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Abstract. Hazard magnitude scales are widely adopted to fa-
cilitate communication regarding hazard events and the cor-
responding decision making for emergency management. A
hazard magnitude scale measures the strength of a hazard
event considering the natural forcing phenomena and the
severity of the event with respect to average entities at risk.
However, existing hazard magnitude scales cannot be eas-
ily adapted for comparative analysis across different haz-
ard types. Here, we propose an equivalent hazard magnitude
scale to measure the hazard strength of an event across multi-
ple types of hazards. We name the scale the Gardoni Scale af-
ter Professor Paolo Gardoni. We design the equivalent hazard
magnitude on the Gardoni Scale as a linear transformation of
the expectation of a measure of adverse impact of a hazard
event given average exposed value and vulnerability. With
records of 12 hazard types from 1900 to 2020, we demon-
strate that the equivalent magnitude can be empirically de-
rived with historical data on hazard magnitude indicators and
records of event impacts. In this study, we model the impact
metric as a function of fatalities, total affected population,
and total economic damage. We show that hazard magnitudes
of events can be evaluated and compared across hazard types.
We find that tsunami and drought events tend to have large
hazard magnitudes, while tornadoes are relatively small in
terms of hazard magnitude. In addition, we demonstrate that
the scale can be used to determine hazard equivalency of in-
dividual historical events. For example, we compute that the
hazard magnitude of the February 2021 North American cold
wave event affecting the southern states of the United States
of America was equivalent to the hazard magnitude of Hur-
ricane Harvey in 2017 or a magnitude 7.5 earthquake. Future
work will expand the current study in hazard equivalency to

modelling of local intensities of hazard events and hazard
conditions within a multi-hazard context.

1 Introduction

Natural hazards pose significant challenges to human soci-
eties around the world. Between 2000 and 2020, natural haz-
ard events caused over USD 130 billion in losses and 64 695
fatalities, and they affected more than 196 million people
on average each year (Guha-Sapir et al., 2021). Hazardous
events, such as earthquakes, floods, and forest fires, can in-
flict heavy losses on communities when people and property
are exposed to the natural forces of these events. The im-
pacts of events, whatever their type, can be quantified di-
rectly (e.g. by financial loss; Hillier et al., 2015) or esti-
mated on a scale. To estimate the impacts of an event with
the consideration of its hazard strength, various impact scales
have been proposed, including the Bradford disaster scale
(Keller et al., 1992, 1997), unified localizable crisis scale
(Rohn and Blackmore, 2009, 2015), disaster impact index
(Gardoni and Murphy, 2010), and cascading disaster magni-
tude (Alexander, 2018). However, a hazard strength scale is
not the same as a hazard impact scale, as impacts are also
driven by the exposure and vulnerability of entities, such as
individuals, communities, and infrastructures, to an event.
This makes it difficult to use impact scales to compare haz-
ard strengths across natural hazard types. For example, the
2011 Christchurch earthquake was one of the most destruc-
tive earthquakes in New Zealand, albeit with a medium haz-
ard strength of 6.2 in terms of its moment magnitude (Kaiser
et al., 2012). Meanwhile, the 1964 Alaskan earthquake, with
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a larger moment magnitude of 9.2, resulted in fewer casual-
ties and less economic damage than the Christchurch earth-
quake (USGS, 2021).

Hazard scientists have long called for separation of natural
forcing phenomena (Bensi et al., 2020) from the study of dis-
asters to better understand the causes of impacts rooted in the
social and economic fabric of entities exposed to natural haz-
ards (e.g. O’Keefe et al., 1976; Wisner et al., 2004). In this
regard, quantifying hazard strength helps separate the natu-
ral force from other social, environmental, and engineering
or built environmental factors that may drive impacts. Yet,
despite the large volume of research that focuses on hazard
strength for singular natural hazard types such as earthquake
(e.g. Wood and Neumann, 1931; Richter, 1935; Kanamori,
1977; Katsumata, 1996; Grünthal, 1998; Wald et al., 2006;
Rautian et al., 2007; Serva et al., 2016), tropical cyclone (e.g.
Simpson and Saffir, 1974; Bell et al., 2000; Emanuel, 2005;
Powell and Reinhold, 2007; Hebert et al., 2008), tornado
(e.g. Fujita, 1971, 1981; Meaden et al., 2007; Potter, 2007;
Dotzek, 2009), and drought (e.g. Palmer, 1965, 1968; Shafer
and Dezman, 1982; McKee et al., 1993; Byun and Wilhite,
1999; Shukla and Wood, 2008; Hunt et al., 2009), few have
quantified or modelled hazard strengths across multiple haz-
ard types.

To quantify hazard strengths for cross-hazard comparison,
impacts can be used to explore similarities between multiple
hazards (e.g. Hillier et al., 2015; Hillier and Dixon, 2020). As
an example, insurance professionals often leverage loss met-
rics to understand the relative significance of various haz-
ards (see, e.g. Mitchell-Wallace et al., 2017). Such cross-
hazard practices of risk aggregation and accumulation are in-
tentionally focused on the exposed values and observed im-
pacts, rather than hazard strengths. In contrast, risk quantifi-
cation for nuclear facilities requires consideration of hazard
strengths across multiple hazard types to facilitate probabilis-
tic safety assessment within a multi-hazard context (see, e.g.
Choi et al., 2021). Indices regarding hazard strengths have
also been created and adopted for extreme meteorological
events across multiple hazard types (see, e.g. Malherbe et
al., 2020). When quantifying hazard strengths within a multi-
hazard context, a calibration of hazard strength to the expec-
tation of impact may be used to create impact-based proxies
for hazard strengths, linking two extremes and allowing them
to be studied in a way that is relevant to risk assessment and
yet decoupled from the detail of exposed values and vulner-
ability (Hillier et al., 2020). Nevertheless, there is not yet a
general metric that facilitates the comparison of events of dif-
ferent hazard types in terms of potential to cause damage in
a way that is as decoupled as possible from exposed values
and vulnerability.

To enable evaluation of event-wise hazard strengths across
different hazard types, in this article, we propose a multi-
hazard equivalent hazard magnitude scale – the Gardoni
Scale – for natural hazards. The proposed scale is named
in honour of the Alfredo H. Ang Family Professor Paolo

Gardoni at the University of Illinois at Urbana–Champaign.
Because hazard strength is correlated with hazard impacts
given average exposed value and vulnerability of considered
entities, the expectation of a metric of observed impacts of
hazard events can be used to calibrate models for deriving
equivalent hazard magnitudes (Hillier et al., 2015; Hillier
and Dixon, 2020; Wang and Sebastian, 2022). In this article,
a quantitative modelling methodology based on a principal
component analysis (PCA) and a set of linear regressions is
developed to construct the impact metric and derive equiv-
alent hazard magnitudes on the Gardoni Scale. The impact
metric is a function of three impact variables, i.e. fatality, to-
tal affected population, and total damage in 2019 USD. We
use historical event data from the EM-DAT international dis-
aster database (Guha-Sapir et al., 2021) from 1900 to 2020 to
calibrate the quantitative models. To demonstrate the value
of the proposed scale, we apply it to discuss the equivalent
magnitudes of historical and recent hazard events.

The subsequent sections are organized as follows. First,
we provide a brief theoretical background for this study. We
then introduce our methodology, including data processing,
to derive the equivalent hazard magnitude on the Gardoni
Scale. Next, we describe the results of applying our method-
ology and compare natural hazard types regarding the de-
rived equivalent hazard magnitudes. Finally, we discuss the
potential contributions and limitations of the proposed scale
before concluding the article.

2 A problem of scales

In natural hazards research, theoretical frameworks are often
based on basic concepts, such as hazard, impact, exposure,
vulnerability, recovery, and resilience, that have overlapping
or discipline-specific definitions (see, e.g. Klijn et al., 2015).
These inconsistencies across disciplines often result in con-
fusion in quantitative modelling. Herein, the impacts of an
event are the result of strength of the hazard agent, value of
entities exposed to the event, and vulnerability of the exposed
entities to hazard impacts (Nigg and Mileti, 1997; Coburn
and Spence, 2002; Wisner et al., 2004; Dilley et al., 2005;
McEntire, 2005; Adger, 2006; Peduzzi et al., 2009; Burton,
2010; Lindell, 2013; Birkmann et al., 2014; Highfield et al.,
2014; van de Lindt et al., 2020; Wang et al., 2020; Wang and
Sebastian, 2021). As shown in Fig. 1, hazard strength of an
event is one of the main drivers, albeit not the sole driver, of
impacts.

