Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-4103-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-4103-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Equivalent hazard magnitude scale
Institute for Earth, Computing, Human and Observing (ECHO), Chapman
University, Orange, CA, 92866, United States of America
Antonia Sebastian
Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, United States of
America
Related authors
No articles found.
Hunter C. Quintal, Antonia Sebastian, Marc L. Serre, Wiebke S. Jäger, and Marleen C. de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2870, https://doi.org/10.5194/egusphere-2025-2870, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
High quality weather event datasets are crucial to community preparedness and resilience. Researchers create such datasets using clustering methods, which we advance by addressing current limitation in the relationship between space and time. We propose a method to determine the appropriate factor by which to resample the spatial resolution of the data prior to clustering. Ultimately, our approach increases the ability to detect historic heatwaves over current methods.
Kieran P. Fitzmaurice, Helena M. Garcia, Antonia Sebastian, Hope Thomson, Harrison B. Zeff, and Gregory W. Characklis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2049, https://doi.org/10.5194/egusphere-2025-2049, 2025
Short summary
Short summary
Uninsured flood damage can destabilize household finances, increasing the risk of mortgage default. Across seven floods in North Carolina, 66 % of damage was found to be uninsured. Among affected mortgage borrowers, 32 % lacked sufficient income or collateral to finance repairs through home equity-based borrowing, increasing their risk of default. These findings suggest that uninsured flood damage poses a serious and under-recognized threat to mortgage borrowers and lenders.
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850, https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Short summary
The risk flood of flood impacts is dynamic as society continuously responds to specific events or ongoing developments. We analyzed 28 studies that assess such dynamics of vulnerability. Most research uses surveys and basic statistics data, while integrated, flexible models are seldom used. The studies struggle to link specific events or developments to the observed changes. Our findings highlight needs and possible directions towards a better assessment of vulnerability dynamics.
William Mobley, Antonia Sebastian, Russell Blessing, Wesley E. Highfield, Laura Stearns, and Samuel D. Brody
Nat. Hazards Earth Syst. Sci., 21, 807–822, https://doi.org/10.5194/nhess-21-807-2021, https://doi.org/10.5194/nhess-21-807-2021, 2021
Short summary
Short summary
In southeast Texas, flood impacts are exacerbated by increases in impervious surfaces, human inaction, outdated FEMA-defined floodplains and modeling assumptions, and changing environmental conditions. The current flood maps are inadequate indicators of flood risk, especially in urban areas. This study proposes a novel method to model flood hazard and impact in urban areas. Specifically, we used novel flood risk modeling techniques to produce annualized flood hazard maps.
Cited articles
Adger, W. N.: Vulnerability, Global Environ. Chang., 16, 268–281, https://doi.org/10.1016/j.gloenvcha.2006.02.006, 2006.
Alexander, D. E.: Impact, definition of, in: Encyclopedia of Crisis
Management, edited by: Penuel, K. B., Statler, M., and Hagen, R., SAGE
Publication, Thousands Oaks, CA, 488–490, https://doi.org/10.4135/9781452275956.n167, 2013.
Alexander, D. E.: A magnitude scale for cascading disasters, Int. J. Disast.
Risk Re., 30, 180–185, https://doi.org/10.1016/j.ijdrr.2018.03.006, 2018.
Bell, G. D. Halpert, M. S., Schnell, R. C., Higgins, R. W., Lawrimore, J.,
Kousky, V. E., Tinker, R., Thiaw, W., Chelliah, M., and Artusa, A.: Climate
assessment for 1999, B. Am. Meteorol. Soc., 81, S1–S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2, 2000.
Bensi, M., Mohammadi, S., Kao, S.-C., and DeNeale, S. T.: Multi-Mechanism
Flood Hazard Assessment: Critical Review of Current Practice and Approaches,
Oak Ridge National Laboratory, Oak Ridge, TN, https://doi.org/10.2172/1649363, 2020.
Birkmann, J., Kienberger, S., and Alexander, D. E. (Eds.): Assessment of
Vulnerability to Natural Hazards: A European Perspective, Elsevier,
Amsterdam, the Netherlands, https://doi.org/10.1016/C2012-0-03330-3, 2014.
