Articles | Volume 22, issue 12
https://doi.org/10.5194/nhess-22-4103-2022
https://doi.org/10.5194/nhess-22-4103-2022
Research article
 | 
22 Dec 2022
Research article |  | 22 Dec 2022

Equivalent hazard magnitude scale

Yi Victor Wang and Antonia Sebastian

Related authors

Covariance-informed spatiotemporal clustering improves the detection of hazardous weather events
Hunter C. Quintal, Antonia Sebastian, Marc L. Serre, Wiebke S. Jäger, and Marleen C. de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2870,https://doi.org/10.5194/egusphere-2025-2870, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Flood risks to the financial stability of residential mortgage borrowers: An integrated modeling approach
Kieran P. Fitzmaurice, Helena M. Garcia, Antonia Sebastian, Hope Thomson, Harrison B. Zeff, and Gregory W. Characklis
EGUsphere, https://doi.org/10.5194/egusphere-2025-2049,https://doi.org/10.5194/egusphere-2025-2049, 2025
Short summary
Review article: Stocktaking of methods for assessing dynamic vulnerability in the context of flood hazard research
Julius Schlumberger, Tristian Stolte, Helena Margaret Garcia, Antonia Sebastian, Wiebke Jäger, Philip Ward, Marleen de Ruiter, Robert Šakić Trogrlić, Annegien Tijssen, and Mariana Madruga de Brito
EGUsphere, https://doi.org/10.5194/egusphere-2025-850,https://doi.org/10.5194/egusphere-2025-850, 2025
Short summary
Quantification of continuous flood hazard using random forest classification and flood insurance claims at large spatial scales: a pilot study in southeast Texas
William Mobley, Antonia Sebastian, Russell Blessing, Wesley E. Highfield, Laura Stearns, and Samuel D. Brody
Nat. Hazards Earth Syst. Sci., 21, 807–822, https://doi.org/10.5194/nhess-21-807-2021,https://doi.org/10.5194/nhess-21-807-2021, 2021
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Simulation of cold-powder snow avalanches considering daily snowpack and weather situations
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025,https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Supershear crack propagation in snow slab avalanche release: new insights from numerical simulations and field measurements
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025,https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
The effect of slab touchdown on anticrack arrest in propagation saw tests
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci., 25, 1975–1991, https://doi.org/10.5194/nhess-25-1975-2025,https://doi.org/10.5194/nhess-25-1975-2025, 2025
Short summary
Proglacial lake development and outburst flood hazard at Fjallsjökull glacier, southeast Iceland
Greta H. Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
Nat. Hazards Earth Syst. Sci., 25, 1913–1936, https://doi.org/10.5194/nhess-25-1913-2025,https://doi.org/10.5194/nhess-25-1913-2025, 2025
Short summary
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary

Cited articles

Adger, W. N.: Vulnerability, Global Environ. Chang., 16, 268–281, https://doi.org/10.1016/j.gloenvcha.2006.02.006, 2006. 
Alexander, D. E.: Impact, definition of, in: Encyclopedia of Crisis Management, edited by: Penuel, K. B., Statler, M., and Hagen, R., SAGE Publication, Thousands Oaks, CA, 488–490, https://doi.org/10.4135/9781452275956.n167, 2013. 
Alexander, D. E.: A magnitude scale for cascading disasters, Int. J. Disast. Risk Re., 30, 180–185, https://doi.org/10.1016/j.ijdrr.2018.03.006, 2018. 
Bell, G. D. Halpert, M. S., Schnell, R. C., Higgins, R. W., Lawrimore, J., Kousky, V. E., Tinker, R., Thiaw, W., Chelliah, M., and Artusa, A.: Climate assessment for 1999, B. Am. Meteorol. Soc., 81, S1–S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2, 2000. 
Bensi, M., Mohammadi, S., Kao, S.-C., and DeNeale, S. T.: Multi-Mechanism Flood Hazard Assessment: Critical Review of Current Practice and Approaches, Oak Ridge National Laboratory, Oak Ridge, TN, https://doi.org/10.2172/1649363, 2020. 
Download
Short summary
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and compare the strengths of natural hazard events across different hazard types, including earthquakes, tsunamis, floods, droughts, forest fires, tornadoes, cold waves, heat waves, and tropical cyclones. With our method, we determine that both the February 2021 North American cold wave event and Hurricane Harvey in 2017 were equivalent to a magnitude 7.5 earthquake in hazard strength.
Share
Altmetrics
Final-revised paper
Preprint