Hazard strength is often referred to as the hazard mag-
nitude or hazard intensity (Blong, 2003; Alexander, 2018).
However, these two concepts are not equivalent. Hazard
magnitude is a measure of the size of, or the total energy
involved in, the entirety of a hazard event (Blong, 2003;
Alexander, 2018), whereas hazard intensity is often a mea-
sure of the strength of an event with respect to a given lo-
cation or area and/or a moment or period. Recently, Wang
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Figure 1. Hazard event impacts as a result of hazard strength, ex-
posed value, and vulnerability of exposed entities.

and Sebastian (2022) identified two defining dimensions,
i.e. the spatial and temporal dimensions, to categorize ex-
isting hazard strength scales. These scales can be classified
as agential or locational along the spatial dimension and du-
rational or momental along the temporal dimension. A haz-
ard strength scale is categorized as agential if it indicates
the size of an event within its entire spatial range and lo-
cational if it is given for a set of locations within the spa-
tial range of an event. Likewise, a hazard strength scale is
categorized as durational when it corresponds to the entire
duration of an event and momental when it corresponds to
a set of moments within the duration of an event. Consider-
ing both the spatial and temporal dimensions, hazard strength
scales can therefore be categorized into four types, i.e. the
agential–durational scale, the locational–durational scale,
the agential–momental scale, and the locational–momental
scale. In this study, we use term “hazard magnitude” to refer
to an agential–durational hazard strength of an event.

3 Methodology

To quantify hazard strength in terms of equivalent haz-
ard magnitude, we considered 12 hazard types: cold wave,
convective storm, drought, earthquake, extra-tropical storm,
flash flood, forest fire, heat wave, riverine flood, tornado,
tropical cyclone, and tsunami. A general standardized met-
ric of impact was created by combining three loss measures
from the EM-DAT database (Guha-Sapir et al., 2021): fatal-
ity, total affected population, and total damage. The impact
metric was then related to an indicator of hazard strength,
such as the Richter magnitude, for each hazard type via linear
regression. The expectation of impact metric for each hazard
type was linearly scaled and adopted as the equivalent haz-
ard magnitude. Here, two assumptions were made. First, we
assumed that the EM-DAT records were not significantly bi-
ased across similar hazard events. Second, we assumed that
the derivation of expectation of impact metric cancelled out
all local factors of exposed value and vulnerability. The fol-
lowing sections outline the method in detail.

3.1 Data collection

To reduce the biases in model calibration due to different
protocols for data collection across different types of natu-
ral hazards, we only used data gathered from the EM-DAT

database (Guha-Sapir et al., 2021). To be included in the EM-
DAT database, a hazard event must meet at least one of three
criteria, i.e. 10 or more human fatalities, 100 or more people
affected by the event, or a declaration of a state of emergency
or an appeal for international assistance by a country (Guha-
Sapir et al., 2021). For this study, we downloaded the entire
EM-DAT datasets on all types of natural hazards. However,
since some records of hazard magnitude indicators of events
for some hazard types (e.g. the volcanic activities and land-
slides) were missing, we only included 12 hazard types. The
final dataset for deriving the equivalent hazard magnitudes
contained a total of 3844 data points, each representing one
unique hazard event.

The 12 considered hazard types include convective storm,
extra-tropical storm, tornado, tropical cyclone (wind speed
is used as hazard magnitude indicator), cold wave, heat
wave (temperature), drought, flash flood, forest fire, river-
ine flood (affected area), earthquake, and tsunami (Richter
magnitude). For data quality control, we removed data points
with questionable values of hazard magnitude indicators.
For cold wave events, we only included data points with a
minimum temperature of ≤ 0 ◦C. For convective storms, we
only considered data points with a peak gust wind speed of
≥ 60 km h−1. For forest fires, we only included data points
with a burnt area of ≤ 200 000 km2. For heat wave events,
we only considered data points with a maximum tempera-
ture of ≥ 35 and ≤ 57 ◦C. For tornadoes, we only included
data points with a peak gust wind speed of ≥ 100 km h−1.
For tsunamis, we only considered data points with an earth-
quake Richter magnitude ≥ 100 km h−1.

To facilitate regression modelling, we logarithmically
transformed values of hazard magnitude indicators to be
close to a Gaussian distribution within the theoretical range
(−∞,∞) for eight of the hazard types. Such logarithmic
transformations were conducted to keep the shape of distri-
bution of data points consistent with their corresponding lin-
ear regression models. The indicators that were not logarith-
mically transformed included minimum temperature of cold
waves, maximum temperature of heat waves, Richter mag-
nitude of earthquakes, and earthquake Richter magnitude of
tsunamis. Cold wave and heat wave events were excluded
from logarithmic transformations because the distributions of
data points of these events did not present non-linear patterns
and the Celsius temperature has a range [273.15,∞) similar
to (−∞,∞). Meanwhile, the earthquake Richter magnitude
is already a logarithmic metric with the desired theoretical
range of (−∞,∞).

3.2 Impact metric

We designed the impact metric as the principal component
(Jolliffe, 2002; Jolliffe and Cadima, 2016) of three logarith-
mically transformed and standardized impact variables. The
selected impact variables represented three major impact di-
mensions as defined by the EM-DAT database (Guha-Sapir
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et al., 2021). The first variable, fatality, indicated the number
of people who perished as the result of a hazard event. The
second variable, total affected population, referred to the to-
tal number of individuals injured, made homeless, or affected
by the event. The third variable, total damage, indicated the
total amount of damage to property, crops, and livestock in
2019 USD caused by the event. The values of the impact vari-
ables were logarithmically transformed to be within the range
(−∞,∞) and standardized with the formula

IV=
ln(IVO)−µln IV

σln IV
, (1)

where IV denoted the logarithmically transformed and stan-
dardized impact variable, IVO was the original impact vari-
able, and µln IV and σln IV were respectively the mean and
standard deviation of the logarithmically transformed impact
variable (see Table 1). The principal component of the three
logarithmically transformed and standardized impact vari-
ables corresponded to the dimension along which the vari-
ation of data points was preserved to the largest extent in
the three-dimensional vector space. The principal component
also showed the direction of the eigenvector associated with
the largest eigenvalue with respect to the covariance matrix
of the three transformed impact variables. Each data point
represented the impact of one hazard event experienced by
one country (see Video S1 in the Supplement).

To reduce the bias associated with factors of exposed
value and vulnerability (Fig. 1), we included all available
data points at the country–year level for countries around the
world and hazard events from 1900 to 2020. To compute the
impact metric, we only kept data points (n= 1470) without
any missing values. A PCA was then conducted to determine
the weights of transformed and standardized impact variables
within the impact metric. The resulting formula for the im-
pact metric was

IM= 0.6158 IVF+ 0.6215 IVTA+ 0.4843 IVTD, (2)

where IM denoted the impact metric and IVF, IVTA, and
IVTD referred to the transformed and standardized impact
variables of fatality, total affected population, and total dam-
age respectively.

3.3 Equivalent magnitude

For each considered hazard type, we established the relation-
ship between its hazard magnitude indicator and hazard im-
pact metric via linear regression

IM= a3+ b3MI+ σ3ε, (3)

where a3 and b3 were two model coefficients, MI denoted
hazard magnitude indicator, σ3 was the dispersion parameter,
and ε was a standard normal random variable. The statistics
of parameters of these regression models are listed in Table 2.
Parameters of all linear regression models involved in this

study were determined with a maximum likelihood approach
based on Raphson’s algorithm (Raphson, 1697; Wang et al.,
2019; Wang, 2020). For each regression model, the standard
errors of parameter estimates were derived from the main di-
agonal of the covariance matrix of model parameters com-
puted as the negative inverse of the observed Fisher informa-
tion matrix. To present equivalent hazard magnitude roughly
within the range of [0, 10], we applied a linear transforma-
tion to the point estimate of impact metric

EM= Ê (IM)× 2+ 5, (4)

where EM referred to the equivalent hazard magnitude and
Ê(·) denoted the point estimate of expectation. The derived
equivalent hazard magnitudes for all data points are recorded
in Data S6 in the Supplement.

4 Results

4.1 Model calibration

Visualization of the distribution of data points with respect to
the impact variables and impact metric (Fig. 2a, d, h, and m)
shows that the empirical marginal distributions of the log-
arithmically transformed and standardized impact variables
and the impact metric appear to be approximately Gaussian.
The standardized natural logarithms of impact variables are
positively correlated with each other (Fig. 2c, f, and g; also
see Appendix A). Results of the linear regression modelling
with two independent variables (see Appendix A) indicate
that each of the standardized natural logarithms of impact
variables is positively associated with the other two logarith-
mically transformed and standardized impact variables with
a positive R2 (Fig. 2b, e, and i). These results provide jus-
tifications for leveraging data on some impact variables to
interpolate missing values of other impact variables (see Ap-
pendix A). Meanwhile, Fig. 2j–l shows that there are positive
correlations between the impact metric and each of the stan-
dardized natural logarithms of impact variables with a large
R2. This result suggests the appropriateness of using as the
impact metric the principal component of the three logarith-
mically transformed and standardized impact variables.

