 3501–3518, https://doi.org/10.1175/jcli-d-15-0463.1, 2016.
Lind, P., Belušić, D., Christensen, O. B., Dobler, A., Kjellström, E., Landgren, O., Lindstedt, D., Matte, D., Pedersen, R. A., Toivonen, E., and Wang, F.:
Benefits and added value of convection-permitting climate modeling over Fenno-Scandinavia,
Clim. Dynam.,
55, 1893–1912, https://doi.org/10.1007/s00382-020-05359-3, 2020.
Lindstedt, D., Lind, P., Kjellström, E., and Jones, C.:
A new regional climate model operating at the meso-gamma scale: performance over Europe,
Tellus A,
67, 24138, https://doi.org/10.3402/tellusa.v67.24138, 2015.
Lucas-Picher, P., Argüeso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., Kotlarski, S., and Caillaud, C.:
Convection-permitting modeling with regional climate models: Latest developments and next steps,
WIREs Clim. Change,
12, e731, https://doi.org/10.1002/wcc.731, 2021.
Lundquist, J., Hughes, M., Gutmann, E., and Kapnick, S.:
Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks,
B. Am. Meteorol. Soc.,
100, 2473–2490, https://doi.org/10.1175/BAMS-D-19-0001.1, 2019.
Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and Andersen, J.: seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day, Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018, 2018a.
Lussana, C., Tveito, O. E., and Uboldi, F.:
Three-dimensional spatial interpolation of 2 m temperature over Norway,
Q. J. Roy. Meteor. Soc.,
144, 344–364, https://doi.org/10.1002/qj.3208, 2018b.
Lussana, C., Tveito, O. E., Dobler, A., and Tunheim, K.: seNorge_2018, daily precipitation, and temperature datasets over Norway, Earth Syst. Sci. Data, 11, 1531–1551, https://doi.org/10.5194/essd-11-1531-2019, 2019.
Lutz, J., Grinde, L., and Dyrrdal, A. V.:
Estimating Rainfall Design Values for the City of Oslo, Norway—Comparison of Methods and Quantification of Uncertainty,
Water,
12, 1735, https://doi.org/10.3390/w12061735, 2020.
Martins, E. S. and Stedinger, J. R.:
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data,
Water Resour. Res.,
36, 737–744, https://doi.org/10.1029/1999WR900330, 2000.
Matte, D., Laprise, R., Thériault, J. M., and Lucas-Picher, P.:
Spatial spin-up of fine scales in a regional climate model simulation driven by low-resolution boundary conditions,
Clim. Dynam.,
49, 563–574, https://doi.org/10.1007/s00382-016-3358-2, 2017.
Meredith, E. P, Ulbrich, U., Rust, H. W., and Truhetz, H.:
Present and future diurnal hourly precipitation in 0.11∘ EURO-CORDEX models and at convection-permitting resolution,
Environ. Res. Commun.,
3, 055002, https://doi.org/10.1088/2515-7620/abf15e, 2021.
Norwegian Meteorological Institute: Norwegian observational gridded climate datasets, MET Norway Thredds Service [data set], https://thredds.met.no/thredds/catalog/senorge/seNorge2/catalog.html, last access: 23 February 2022.
Olsson, J., Pers, C., Bengtsson, L., Pechlivanidis, I., Berg, P., and Körnich, H.:
Distance-dependent depth-duration analysis in high-resolution hydro-meteorological ensemble forecasting: A case study in Malmö City, Sweden,
Environ. Model. Softw.,
93, 381–397, https://doi.org/10.1016/j.envsoft.2017.03.025, 2017.
Olsson, J., Du, Y., An, D., Uvo, C. B., Sörensen, J., Toivonen, E., Belušić, D., and Dobler, A.:
An Analysis of (Sub-)Hourly Rainfall in Convection-Permitting Climate Simulations Over Southern Sweden From a User's Perspective,
Front. Earth Sci.,
9, 681312, https://doi.org/10.3389/feart.2021.681312, 2021a.
Olsson, J., Berg, P., and van de Beek, R.: Visualization of radar-observed rainfall for hydrological risk assessment, Adv. Sci. Res., 18, 59–64, https://doi.org/10.5194/asr-18-59-2021, 2021b.
Pavlovic, S., Perica, S., St Laurent, M., and Mejía, A.:
Intercomparison of Selected Fixed-Area Areal Reduction Factor Methods,
J. Hydrol.,
537, 419–430, https://doi.org/10.1016/j.jhydrol.2016.03.027, 2016.
Perkins, S. E. and Pitman, A. J.:
Do weak AR4 models bias projections of future climate changes over Australia?,
Climatic Change,
93, 527–558, https://doi.org/10.1007/s10584-008-9502-1, 2009.