Blong, R.: A review of damage intensity scales, Nat. Hazards, 29, 57–76,
https://doi.org/10.1023/A:1022960414329, 2003.
Burton, C. G.: Social vulnerability and hurricane impact modelling, Nat.
Hazards Rev., 11, 58–68, https://doi.org/10.1061/(ASCE)1527-6988(2010)11:2(58), 2010.
Byun, H.-R. and Wilhite, D. A.: Objective quantification of drought severity
and duration, J. Climate, 12, 2747–2756, https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2, 1999.
Choi, E., Ha, J.-G., Hahm, D., and Kim, M. K.: A review of multihazard risk
assessment: Progress, potential, and challenges in the application to
nuclear power plants, Int. J. Disast. Risk Re., 53, 101933, https://doi.org/10.1016/j.ijdrr.2020.101933, 2021.
Coburn, A. and Spence, R.: Earthquake Protection, 2nd edn., John Wiley &
Sons, Ltd, Chichester, UK, ISBN 978-0470855171, 2002.
Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., Arnold, M., Agwe,
J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G.: Natural Disaster
Hotspots: A Global Risk Analysis, The World Bank, Washington, DC, ISBN 978-0821359303, http://hdl.handle.net/10986/7376 (last access: 20 December 2022), 2005.
Doss-Gollin, J., Farnham, D. J., Lall, U., and Modi, V.: How unprecedented
was the February 2021 Texas cold snap?, EarthArXiv, https://doi.org/10.31223/X5003J, 2021.
Dotzek, N.: Derivation of physically motivated wind speed scales, Atmos.
Res., 93, 564–574, https://doi.org/10.1016/j.atmosres.2008.10.015, 2009.
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past
30 years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005.
Fujita, T. T.: Proposed Characterization of Tornadoes and Hurricanes by Area
and Intensity, the University of Chicago, Chicago, IL, https://ntrs.nasa.gov/citations/19720008829 (last access: 20 December 2022), 1971.
Fujita, T. T.: Tornadoes and downbursts in the context of generalized
planetary scales, J. Atmos. Sci., 38, 1511–1534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2, 1981.
Gardoni, P. and Murphy, C.: Gauging the societal impacts of natural
disasters using a capability approach, Disasters, 34, 619–636, https://doi.org/10.1111/j.1467-7717.2010.01160.x, 2010.
Grünthal, G. (Ed.): European Macroseismic Scale 1998, European
Seismological Commission, Luxembourg, http://www.bcsf.prd.fr/EMS98_Original_english.pdf (last access: 20 December 2022), 1998.
Guha-Sapir, D., Hoyois, P., and Below, R.: EM-DAT Public, https://public.emdat.be/, last access: 10 March 2021.
Hebert, C. G., Weinzapfel, R. A., and Chambers, M. A.: Hurricane Severity
Index: A new way of estimating a tropical cyclone's destructive potential,
19th Conference on Probability and Statistics, 20–24 January 2008, New Orleans, LA, USA, 2008.
Highfield, W. E., Peacock, W. G., and Van Zandt, S.: Mitigation planning:
Why hazard exposure, structural vulnerability, and social vulnerability
matter, J. Plan. Educ. Res., 34, 287–300, https://doi.org/10.1177/0739456X14531828, 2014.
Hillier, J. K. and Dixon, R. S.: Seasonal impact-based mapping of compound
hazards, Environ. Res. Lett., 15, 114013, https://doi.org/10.1088/1748-9326/abbc3d, 2020.
Hillier, J. K., Macdonald, N., Leckebusch, G. C., and Stavrinides, A.:
Interactions between apparently “primary” weather-driven hazards and their
cost, Environ. Res. Lett., 10, 104003, https://doi.org/10.1088/1748-9326/10/10/104003, 2015.
Hillier, J. K., Matthews, T., Wilby, R., and Murphy, C.: Multi-hazard
dependencies can increase or decrease risk, Nat. Clim. Change, 10, 595–598,
https://doi.org/10.1038/s41558-020-0832-y, 2020.
Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T. J., and Dutcher,
A. L.: The development and evaluation of a soil moisture index, Int. J.
Climatol., 29, 747–759, https://doi.org/10.1002/joc.1749, 2009.
Jolliffe, I. T.: Principal Component Analysis, 2nd edn., Springer, New
York, NY, https://doi.org/10.1007/b98835, 2002.