Figure 3 demonstrates that the proposed methodology for
deriving an equivalent hazard magnitude of an event is ef-
fective in decoupling the natural force, manifested in haz-
ard strength, from other factors of impacts of natural hazard
events to support studies on exposed value and vulnerabil-
ity. The results of the calibration of linear regression mod-
els for 12 individual hazards (Fig. 3 and Table 2) show that
the direction of the coefficient of hazard magnitude indicator
in each model is consistent with expectation. In particular,
the estimates of coefficients of hazard magnitude indicators
for convective storm (Fig. 3b), drought (Fig. 3c), earthquake
(Fig. 3d), flash flood (Fig. 3f), forest fire (Fig. 3g), river-
ine flood (Fig. 3i), tropical cyclone (Fig. 3k), and tsunami
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Table 1. Means and standard deviations of original and logarithmically transformed impact variablesa.

Variable Unit Original Original Logarithmically Logarithmically
mean standard transformed transformed

deviation mean standard deviation

Fatality People 1.31× 103 1.18× 104 3.3892 2.1999
Total affected population People 1.38× 106 9.47× 106 10.4116 3.1618
Total damage 2019 USD 1000 1.36× 106 8.45× 106 11.1889 2.6304

a This table corresponds to Data S1 in the Supplement.

Table 2. Statistics of parameters of 12 simple linear regression models for deriving equivalent hazard magnitudesa.

Model Hazard a3 b3 σ3
number

M1 Cold wave −0.2404 (0.2171) −0.0111 (0.0080) 0.8595 (0.0726)∗∗∗

M2 Convective storm −7.5637 (2.1192)∗ 1.3755 (0.4309)∗ 0.7812 (0.0977)∗∗∗

M3 Drought −0.8833 (0.4691) 0.2206 (0.0524)∗∗ 1.0162 (0.1083)∗∗∗

M4 Earthquake −3.3328 (0.2308)∗∗∗ 0.4484 (0.0361)∗∗∗ 1.2464 (0.0246)∗∗∗

M5 Extra-tropical storm −12.2505 (6.6008) 2.2827 (1.2965) 1.3672 (0.1973)∗∗∗

M6 Flash flood −1.0275 (0.2244)∗∗∗ 0.0701 (0.0238)∗ 0.9417 (0.0392)∗∗∗

M7 Forest fire −1.6116 (0.2221)∗∗∗ 0.1131 (0.0355)∗ 0.8147 (0.0568)∗∗∗

M8 Heat wave −0.9524 (1.3678) 0.0243 (0.0310) 1.3297 (0.1002)∗∗∗

M9 Riverine flood −1.5284 (0.1349)∗∗∗ 0.1226 (0.0133)∗∗∗ 1.0140 (0.0209)∗∗∗

M10 Tornado −1.7272 (1.5488) 0.1683 (0.2920) 0.8511 (0.0784)∗∗∗

M11 Tropical cyclone −4.2569 (0.6510)∗∗∗ 0.8016 (0.1273)∗∗∗ 1.1719 (0.0326)∗∗∗

M12 Tsunami −7.0781 (2.0108)∗ 0.9681 (0.2528)∗∗ 1.2054 (0.1484)∗∗∗

a This table corresponds to Data S4 in the Supplement; R2 measures are included in Fig. 3; standard errors are in the parentheses.
∗ p < 10−2; ∗∗ p < 10−3; ∗∗∗ p < 10−5.

(Fig. 3l) are all statistically significant at p < 10−2 (Table 2).
Because the objective of this study is not to model or pre-
dict hazard impacts of an event, but rather to quantify the
agential–durational hazard strength of the event, it is also ex-
pected that the results of the regression models for individual
hazards will show a wide spread of data points with respect
to hazard magnitude indicator with a small R2. In fact, the
variation or spread of the data points with respect to haz-
ard magnitude indicators in Fig. 3 serves to underscore the
importance of studying exposed value and vulnerability for
disaster risk reduction since these factors also drive hazard
impacts (as discussed in Fig. 1).

4.2 Comparisons of hazard magnitudes

Using the proposed methodology, we can plot all the data
points onto one figure (Fig. 4), allowing us to compare equiv-
alent hazard magnitudes of events across different hazard
types on the Gardoni Scale. Each data point on Fig. 4 corre-
sponds to a record of hazard event and all plotted data points
are associated with impacts above the threshold defined by
the EM-DAT database (Guha-Sapir et al., 2021).

Within the datasets for this study, all 37 events with the
largest equivalent hazard magnitudes are either a tsunami
or a drought. Their equivalent hazard magnitudes range
[6.50, 10.21]. The event with the largest equivalent magni-
tude is the 1960 Chilean tsunami that killed 6000 and af-
fected over 2 million people in Chile as well as resulted in 61
fatalities in Hawaii, USA. The notorious 2004 Indian Ocean
tsunami that affected more than 2 million people ranks 10th
among all events, with its equivalent magnitude at 8.27. The
drought event with the largest equivalent hazard magnitude
(9.07) is the 2002 Indian monsoon drought that affected a to-
tal of about 300 million people. The largest earthquake events
are recorded with an equivalent hazard magnitude at 6.41.
One of these events is the 1920 Haiyuan earthquake in main-
land China that resulted in at least 180 000 fatalities. Among
the considered 12 hazard types, the natural hazard with the
lowest maximum equivalent magnitude is the tornado. The
tornado event with the largest equivalent hazard magnitude
(3.62) is the 2013 El Reno tornado in Oklahoma, USA. This
tornado event led to a total damage of over 2019 USD 2 bil-
lion (Guha-Sapir et al., 2021).
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Figure 2. Impact variables and impact metric. (a) Histogram of impact variable fatality. (b) Fatality regressed on total affected population
and total damage in 2019 USD with a multiple linear regression. (c) Total affected population regressed on fatality with a simple linear
regression. (d) Histogram of impact variable total affected population. (e) Total affected population regressed on fatality and total damage in
2019 USD with a multiple linear regression. (f) Total damage in 2019 USD regressed on fatality with a simple linear regression. (g) Total
damage in 2019 USD regressed on total affected population with a simple linear regression. (h) Histogram of impact variable total damage
in 2019 USD. (i) Total damage in 2019 USD regressed on fatality and total affected population with a multiple linear regression. (j) Impact
metric regressed on fatality with a simple linear regression. (k) Impact metric regressed on total affected population with a simple linear
regression. (l) Impact metric regressed on total damage in 2019 USD with a simple linear regression. (m) Histogram of impact metric.

4.2.1 Earthquake, tornado, forest fire, and tropical
cyclone

Figure 5 compares hazard magnitudes of events of four haz-
ard types, i.e. earthquake, tornado, forest fire, and tropical
cyclone, with ranges of hazard magnitudes adjusted accord-
ing to the earthquake Richter magnitude scale. The figure
shows that tornadoes tend to have a smaller hazard magni-
tude than large earthquakes and tropical cyclones. Most of
the recorded tornadoes have a hazard magnitude equivalent
to an earthquake Richter magnitude between 5 and 6. Com-
pared with tropical cyclones in terms of peak sustained wind

speed on the Saffir–Simpson hurricane wind scale, these tor-
nadoes are similar in hazard magnitude to a tropical storm
but not a hurricane. This indicates that hazard strength of an
entire tornado event may be much smaller than the one for a
large earthquake or tropical cyclone, even though tornadoes
can still cause significant damage locally as in the case of
the 2013 El Reno tornado. Meanwhile, the wide spread of
data points of tornadoes with respect to hazard magnitude
on Fig. 5a suggests that exposed value and vulnerability of
exposed entities may be much stronger predictors of hazard
impacts than hazard magnitude for tornado events.
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Figure 3. Simple linear regressions on impact metric against magnitude indicators. Impact metric is regressed on (a) minimum temperature
of cold wave, (b) peak gust wind speed of convective storm, (c) total affected area of drought, (d) Richter magnitude of earthquake, (e) peak
gust wind speed of extra-tropical storm, (f) total flooded area of flash flood, (g) total burnt area of forest fire, (h) maximum temperature
of heat wave, (i) total flooded area of riverine flood, (j) peak gust wind speed of tornado, (k) maximum sustained wind speed of tropical
cyclone, and (l) earthquake Richter magnitude of tsunami. Solid lines are regression lines. Shaded areas are the 95 % confidence intervals of
the corresponding regression lines.

Compared to earthquakes, tropical cyclones that reach a
hurricane level on the Saffir–Simpson scale are equivalent in
hazard magnitude to an earthquake with a Richter magnitude
greater than 6.5. A magnitude 8 earthquake on the Richter
scale has a similar size in hazard magnitude as a tropical cy-
clone labelled with a peak category 5 on the Saffir–Simpson
scale. Within the datasets for this study, Typhoon Meranti is
the tropical cyclone with the largest equivalent hazard mag-
nitude at 5.66. Although the typhoon was strong and affected
the Philippines, Taiwan, mainland China, and South Korea
in September 2016, it only resulted in a total economic loss
of around 2019 USD 70 million, according to the EM-DAT
database (Guha-Sapir et al., 2021).