Pichelli, E., Coppola, E., Sobolowski, S., Ban, N., Giorgi, F., Stocchi, P., Alias, A., Belušić, D., Berthou, S., Caillaud, C., Cardoso, R. M., Chan, S., Christensen, O. B., Dobler, A., de Vries, H., Goergen, K., Kendon, E. J., Keuler, K., Lenderink, G., Lorenz, T., Mishra, A. N., Panitz, H.-J., Schär, C., Soares, P. M., Truhetz, H., and Vergara-Temprado, J.:
The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: Historical and future simulations of precipitation,
Clim. Dynam.,
56, 3581–3602, https://doi.org/10.1007/s00382-021-05657-4, 2021.
Prein, A. F. and Gobiet, A.:
Impacts of uncertainties in European gridded precipitation observations on regional climate analysis,
Int. J. Climatol.,
37, 305–327, https://doi.org/10.1002/joc.4706, 2017.
Prein, A., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., Lipzig, N., and Leung, R.:
A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges,
Rev. Geophys.,
53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Rajczak, J. and Schär, C.:
Projections of future precipitation extremes over Europe: a multi-model assessment of climate simulations,
J. Geophys. Res.-Atmos.,
122, 773–10800, https://doi.org/10.1002/2017JD027176, 2017.
Rajczak, J., Pall, P., and Schär, C.:
Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine region,
J. Geophys. Res.-Atmos.,
118, 3610–3626, https://doi.org/10.1002/jgrd.50297, 2013.
Risser, M. D. and Wehner, M. F.: The effect of geographic sampling on evaluation of extreme precipitation in high-resolution climate models, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 115–139, https://doi.org/10.5194/ascmo-6-115-2020, 2020.
Rubel, F. and Hantel, M.:
BALTEX 1/6-degree daily precipitation climatology 1996–1998,
Meteorol. Atmos. Phys.,
77, 155–166, https://doi.org/10.1007/s007030170024, 2001.
Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C., Giorgi, F., Karl, T. R., Kendon, E. J., Tank, A. M., O'Gorman, P. A., Sillmann, J., Zhang, X., and Zwiers, F. W.:
Percentile indices for assessing changes in heavy precipitation events,
Climatic Change,
137, 201–216, https://doi.org/10.1007/s10584-016-1669-2, 2016.
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.:
The AROME-France convective-scale operational model,
Mon. Weather Rev.,
139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011.
SURFEX: Welcome to the SURFEX Home Page, https://www.umr-cnrm.fr/surfex/, last access: 23 February 2022.
Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C., and Joly, A.: The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1, Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, 2018.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.:
The changing character of precipitation,
B. Am. Meteorol. Soc.,
84, 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205, 2003.
Tveito, O. E. and Lussana, C.:
The Nordic Gridded Climate Dataset stable release, ECMWF Copernicus note, 29 pp., Copernicus Climate Change Service,
https://surfobs.climate.copernicus.eu/documents/C3S_M311a_Lot4.2.3.3_201809_report_stable_release_v1.pdf (last access: 23 February 2022), 2018.
Tveito, O. E., Bjørdal, I., Skjelvåg, A. O., and Aune, B.:
A GIS-based agro-ecological decision system based on gridded climatology,
Meteorol. Appl.,
12, 57–68, https://doi.org/10.1017/S1350482705001490, 2005.
Toivonen, E., Hippi, M., Korhonen, H., Laaksonen, A., Kangas, M., and Pietikäinen, J.-P.: The road weather model RoadSurf (v6.60b) driven by the regional climate model HCLIM38: evaluation over Finland, Geosci. Model Dev., 12, 3481–3501, https://doi.org/10.5194/gmd-12-3481-2019, 2019.
van den Besselaar, E. J. M., Klein Tank, A. M. G., and Buishand, T.:
Trends in European precipitation extremes over 1951-2010,
Int. J. Climatol.,
33, 2682–2689, https://doi.org/10.1002/joc.3619, 2013.
Vejen, F., Vedel, H., and Scharling, M.:
Korrektion af observeret nedbør i Danmark, DMI Report 21–39, 19 pp.,
Danish Meteorological Institute, Copenhagen, Denmark, https://www.dmi.dk/fileadmin/Rapporter/2021/DMI_21-39_-_Korrektion_af_observeret_nedboer_i_Danmark.pdf (last access: 23 February 2022), 2021.
Wang, P. R. and Scharling, M.:
Klimagrid Danmark: Dokumentation og validering af Klimagrid Danmark i 1 × 1 km opløsning, DMI-Technical Report 10–13, 39 pp.,
Danish Meteorological Institute, Copenhagen, Denmark, https://www.dmi.dk/fileadmin/Rapporter/TR/tr10-13.pdf (last access: 23 February 2022), 2010.
Westra, S., Alexander, L. V., and Zwiers, F. W.:
Global Increasing Trends in Annual Maximum Daily Precipitation,
J. Climate,
26, 3904–3918, https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.
Westra, S., Fowler, H., Evans, J., Alexander, L., Berg, P., Johnson, F., Kendon, E., Lenderink, G., and Roberts, N.:
Future changes to the intensity and frequency of short-duration extreme rainfall,
Rev. Geophys.,
52, 522–555, https://doi.org/10.1002/2014RG000464, 2014.
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day...
Altmetrics
Final-revised paper
Preprint