Jolliffe, I. T. and Cadima, J.: Principal component analysis: A review and
recent developments, Phil. Trans. R. Soc. A, 374, 20150202, https://doi.org/10.1098/rsta.2015.0202, 2016.
Kaiser, A., Holden, C., Beavan, J., Beetham, D., Benites, R., Celentano, A.,
Collett, D., Cousins, J., Cubrinovski, M., Dellow, G., Denys, P., Fielding,
E., Fry, B., Gerstenberger, M., Langridge, R., Massey, C., Motagh, M.,
Pondard, N., McVerry, G., Ristau, J., Stirling, M., Thomas, J., Uma, S. R.,
and Zhao, J.: The Mw 6.2 Christchurch earthquake of February 2011: Preliminary report, New Zeal. J. Geol. Geop., 55, 67–90, https://doi.org/10.1080/00288306.2011.641182, 2012.
Kanamori, H.: The energy release in great earthquakes, J. Geophys. Res., 82,
2981–2987, https://doi.org/10.1029/JB082i020p02981, 1977.
Katsumata, A.: Comparison of magnitudes estimated by the Japan
Meteorological Agency with moment magnitudes for intermediate and deep
earthquakes, B. Seismol. Soc. Am., 86, 832–842, https://doi.org/10.1785/BSSA0860030832, 1996.
Keller, A. Z., Wilson, H. C., and Al-Madhari, A.: Proposed disaster scale
and associated model for calculating return periods for disasters of given
magnitude, Disast. Prev. Manag., 1, https://doi.org/10.1108/09653569210011093, 1992.
Keller, A. Z., Meniconi, M., Al-Shammari, I., and Cassidy, K.: Analysis of
fatality, injury, evacuation and cost data using the Bradford Disaster
Scale, Disast. Prev. Manag., 6, 33–42, https://doi.org/10.1108/09653569710162433, 1997.
Klijn, F., Kreibich, H., de Moel, H., and Penning-Rowsell, E.: Adaptive
flood risk management planning based on a comprehensive flood risk
conceptualisation, Mitig. Adapt. Strateg. Glob. Change, 20, 845–864,
https://doi.org/10.1007/s11027-015-9638-z, 2015.
Lindell, M. K.: Disaster studies, Curr. Sociol. Rev., 61, 797–825,
https://doi.org/10.1177/0011392113484456, 2013.
Lindell, M. K. and Prater, C. S.: Assessing community impacts of natural
disasters, Nat. Hazards Rev., 4, 176–185, https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176), 2003.
Malherbe, J., Smit, I. P. J., Wessels, K. J., and Beukes, P. J.: Recent
droughts in the Kruger National Park as reflected in the extreme climate
index, Afr. J. Range For. Sci., 37, 1–17, https://doi.org/10.2989/10220119.2020.1718755, 2020.
McEntire, D. A.: Why vulnerability matters: Exploring the merit of an
inclusive disaster reduction concept, Disast. Prev. Manag., 14, 206–222,
https://doi.org/10.1108/09653560510595209, 2005.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Proceedings of the Eighth
Conference on Applied Climatology, 17–22 January 1993, Anaheim, CA, USA,
179–183, https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf (last access: 20 December 2022), 1993.
Meaden, G. T., Kochev, S., Kolendowicz, L., Kosa-Kiss, A., Marcinoniene, I.,
Sioutas, M., Tooming, H., and Tyrrell, J.: Comparing the theoretical
versions of the Beaufort scale, the T-scale and the Fujita scale, Atmos.
Res., 83, 446–449, https://doi.org/10.1016/j.atmosres.2005.11.014, 2007.
Mitchell-Wallace, K., Jones, M., Hillier, J., and Foote, M. (Eds.): Natural
Catastrophe Risk Management and Modelling: A Practitioner's Guide, John
Wiley & Sons, Ltd, Chichester, UK, ISBN 978-1118906040, 2017.
Mudd, L., Rosowsky, D., Letchford, C., and Lombardo, F.: Joint probabilistic
wind–rainfall model for tropical cyclone hazard characterization, J.
Struct. Eng., 143, 04016195, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001685, 2017.