In addition to earthquake and tropical cyclone, forest fire
is another hazard type with a statistically significant estimate
of coefficient of hazard magnitude indicator (Table 2). How-
ever, forest fires tend to have smaller equivalent magnitudes
than large earthquakes and tropical cyclones (Fig. 4b). The
two largest forest fires within the datasets had an equiva-

lent hazard magnitude of 4.33. They occurred in Russia and
Mongolia in 1996, resulting in 19 and 25 fatalities, respec-
tively (Guha-Sapir et al., 2021). Both forest fires were equiv-
alent to a tropical cyclone with its peak sustained wind speed
reaching category 1 on the Saffir–Simpson scale. They were
also equivalent in hazard magnitude to an earthquake with a
Richter magnitude between 6.5 and 7.

4.2.2 Cold wave and heat wave

With Fig. 6, we can compare the hazard magnitudes of cold
wave and heat wave events. Both hazard types have a nar-
row range of equivalent hazard magnitude of events, with
[4.54, 5.79] for cold wave and [4.79, 5.67] for heat wave
(also see Data S5 in the Supplement). This is also consis-
tent with the statistically insignificant estimates of their cor-
responding coefficients of hazard magnitude indicators (Ta-
ble 2). Despite the narrow ranges of equivalent hazard magni-
tude, the range of minimum temperature of cold wave events
from 0 to−55 ◦C is approximately equivalent to the range of
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Figure 4. Impact metric versus equivalent hazard magnitude on the
Gardoni Scale. The expectation line shows values of the expected
impact metric with respect to equivalent hazard magnitude.

maximum temperature of heat wave events from 30 to 55 ◦C
(Fig. 6). The strongest cold wave event recorded in the EM-
DAT database occurred in Russia in 2001, with its minimum
temperature at −57 ◦C. This cold wave event killed 145 peo-
ple, affected 6120 more, and led to an economic loss of 2019
USD 100 000. On the other hand, the heat wave event with
the largest hazard magnitude had a maximum temperature at
53 ◦C. It struck Pakistan in June 1991, resulting in 523 hu-
man fatalities (Guha-Sapir et al., 2021).

4.2.3 Riverine flood and drought

Comparison of hazard magnitudes can also be conducted
between riverine flood and drought events (Fig. 7). Among
hazard events included in the datasets for this study,
drought has a large range of equivalent hazard magnitude of
[3.23, 9.07], while riverine flood has a relatively small range
of [2.11, 5.59]. A riverine flood event with a flooded area of
100 km2 is equivalent in hazard magnitude to a drought event
with an affected area of about 1 km2. Meanwhile, a drought
event with an affected area of 100 km2 has the similar hazard
magnitude as a riverine flood with a flooded area of 1 mil-
lion km2. Here, because the magnitude indicators of riverine
flood and drought are defined by the EM-DAT database with-
out strong justifications (Guha-Sapir et al., 2021), the mean-
ings and modelling of the presented magnitude indicators of
these two hazard types may deserve further investigation.
Nevertheless, large drought events seem to be much larger
in hazard magnitude than large riverine floods, even though

some riverine floods may lead to more severe impacts. For
example, the riverine flood event in mainland China in 1998
had an equivalent hazard magnitude of 4.99. But the event
resulted in over 3600 fatalities, more than 238 million af-
fected population, and an economic loss of 2019 USD 30 bil-
lion (Guha-Sapir et al., 2021).

4.3 Sensitivity analysis

In this study, the impact metric was constructed as the prin-
cipal component of three transformed impact variables. The
sum of squares of weights of transformed impact variables
within the impact metric equalled one. We conducted a vi-
sual sensitivity analysis to examine if altering the weights of
transformed impact variables within the impact metric had
any significant effect on the relative comparison of hazard
magnitudes across hazard types. For this sensitivity analy-
sis, we first kept the sum of squares of all weights of trans-
formed impact variables equal to one. Second, we maintained
an equal ratio of squares of weights between two transformed
impact variables. Third, we changed the weight of the third
transformed impact variable and adjusted the weights of the
other two transformed impact variables according to the first
two rules.

Figure 8 shows the result of a sensitivity analysis with data
points of tsunami and flash flood as a demonstrative example.
Data points are plotted based on their equivalent hazard mag-
nitudes with a fixed scale of the hazard magnitude indicator
of tsunami. When the weight of each of the transformed im-
pact variables of fatality (Fig. 8a–d), total affected population
(Fig. 8e–h), and total economic damage (Fig. 8i–l) is shifted
from zero to one, there are identifiable increasing or decreas-
ing trends of alterations of the distributions of data points
as well as the deviations between clusters of data points of
the two different hazard types. However, when weights of
transformed impact variables are far away from the extreme
value of zero or one, there is no significant change regard-
ing the distribution of data points with respect to equivalent
hazard magnitude (see Fig. 6b, c, f, g, j, and k). This result
indicates desirable performance of the proposed methodol-
ogy for deriving equivalent hazard magnitude of an event on
the Gardoni Scale.

5 Discussion

5.1 Contributions

To our knowledge, this study represents the first attempt to
produce an equivalent hazard magnitude scale, i.e. the Gar-
doni Scale, to quantify agential–durational hazard strengths
for hazard events across multiple hazard types. The proposed
scale has several merits. First, professionals in natural haz-
ard and emergency management could use equivalent hazard
magnitudes on the Gardoni Scale to facilitate hazard com-
munication among various stakeholders. Similarly, journal-
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Figure 5. Comparisons of hazard magnitudes of four hazard types. (a) Earthquake Richter magnitude versus tornado enhanced Fujita scale.
EF0, EF1, EF2, EF3, EF4, and EF5 are enhanced Fujita scale 0, 1, 2, 3, 4, and 5 with gust wind speed at 104–137, 138–177, 178–217,
218–266, 267–322, and over 322 km h−1, respectively. (b) Forest fire burnt area versus tropical cyclone Saffir–Simpson wind scale. TD and
TS are tropical depression and tropical storm with sustained wind speed below 63 km h−1 and at 63–118 km h−1, respectively; SSC1, SSC2,
SSC3, SSC4, and SSC5 are Saffir–Simpson category 1, 2, 3, 4, and 5 with sustained wind speed at 119–153, 154–177, 178–208, 209–251,
and over 251 km h−1, respectively; TC is tropical cyclone. Panels (a) and (b) are plotted with the same range and scale with respect to the
earthquake Richter magnitude.

ists and news media could adopt the Gardoni Scale for news
reporting on natural disasters to the public. When events of
different hazard types are described as equivalent to each
other in terms of their natural forces, we can use the pro-
posed methodology to compute the equivalent hazard mag-
nitudes of these events on the Gardoni Scale to confirm such
equivalency. For example, if we adopt the minimum temper-
ature of −26 ◦C at Oklahoma City as the hazard magnitude
indicator of the February 2021 cold wave event that severely
affected the southern states of the USA (Doss-Gollin et al.,
2021), we find that the event had an equivalent hazard magni-
tude of 5.10 on the Gardoni Scale. This was equivalent to the
hazard magnitude of Hurricane Harvey (2017), which had a
peak sustained wind speed of 215 km h−1 and a Richter mag-
nitude slightly larger than 7.5. Given such information on
equivalency of hazard magnitudes across historical events,
individuals or decision makers that may have previously ex-
perienced one event may be provided with a better under-
standing of the human, financial, and material resources that
are needed to prepare for a predicted hazard event of similar
magnitude.

Beside its utility for emergency management, computa-
tion of equivalent hazard strengths of events can enhance

hazard profiling and risk analysis within a multi-hazard con-
text. When hazard strengths can be evaluated comparatively
across hazard types, we can model hazard frequency and ex-
posure regarding multiple types of hazards simultaneously
and create multi-hazard hazard maps. With quantified hazard
equivalency, it will also be possible to derive loss ratio curves
with respect to a uniform equivalent hazard strength measure
to indicate the differences in vulnerability and resilience of
individuals, communities, and infrastructures facing hazards
across different hazard types. Such multi-hazard quantifica-
tion of hazard, exposure, vulnerability, and resilience can be
integrated to facilitate risk analysis to predict future losses
and loss ratios without additional efforts to develop sophisti-
cated models for each individual hazard type. Thus, manage-
ment of perceived and engineered risks due to natural hazard
events would be facilitated by the proposed hazard equiva-
lency methodology. To achieve such multi-hazard quantifi-
cations of risks of natural hazard events, more research is
needed not only to improve the proposed Gardoni Scale for
equivalent agential–durational hazard strengths, but also to
explore the modelling of equivalency of other types of haz-
ard strengths, particularly the locational hazard strengths, for
hazard management at the local level.
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Figure 6. Cold wave minimum temperature versus heat wave max-
imum temperature.

Figure 7. Riverine flood area versus drought area.

5.2 Implication, limitations, and future work

As shown in the previous section, data points in this study
can be visualized as centred along the expectation line, al-
beit with a large variation (Fig. 4). This implies that the de-

rived equivalent hazard magnitudes may correspond well to
the expectation of hazard impacts but without precision. Such
a lack of precision is not a limitation. On the contrary, it sug-
gests that impacts of hazard events are not only the result of
hazard strength but also correlated with environmental, soci-
etal, and infrastructural factors that affect the exposed value
and vulnerability of exposed entities within a natural hazard
context (Fig. 1). Because of the effect of these factors other
than hazard strength, however, the mere inclusion of, or the
complete exclusion of, data points with a unique bias toward
one direction of these factors will result in biased derivation
of equivalent hazard strength metric. To reduce such a bias,
in this study we included all available data points of haz-
ard events worldwide and from a long period of 1900–2020.
However, there may still be bias due to spatial or temporal
concentrations of data points regarding certain hazard types,
for example, events that have large hazard magnitudes but
small impacts (due to, e.g. no exposed entities or low vul-
nerability, or under reporting, see, e.g. Paprotny et al., 2018).
Future work should examine how to further reduce this po-
tential bias caused by factors of exposed value and vulnera-
bility of exposed entities.

To demonstrate the implementation of the proposed
methodology for deriving equivalent hazard magnitudes of
events, we only considered one hazard magnitude indicator
for each hazard type. For many hazard types, one indica-
tor cannot represent the true hazard magnitude of an event
which may arise due to multiple forcings. For example, both
wind and precipitation contribute significantly to damages
associated with tropical cyclone events (Mudd et al., 2017).
Selection of hazard magnitude indicators in this study was
also limited by the adopted datasets. As an example, the
earthquake Richter magnitude (Richter, 1935) was the only
recorded hazard magnitude indicator in the datasets of this
study. However, the EM-DAT database reported generically
as “Richter magnitude” estimates for earthquake events, even
though such estimates may include moment magnitude as
well. In addition, regarding tsunami, the mere inclusion of
earthquake magnitude of a tsunami-triggering earthquake as
the magnitude indicator ignores the fact that tsunamis can
also be caused by non-seismic events, such as volcanic is-
land collapses and large coastal landslides. For flood haz-
ards, as another example, there is a lack of established meth-
ods to quantify the agential–durational hazard strength met-
rics. In this study, we used the flooded area as the hazard
magnitude indicator for the flood hazards in accordance with
the procedure used to create the EM-DAT database (Guha-
Sapir et al., 2021). However, the definition of such flooded
area is still vague and deserves more research. An ideal
agential–durational hazard strength metric for a flood event
should integrate multiple flood intensity measures, such as
water depth, flood volume, and flow velocity, over the entire
flooded area and duration of the event to correspond to the
total energy released by the natural force of the event. More
effort, therefore, is needed to study, select, and quantify the

Nat. Hazards Earth Syst. Sci., 22, 4103–4118, 2022 https://doi.org/10.5194/nhess-22-4103-2022



Y. V. Wang and A. Sebastian: Equivalent hazard magnitude scale 4113

Figure 8. Results of visual sensitivity analysis regarding effects of altering weight of one transformed impact variable within impact metric on

equivalent magnitudes of tsunami and flash flood events. Weight of fatality equals zero,
√
w2

F/2,
√(
w2

F+ 1
)
/2, and one in (a), (b), (c), and

(d), respectively, wherewF is the calibrated weight of fatality. Weight of total affected population equals zero,
√
w2

TA/2,
√(
w2

TA+ 1
)
/2, and

one in (e), (f), (g), and (h), respectively, where wTA is the calibrated weight of total affected population. Weight of total damage equals zero,√
w2

TD/2,
√(
w2

TD+ 1
)
/2, and one in (i), (j), (k), and (l), respectively, where wTD is the calibrated weight of total damage. In panels (a)–(l),

sum of squared weights of three transformed impact variables equals one and the ratio of squares of the other two variable weights is kept
constant.

appropriate hazard magnitude indicators for deriving equiv-
alent hazard magnitudes of events on the Gardoni Scale.

In addition to hazard magnitude indicators, the construc-
tion of the impact metric is important for the calibration of
regression models and for the derivation of equivalent haz-
ard magnitudes as it is end-user specific. For example, insur-
ance professionals may be interested in an equivalent hazard

magnitude that is derived from data on financial and prop-
erty loss, whereas environmental scientists may be more in-
terested in an impact metric based on ecological damage.
Herein, we derived a general metric of impact for equiva-
lent hazard magnitude based on key indicators of societal
impact: fatalities, damages, and number of affected individ-
uals. However, hazard events can affect a variety of sectors
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resulting in impacts to physical, social, economic, and envi-
ronmental well-being (Lindell and Prater, 2003; Gardoni and
Murphy, 2010; Alexander, 2013; Wang et al., 2016, 2021).
To advance methodological development for the proposed
Gardoni Scale and quantification of other equivalent hazard
strength metrics for various stakeholders, future work should
scrutinize different indicators as impact variables of events
and seek the optimal models to combine impact variables
to inform the level of impacts of events for different hazard
types.

To support modelling with consideration of hazard magni-
tude indicators and the impact metric, more statistical, ma-
chine learning, and other quantitative models should be pur-
sued to establish the mapping between an equivalent haz-
ard magnitude and the expectation of impacts of hazard
events. When data on hazard events with little or zero impacts
become available for modelling, we may also apply zero-
inflated techniques or other methods to consider the effect
of data points with zero impacts to improve the derivation of
equivalent hazard magnitudes of events within a multi-hazard
context.

Beside these above-mentioned issues, the inclusion and
exclusion of certain data points based on values of variables
may also affect the results of derivation of equivalency of
hazard magnitude. First, in this study, a set of thresholds
were adopted to filter out records of events with extremely
small and large measures of magnitude indicators. However,
some events with magnitude indicator measures barely in-
side the thresholds, such as the magnitude 3 earthquake in
southern Russia in 1999, were still included in the data for
modelling. On the other hand, because the EM-DAT database
only included events with loss records beyond a set of crite-
ria, numerous events with lesser impacts were not recorded
for model calibration in the study. Such exclusion of events
with lesser impacts caused the empirical marginal distribu-
tions of the logarithmically transformed and standardized im-
pact variables and the impact metric to appear to be approxi-
mately Gaussian. Future work should explore to what extent
the computation of equivalent hazard magnitude is sensitive
to the inclusion and exclusion of data points of events of an
either small or large size in terms of both the magnitude in-
dicators and adverse impacts.

6 Conclusion

In this article, we proposed an equivalent hazard magnitude
scale, called the Gardoni Scale, to measure the strength of
natural force involved in the entirety of a natural hazard
event for comparative analysis across different hazard types.
A computational methodology based on PCA and regression
modelling was introduced and implemented to demonstrate
the methodological utility in derivation of the equivalent haz-
ard magnitudes of events for 12 natural hazard types. The
proposed equivalent hazard magnitudes of events on the Gar-

doni Scale are recommended to be adopted for hazard com-
munication by various stakeholders including news media,
decision makers, industry professionals, academic personnel,
and the public. By applying the proposed Gardoni Scale, we
can also help quantitatively decouple the natural forces of
hazard events from the environmental, societal, and infras-
tructural factors of hazard impacts to support social scien-
tific and engineering research in natural hazard phenomena
with a multi-hazard approach. We anticipate that this study
on equivalent hazard magnitude will be extended to compar-
ative modelling of other types of hazard strengths of events
in a multi-hazard manner to consolidate the foundations for
quantifying and studying exposure, vulnerability, recovery,
resilience, and other conditions for disaster risk reduction
due to natural hazards at both local and global levels.