Nigg, J. M. and Mileti, D.: Natural hazards and disasters, Disaster Research
Center, DE, Preliminary Paper, 261, https://udspace.udel.edu/bitstream/handle/19716/280/PP+261.pdf?sequence=1 (last access: 20 December 2022), 1997.
O'Keefe, P., Westgate, K., and Wisner, B.: Taking the naturalness out of
natural disasters, Nature, 260, 566–567, https://doi.org/10.1038/260566a0, 1976.
Palmer, W. C.: Meteorological Drought, US Department of Commerce,
Washington, DC, https://www.droughtmanagement.info/literature/USWB_Meteorological_Drought_1965.pdf (last access: 20 December 2022), 1965.
Palmer, W. C.: Keeping track of crop moisture conditions, nationwide: The
new Crop Moisture Index, Weatherwise, 21, 156–161, https://doi.org/10.1080/00431672.1968.9932814, 1968.
Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S. N.:
Trends in flood losses in Europe over the past 150 years, Nat. Commun., 9,
1985, https://doi.org/10.1038/s41467-018-04253-1, 2018
Peduzzi, P., Dao, H., Herold, C., and Mouton, F.: Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index, Nat. Hazards Earth Syst. Sci., 9, 1149–1159, https://doi.org/10.5194/nhess-9-1149-2009, 2009.
Potter, S.: Fine-tuning Fujita: After 35 years, a new scale for rating
tornadoes takes effect, Weatherwise, 62, 64–71, https://doi.org/10.3200/WEWI.60.2.64-71, 2007.
Powell, M. D. and Reinhold, T. A.: Tropical cyclone destructive potential by
integrated kinetic energy, B. Am. Meteorol. Soc., 88, 513–526, https://doi.org/10.1175/BAMS-88-4-513, 2007.
Raphson, J.: Analysis Aequationum Universalis Seu Ad Aequationes Algebraicas
Resolvendas Methodus Generalis, & Expedita, Ex Nova Infinitarum Serierum
Methodo, Deducta Ac Demonstrata: Cui Annexum Est de Spatio Reali, Seu Ente
Infinito Conamen Mathematico-Metaphysicum, Braddyll, London, Kingdom of
England, https://doi.org/10.3931/e-rara-13516, 1697.
Rautian, T. G., Khalturin, V. I., Fujita, K., Mackey, K. G., and Kendall, A.
D.: Origins and methodology of the Russian Energy K-Class System and its
relationship to magnitude scales, Seismol. Res. Lett., 78, 579–590,
https://doi.org/10.1785/gssrl.78.6.579, 2007.
Richter, C. F.: An instrumental earthquake magnitude scale, B. Seismol. Soc.
Am., 25, 1–32, https://doi.org/10.1785/BSSA0250010001, 1935.
Rohn, E. and Blackmore, D.: A unified localizable emergency events scale,
Int. J. Inf. Syst. Crisis Res. Manag., 1, 1–14, https://doi.org/10.4018/jiscrm.2009071001, 2009.
Rohn, E. and Blackmore, D.: The augmented unified localizable crisis scale,
Technol. Forecast. Soc. Chang., 100, 186–197, https://doi.org/10.1016/j.techfore.2015.06.017, 2015.
Serva, L., Vittori, E., Comerci, V., Esposito, E., Guerrieri, L., Michetti,
A. M., Mohammadioun, B., Mohammadioun, G. C., Porfido, S., and Tatevossian,
R. E.: Earthquake hazard and the Environmental Seismic Intensity (ESI)
scale, Pure Appl. Geophys., 173, 1479–1515, https://doi.org/10.1007/s00024-015-1177-8, 2016.
Shafer, B. A. and Dezman, L. E.: Development of a surface water supply index
(SWSI) to assess the severity of drought conditions in snowpack runoff
areas, in: Proceedings of the 50th Annual Western Snow Conference, 19–21 April 1982, Reno, NV, USA, https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/1982Shafer.pdf (last access: 20 December 2022), 1982.
Shukla, S. and Wood, A. W.: Ise of a standardized runoff index for
characterizing hydrologic drought, Geophys. Res. Lett., 35, L02405,
https://doi.org/10.1029/2007GL032487, 2008.