Appendix A: Missing values and data aggregation

Six simple linear regression models and three multiple linear
regression models with two independent variables were cali-
brated with the same data points for derivation of the impact
metric. These regression models were created to fill in miss-
ing values of impact variables for data points with at most
two empty entries among the three impact variables. Within
each of these nine linear regression models, the dependent
variable was one of the three impact variables. For each of the
six simple linear regression models, the independent variable
was one of the two impact variables that were not used as the
dependent variable. The simple linear regression models had
the form

IV1 = a1+ b1IV2+ σ1ε, (A1)

where a1 = 0 and b1 were two model coefficients, IV1 and
IV2 were two considered transformed and standardized im-
pact variables, and σ1 was the dispersion parameter. The
statistics of parameters of these simple linear regression
models are shown in Table A1. Per the three multiple linear
regression models with two independent variables, the inde-
pendent variables were the two impact variables other than
the one used as the dependent variable. The formula for the
multiple linear regression models was

IV1 = a2+ b2IV2+ c2IV3+ σ2ε, (A2)

where a2 = 0, b2, and c2 were three model coefficients; IV3
was the third transformed and standardized impact variable;
and σ2 was the dispersion parameter. Table A2 lists the statis-
tics of parameters of the multiple linear regression models
with two independent variables. The missing values of data
points were filled with the expectations regressed on the in-
dependent variables with available data. The data were then
aggregated event-wise to form data points of the dataset for
deriving the equivalent hazard magnitudes.
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Table A1. Statistics of parameters of six simple linear regression models for filling in missing values of impact variablesa.

Model Dependent variable Independent variable b1 σ1
number

I1 Fatality Total affected population 0.5096 (0.0224) 0.8604 (0.0159)
I2 Fatality Total damage 0.2802 (0.0250) 0.9599 (0.0177)
I3b Total affected population Fatality 0.5096 (0.0224) 0.8604 (0.0159)
I4 Total affected population Total damage 0.2948 (0.0249) 0.9556 (0.0176)
I5c Total damage Fatality 0.2802 (0.0250) 0.9599 (0.0177)
I6d Total damage Total affected population 0.2948 (0.0249) 0.9556 (0.0176)

a This table corresponds to Data S2 in the Supplement; R2 measures are included in Fig. 2; standard errors are in the parentheses;
estimations of b1 and σ1 are all significant at p < 10−20. b Models I1 and I3 share the same model parameters and R2 measures.
c Models I2 and I5 share the same model parameters and R2 measures. d Models I4 and I6 share the same model parameters and R2

measures.

Table A2. Statistics of parameters of three multiple linear regression models with two independent variables for filling in missing values of
impact variablesa.

Model Dependent Independent Independent b2 c2 σ2
number variable variable 1 variable 2

I7 Fatality Total affected Total damage 0.4676 (0.0232) 0.1423 (0.0232) 0.8496 (0.0157)
population

I8 Total affected Fatality Total damage 0.4633 (0.0230) 0.1650 (0.0230) 0.8457 (0.0156)
population

I9 Total damage Fatality Total affected 0.1755 (0.0286) 0.2054 (0.0286) 0.9435 (0.0174)
population

a This table corresponds to Data S3 in the Supplement; R2 measures are included in Fig. 2; standard errors are in the parentheses; estimations of b2, c2,
and σ2 are all significant at p < 10−8.

Code and data availability. Python codes and data that support this
study are available at https://doi.org/10.15139/S3/DJV7CR (Wang
and Sebastian, 2020).

Supplement. Video S1 shows the distribution of data points
with respect to impact variables and the impact metric.
The supplement related to this article is available online
at: https://doi.org/10.5194/nhess-22-4103-2022-supplement.

Author contributions. YVW was responsible for design of the
study, data collection, data processing, and coding. Data analysis,
drafting, and critical review of the paper were undertaken by both
authors.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Yi Victor Wang would like to thank Paolo Gar-
doni and Colleen Murphy for inspiring discussions and suggestions.

Financial support. The article processing charges are covered by
the Institute for Earth, Computing, Human and Observing (ECHO)
at Chapman University.

Review statement. This paper was edited by Mario Parise and re-
viewed by John K. Hillier and three anonymous referees.

References

Adger, W. N.: Vulnerability, Global Environ. Chang., 16, 268–281,
https://doi.org/10.1016/j.gloenvcha.2006.02.006, 2006.

Alexander, D. E.: Impact, definition of, in: Encyclopedia of Cri-
sis Management, edited by: Penuel, K. B., Statler, M., and Ha-
gen, R., SAGE Publication, Thousands Oaks, CA, 488–490,
https://doi.org/10.4135/9781452275956.n167, 2013.

Alexander, D. E.: A magnitude scale for cascad-
ing disasters, Int. J. Disast. Risk Re., 30, 180–185,
https://doi.org/10.1016/j.ijdrr.2018.03.006, 2018.

https://doi.org/10.5194/nhess-22-4103-2022 Nat. Hazards Earth Syst. Sci., 22, 4103–4118, 2022

https://doi.org/10.15139/S3/DJV7CR
https://doi.org/10.5194/nhess-22-4103-2022-supplement
https://doi.org/10.1016/j.gloenvcha.2006.02.006
https://doi.org/10.4135/9781452275956.n167
https://doi.org/10.1016/j.ijdrr.2018.03.006


4116 Y. V. Wang and A. Sebastian: Equivalent hazard magnitude scale

Bell, G. D. Halpert, M. S., Schnell, R. C., Higgins, R. W.,
Lawrimore, J., Kousky, V. E., Tinker, R., Thiaw, W., Chel-
liah, M., and Artusa, A.: Climate assessment for 1999, B.
Am. Meteorol. Soc., 81, S1–S50, https://doi.org/10.1175/1520-
0477(2000)81[s1:CAF]2.0.CO;2, 2000.

Bensi, M., Mohammadi, S., Kao, S.-C., and DeNeale, S. T.: Multi-
Mechanism Flood Hazard Assessment: Critical Review of Cur-
rent Practice and Approaches, Oak Ridge National Laboratory,
Oak Ridge, TN, https://doi.org/10.2172/1649363, 2020.

Birkmann, J., Kienberger, S., and Alexander, D. E. (Eds.):
Assessment of Vulnerability to Natural Hazards: A Eu-
ropean Perspective, Elsevier, Amsterdam, the Netherlands,
https://doi.org/10.1016/C2012-0-03330-3, 2014.

Blong, R.: A review of damage intensity scales, Nat. Hazards, 29,
57–76, https://doi.org/10.1023/A:1022960414329, 2003.

Burton, C. G.: Social vulnerability and hurricane im-
pact modelling, Nat. Hazards Rev., 11, 58–68,
https://doi.org/10.1061/(ASCE)1527-6988(2010)11:2(58),
2010.

Byun, H.-R. and Wilhite, D. A.: Objective quantifi-
cation of drought severity and duration, J. Cli-
mate, 12, 2747–2756, https://doi.org/10.1175/1520-
0442(1999)012<2747:OQODSA>2.0.CO;2, 1999.

Choi, E., Ha, J.-G., Hahm, D., and Kim, M. K.: A review of multi-
hazard risk assessment: Progress, potential, and challenges in the
application to nuclear power plants, Int. J. Disast. Risk Re., 53,
101933, https://doi.org/10.1016/j.ijdrr.2020.101933, 2021.

Coburn, A. and Spence, R.: Earthquake Protection, 2nd edn., John
Wiley & Sons, Ltd, Chichester, UK, ISBN 978-0470855171,
2002.

Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., Arnold,
M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Yetman,
G.: Natural Disaster Hotspots: A Global Risk Analysis, The
World Bank, Washington, DC, ISBN 978-0821359303, http:
//hdl.handle.net/10986/7376 (last access: 20 December 2022),
2005.

Doss-Gollin, J., Farnham, D. J., Lall, U., and Modi, V.: How un-
precedented was the February 2021 Texas cold snap?, Earth-
ArXiv, https://doi.org/10.31223/X5003J, 2021.

Dotzek, N.: Derivation of physically motivated
wind speed scales, Atmos. Res., 93, 564–574,
https://doi.org/10.1016/j.atmosres.2008.10.015, 2009.

Emanuel, K.: Increasing destructiveness of tropical cy-
clones over the past 30 years, Nature, 436, 686–688,
https://doi.org/10.1038/nature03906, 2005.

Fujita, T. T.: Proposed Characterization of Tornadoes and Hur-
ricanes by Area and Intensity, the University of Chicago,
Chicago, IL, https://ntrs.nasa.gov/citations/19720008829 (last
access: 20 December 2022), 1971.

Fujita, T. T.: Tornadoes and downbursts in the con-
text of generalized planetary scales, J. Atmos.
Sci., 38, 1511–1534, https://doi.org/10.1175/1520-
0469(1981)038<1511:TADITC>2.0.CO;2, 1981.

Gardoni, P. and Murphy, C.: Gauging the societal impacts of natu-
ral disasters using a capability approach, Disasters, 34, 619–636,
https://doi.org/10.1111/j.1467-7717.2010.01160.x, 2010.

Grünthal, G. (Ed.): European Macroseismic Scale 1998, Euro-
pean Seismological Commission, Luxembourg, http://www.bcsf.

prd.fr/EMS98_Original_english.pdf (last access: 20 December
2022), 1998.

Guha-Sapir, D., Hoyois, P., and Below, R.: EM-DAT Public, https:
//public.emdat.be/, last access: 10 March 2021.