Simpson, R. H. and Saffir, H.: The hurricane Disaster–Potential Scale,
Weatherwise, 27, 169–186, https://doi.org/10.1080/00431672.1974.9931702, 1974.
United States Geological Survey (USGS): M9.2 Alaska earthquake and tsunami of March 27, 1964, USGS, Reston, VA, USA, https://earthquake.usgs.gov/earthquakes/events/alaska1964/ (last access: 20 December 2022), 2021.
van de Lindt, J. W., Peacock, W. G., Mitrani-Reiser, J., Rosenheim, N.,
Deniz, D., Dillard, M., Tomiczek, T., Koliou, M., Graettinger, A., Crawford,
P. S., Harrison, K., Barbosa, A., Tobin, J., Helgeson, J., Peek, L., Memari,
M., Sutley, E. J., Hamideh, S., Gu, D., Cauffman, S., and Fung, J.:
Community resilience-focused technical investigation of the 2016 Lumberton,
North Carolina, flood: An interdisciplinary approach, Nat. Hazards Rev., 21,
04020029, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000387, 2020.
Wald, D. J., Worden, B. C., Quitoriano, V., and Pankow, K. L.: ShakeMap
Manual: Technical Manual, User's Guide, and Software Guide, US Geological
Survey, Reston, VA, USA, https://doi.org/10.3133/tm12A1, 2006.
Wang, Y. V.: Empirical local hazard models for bolide explosions, Nat.
Hazards Rev., 21, 04020037, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000405, 2020.
Wang, Y. V. and Sebastian, A.: Data for deriving equivalent hazard magnitude
scale (Version V2), University of North Carolina Dataverse [data set, code], https://doi.org/10.15139/S3/DJV7CR, 2020.
Wang, Y. V. and Sebastian, A.: Community flood vulnerability and risk
assessment: An empirical predictive modelling approach, J. Flood Risk
Manag., 14, e12739, https://doi.org/10.1111/jfr3.12739, 2021.
Wang, Y. V. and Sebastian, A.: Murphy Scale: A locational equivalent
intensity scale for hazard events, Risk Anal., https://doi.org/10.1111/risa.13933, online first, 2022.
Wang, Y. V., Tabandeh, A., Gardoni, P., Hurt, T. M., Hartman, E. R., and
Myers, N. R.: Assessing socioeconomic impacts of cascading infrastructure
disruptions using the Capability Approach, US Army Engineer Research and
Development Center Construction Engineering Research Lab, Champaign, IL, USA, 130 pp., https://apps.dtic.mil/sti/citations/AD1016582 (last access: 20 December 2022), 2016.
Wang, Y. V., Gardoni, P., Murphy, C., and Guerrier, S.: Predicting fatality
rates due to earthquakes accounting for community vulnerability, Earthq.
Spectra, 35, 513–536, https://doi.org/10.1193/022618EQS046M, 2019.
Wang, Y. V., Gardoni, P., Murphy, C., and Guerrier, S.: Worldwide
predictions of earthquake casualty rates with seismic intensity measure and
socioeconomic data: A fragility-based formulation, Nat. Hazards Rev., 21,
04020001, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000356, 2020.
Wang, Y. V., Gardoni, P., Murphy, C., and Guerrier, S.: Empirical predictive
modelling approach to quantifying social vulnerability to natural hazards,
Ann. Am. Assoc. Geogr., 111, 1559–1583, https://doi.org/10.1080/24694452.2020.1823807, 2021.
Wisner, B., Blaikie, P., Cannon, T., and Davis, I.: At Risk: Natural
Hazards, People's Vulnerability and Disasters, 2nd edn., Routledge, London,
UK, https://doi.org/10.4324/9780203714775, 2004.
Wood, H. O. and Neumann, F.: Modified Mercalli intensity scale of 1931, B.
Seismol. Soc. Am., 21, 277–283, https://doi.org/10.1785/BSSA0210040277, 1931.
Short summary
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and compare the strengths of natural hazard events across different hazard types, including earthquakes, tsunamis, floods, droughts, forest fires, tornadoes, cold waves, heat waves, and tropical cyclones. With our method, we determine that both the February 2021 North American cold wave event and Hurricane Harvey in 2017 were equivalent to a magnitude 7.5 earthquake in hazard strength.
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and...
Altmetrics
Final-revised paper
Preprint