Hebert, C. G., Weinzapfel, R. A., and Chambers, M. A.: Hurricane
Severity Index: A new way of estimating a tropical cyclone’s de-
structive potential, 19th Conference on Probability and Statistics,
20–24 January 2008, New Orleans, LA, USA, 2008.

Highfield, W. E., Peacock, W. G., and Van Zandt, S.: Mitigation
planning: Why hazard exposure, structural vulnerability, and
social vulnerability matter, J. Plan. Educ. Res., 34, 287–300,
https://doi.org/10.1177/0739456X14531828, 2014.

Hillier, J. K. and Dixon, R. S.: Seasonal impact-based map-
ping of compound hazards, Environ. Res. Lett., 15, 114013,
https://doi.org/10.1088/1748-9326/abbc3d, 2020.

Hillier, J. K., Macdonald, N., Leckebusch, G. C., and Stavrinides,
A.: Interactions between apparently “primary” weather-driven
hazards and their cost, Environ. Res. Lett., 10, 104003,
https://doi.org/10.1088/1748-9326/10/10/104003, 2015.

Hillier, J. K., Matthews, T., Wilby, R., and Murphy, C.: Multi-hazard
dependencies can increase or decrease risk, Nat. Clim. Change,
10, 595–598, https://doi.org/10.1038/s41558-020-0832-y, 2020.

Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T.
J., and Dutcher, A. L.: The development and evaluation
of a soil moisture index, Int. J. Climatol., 29, 747–759,
https://doi.org/10.1002/joc.1749, 2009.

Jolliffe, I. T.: Principal Component Analysis, 2nd edn., Springer,
New York, NY, https://doi.org/10.1007/b98835, 2002.

Jolliffe, I. T. and Cadima, J.: Principal component analysis: A re-
view and recent developments, Phil. Trans. R. Soc. A, 374,
20150202, https://doi.org/10.1098/rsta.2015.0202, 2016.

Kaiser, A., Holden, C., Beavan, J., Beetham, D., Benites, R., Ce-
lentano, A., Collett, D., Cousins, J., Cubrinovski, M., Dellow,
G., Denys, P., Fielding, E., Fry, B., Gerstenberger, M., Lan-
gridge, R., Massey, C., Motagh, M., Pondard, N., McVerry,
G., Ristau, J., Stirling, M., Thomas, J., Uma, S. R., and
Zhao, J.: The Mw 6.2 Christchurch earthquake of February
2011: Preliminary report, New Zeal. J. Geol. Geop., 55, 67–90,
https://doi.org/10.1080/00288306.2011.641182, 2012.

Kanamori, H.: The energy release in great earthquakes, J. Geophys.
Res., 82, 2981–2987, https://doi.org/10.1029/JB082i020p02981,
1977.

Katsumata, A.: Comparison of magnitudes estimated by the Japan
Meteorological Agency with moment magnitudes for intermedi-
ate and deep earthquakes, B. Seismol. Soc. Am., 86, 832–842,
https://doi.org/10.1785/BSSA0860030832, 1996.

Keller, A. Z., Wilson, H. C., and Al-Madhari, A.: Proposed dis-
aster scale and associated model for calculating return peri-
ods for disasters of given magnitude, Disast. Prev. Manag., 1,
https://doi.org/10.1108/09653569210011093, 1992.

Keller, A. Z., Meniconi, M., Al-Shammari, I., and Cassidy, K.:
Analysis of fatality, injury, evacuation and cost data using
the Bradford Disaster Scale, Disast. Prev. Manag., 6, 33–42,
https://doi.org/10.1108/09653569710162433, 1997.

Klijn, F., Kreibich, H., de Moel, H., and Penning-Rowsell, E.:
Adaptive flood risk management planning based on a compre-
hensive flood risk conceptualisation, Mitig. Adapt. Strateg. Glob.
Change, 20, 845–864, https://doi.org/10.1007/s11027-015-9638-
z, 2015.

Nat. Hazards Earth Syst. Sci., 22, 4103–4118, 2022 https://doi.org/10.5194/nhess-22-4103-2022

https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2
https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2
https://doi.org/10.2172/1649363
https://doi.org/10.1016/C2012-0-03330-3
https://doi.org/10.1023/A:1022960414329
https://doi.org/10.1061/(ASCE)1527-6988(2010)11:2(58)
https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
https://doi.org/10.1016/j.ijdrr.2020.101933
http://hdl.handle.net/10986/7376
http://hdl.handle.net/10986/7376
https://doi.org/10.31223/X5003J
https://doi.org/10.1016/j.atmosres.2008.10.015
https://doi.org/10.1038/nature03906
https://ntrs.nasa.gov/citations/19720008829
https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
https://doi.org/10.1111/j.1467-7717.2010.01160.x
http://www.bcsf.prd.fr/EMS98_Original_english.pdf
http://www.bcsf.prd.fr/EMS98_Original_english.pdf
https://public.emdat.be/
https://public.emdat.be/
https://doi.org/10.1177/0739456X14531828
https://doi.org/10.1088/1748-9326/abbc3d
https://doi.org/10.1088/1748-9326/10/10/104003
https://doi.org/10.1038/s41558-020-0832-y
https://doi.org/10.1002/joc.1749
https://doi.org/10.1007/b98835
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1080/00288306.2011.641182
https://doi.org/10.1029/JB082i020p02981
https://doi.org/10.1785/BSSA0860030832
https://doi.org/10.1108/09653569210011093
https://doi.org/10.1108/09653569710162433
https://doi.org/10.1007/s11027-015-9638-z
https://doi.org/10.1007/s11027-015-9638-z


Y. V. Wang and A. Sebastian: Equivalent hazard magnitude scale 4117

Lindell, M. K.: Disaster studies, Curr. Sociol. Rev., 61, 797–825,
https://doi.org/10.1177/0011392113484456, 2013.

Lindell, M. K. and Prater, C. S.: Assessing community im-
pacts of natural disasters, Nat. Hazards Rev., 4, 176–
185, https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176),
2003.

Malherbe, J., Smit, I. P. J., Wessels, K. J., and Beukes, P. J.:
Recent droughts in the Kruger National Park as reflected in
the extreme climate index, Afr. J. Range For. Sci., 37, 1–17,
https://doi.org/10.2989/10220119.2020.1718755, 2020.

McEntire, D. A.: Why vulnerability matters: Exploring the merit of
an inclusive disaster reduction concept, Disast. Prev. Manag., 14,
206–222, https://doi.org/10.1108/09653560510595209, 2005.

McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of
drought frequency and duration to time scales, in: Proceedings of
the Eighth Conference on Applied Climatology, 17–22 January
1993, Anaheim, CA, USA, 179–183, https://climate.colostate.
edu/pdfs/relationshipofdroughtfrequency.pdf (last access: 20 De-
cember 2022), 1993.

Meaden, G. T., Kochev, S., Kolendowicz, L., Kosa-Kiss, A.,
Marcinoniene, I., Sioutas, M., Tooming, H., and Tyrrell, J.:
Comparing the theoretical versions of the Beaufort scale,
the T-scale and the Fujita scale, Atmos. Res., 83, 446–449,
https://doi.org/10.1016/j.atmosres.2005.11.014, 2007.

Mitchell-Wallace, K., Jones, M., Hillier, J., and Foote, M. (Eds.):
Natural Catastrophe Risk Management and Modelling: A Prac-
titioner’s Guide, John Wiley & Sons, Ltd, Chichester, UK,
ISBN 978-1118906040, 2017.

Mudd, L., Rosowsky, D., Letchford, C., and Lombardo, F.:
Joint probabilistic wind–rainfall model for tropical cyclone
hazard characterization, J. Struct. Eng., 143, 04016195,
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001685, 2017.

Nigg, J. M. and Mileti, D.: Natural hazards and disasters, Disaster
Research Center, DE, Preliminary Paper, 261, https://udspace.
udel.edu/bitstream/handle/19716/280/PP+261.pdf?sequence=1
(last access: 20 December 2022), 1997.

O’Keefe, P., Westgate, K., and Wisner, B.: Taking the nat-
uralness out of natural disasters, Nature, 260, 566–567,
https://doi.org/10.1038/260566a0, 1976.

Palmer, W. C.: Meteorological Drought, US Department of Com-
merce, Washington, DC, https://www.droughtmanagement.info/
literature/USWB_Meteorological_Drought_1965.pdf (last ac-
cess: 20 December 2022), 1965.

Palmer, W. C.: Keeping track of crop moisture conditions, nation-
wide: The new Crop Moisture Index, Weatherwise, 21, 156–161,
https://doi.org/10.1080/00431672.1968.9932814, 1968.

Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S.
N.: Trends in flood losses in Europe over the past 150 years, Nat.
Commun., 9, 1985, https://doi.org/10.1038/s41467-018-04253-
1, 2018

Peduzzi, P., Dao, H., Herold, C., and Mouton, F.: Assessing global
exposure and vulnerability towards natural hazards: the Disas-
ter Risk Index, Nat. Hazards Earth Syst. Sci., 9, 1149–1159,
https://doi.org/10.5194/nhess-9-1149-2009, 2009.

Potter, S.: Fine-tuning Fujita: After 35 years, a new scale
for rating tornadoes takes effect, Weatherwise, 62, 64–71,
https://doi.org/10.3200/WEWI.60.2.64-71, 2007.

Powell, M. D. and Reinhold, T. A.: Tropical cyclone destructive
potential by integrated kinetic energy, B. Am. Meteorol. Soc.,
88, 513–526, https://doi.org/10.1175/BAMS-88-4-513, 2007.

Raphson, J.: Analysis Aequationum Universalis Seu Ad Aequa-
tiones Algebraicas Resolvendas Methodus Generalis, & Ex-
pedita, Ex Nova Infinitarum Serierum Methodo, Deducta Ac
Demonstrata: Cui Annexum Est de Spatio Reali, Seu Ente
Infinito Conamen Mathematico-Metaphysicum, Braddyll, Lon-
don, Kingdom of England, https://doi.org/10.3931/e-rara-13516,
1697.

Rautian, T. G., Khalturin, V. I., Fujita, K., Mackey, K.
G., and Kendall, A. D.: Origins and methodology of
the Russian Energy K-Class System and its relationship
to magnitude scales, Seismol. Res. Lett., 78, 579–590,
https://doi.org/10.1785/gssrl.78.6.579, 2007.

Richter, C. F.: An instrumental earthquake mag-
nitude scale, B. Seismol. Soc. Am., 25, 1–32,
https://doi.org/10.1785/BSSA0250010001, 1935.

Rohn, E. and Blackmore, D.: A unified localizable emergency
events scale, Int. J. Inf. Syst. Crisis Res. Manag., 1, 1–14,
https://doi.org/10.4018/jiscrm.2009071001, 2009.

Rohn, E. and Blackmore, D.: The augmented unified localizable
crisis scale, Technol. Forecast. Soc. Chang., 100, 186–197,
https://doi.org/10.1016/j.techfore.2015.06.017, 2015.

Serva, L., Vittori, E., Comerci, V., Esposito, E., Guerrieri, L.,
Michetti, A. M., Mohammadioun, B., Mohammadioun, G. C.,
Porfido, S., and Tatevossian, R. E.: Earthquake hazard and
the Environmental Seismic Intensity (ESI) scale, Pure Appl.
Geophys., 173, 1479–1515, https://doi.org/10.1007/s00024-015-
1177-8, 2016.

Shafer, B. A. and Dezman, L. E.: Development of a sur-
face water supply index (SWSI) to assess the severity of
drought conditions in snowpack runoff areas, in: Proceedings
of the 50th Annual Western Snow Conference, 19–21 April
1982, Reno, NV, USA, https://westernsnowconference.org/sites/
westernsnowconference.org/PDFs/1982Shafer.pdf (last access:
20 December 2022), 1982.

Shukla, S. and Wood, A. W.: Ise of a standardized runoff index
for characterizing hydrologic drought, Geophys. Res. Lett., 35,
L02405, https://doi.org/10.1029/2007GL032487, 2008.

Simpson, R. H. and Saffir, H.: The hurricane
Disaster–Potential Scale, Weatherwise, 27, 169–186,
https://doi.org/10.1080/00431672.1974.9931702, 1974.

United States Geological Survey (USGS): M9.2 Alaska earthquake
and tsunami of March 27, 1964, USGS, Reston, VA, USA,
https://earthquake.usgs.gov/earthquakes/events/alaska1964/ (last
access: 20 December 2022), 2021.

van de Lindt, J. W., Peacock, W. G., Mitrani-Reiser, J., Rosenheim,
N., Deniz, D., Dillard, M., Tomiczek, T., Koliou, M., Graettinger,
A., Crawford, P. S., Harrison, K., Barbosa, A., Tobin, J., Helge-
son, J., Peek, L., Memari, M., Sutley, E. J., Hamideh, S., Gu, D.,
Cauffman, S., and Fung, J.: Community resilience-focused tech-
nical investigation of the 2016 Lumberton, North Carolina, flood:
An interdisciplinary approach, Nat. Hazards Rev., 21, 04020029,
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000387, 2020.

Wald, D. J., Worden, B. C., Quitoriano, V., and Pankow, K.
L.: ShakeMap Manual: Technical Manual, User’s Guide, and
Software Guide, US Geological Survey, Reston, VA, USA,
https://doi.org/10.3133/tm12A1, 2006.

https://doi.org/10.5194/nhess-22-4103-2022 Nat. Hazards Earth Syst. Sci., 22, 4103–4118, 2022

https://doi.org/10.1177/0011392113484456
https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176)
https://doi.org/10.2989/10220119.2020.1718755
https://doi.org/10.1108/09653560510595209
https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf
https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf
https://doi.org/10.1016/j.atmosres.2005.11.014
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001685
https://udspace.udel.edu/bitstream/handle/19716/280/PP+261.pdf?sequence=1
https://udspace.udel.edu/bitstream/handle/19716/280/PP+261.pdf?sequence=1
https://doi.org/10.1038/260566a0
https://www.droughtmanagement.info/literature/USWB_Meteorological_Drought_1965.pdf
https://www.droughtmanagement.info/literature/USWB_Meteorological_Drought_1965.pdf
https://doi.org/10.1080/00431672.1968.9932814
https://doi.org/10.1038/s41467-018-04253-1
https://doi.org/10.1038/s41467-018-04253-1
https://doi.org/10.5194/nhess-9-1149-2009
https://doi.org/10.3200/WEWI.60.2.64-71
https://doi.org/10.1175/BAMS-88-4-513
https://doi.org/10.3931/e-rara-13516
https://doi.org/10.1785/gssrl.78.6.579
https://doi.org/10.1785/BSSA0250010001
https://doi.org/10.4018/jiscrm.2009071001
https://doi.org/10.1016/j.techfore.2015.06.017
https://doi.org/10.1007/s00024-015-1177-8
https://doi.org/10.1007/s00024-015-1177-8
https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/1982Shafer.pdf
https://westernsnowconference.org/sites/westernsnowconference.org/PDFs/1982Shafer.pdf
https://doi.org/10.1029/2007GL032487
https://doi.org/10.1080/00431672.1974.9931702
https://earthquake.usgs.gov/earthquakes/events/alaska1964/
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000387
https://doi.org/10.3133/tm12A1


4118 Y. V. Wang and A. Sebastian: Equivalent hazard magnitude scale

Wang, Y. V.: Empirical local hazard models for
bolide explosions, Nat. Hazards Rev., 21, 04020037,
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000405, 2020.

Wang, Y. V. and Sebastian, A.: Data for deriving equivalent haz-
ard magnitude scale (Version V2), University of North Carolina
Dataverse [data set, code], https://doi.org/10.15139/S3/DJV7CR,
2020.

Wang, Y. V. and Sebastian, A.: Community flood vulner-
ability and risk assessment: An empirical predictive
modelling approach, J. Flood Risk Manag., 14, e12739,
https://doi.org/10.1111/jfr3.12739, 2021.

Wang, Y. V. and Sebastian, A.: Murphy Scale: A locational
equivalent intensity scale for hazard events, Risk Anal.,
https://doi.org/10.1111/risa.13933, online first, 2022.

Wang, Y. V., Tabandeh, A., Gardoni, P., Hurt, T. M., Hartman, E. R.,
and Myers, N. R.: Assessing socioeconomic impacts of cascad-
ing infrastructure disruptions using the Capability Approach, US
Army Engineer Research and Development Center Construction
Engineering Research Lab, Champaign, IL, USA, 130 pp., https:
//apps.dtic.mil/sti/citations/AD1016582 (last access: 20 Decem-
ber 2022), 2016.

Wang, Y. V., Gardoni, P., Murphy, C., and Guerrier, S.: Pre-
dicting fatality rates due to earthquakes accounting for
community vulnerability, Earthq. Spectra, 35, 513–536,
https://doi.org/10.1193/022618EQS046M, 2019.

Wang, Y. V., Gardoni, P., Murphy, C., and Guerrier, S.: World-
wide predictions of earthquake casualty rates with seismic
intensity measure and socioeconomic data: A fragility-
based formulation, Nat. Hazards Rev., 21, 04020001,
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000356, 2020.

Wang, Y. V., Gardoni, P., Murphy, C., and Guerrier, S.: Empirical
predictive modelling approach to quantifying social vulnerability
to natural hazards, Ann. Am. Assoc. Geogr., 111, 1559–1583,
https://doi.org/10.1080/24694452.2020.1823807, 2021.

Wisner, B., Blaikie, P., Cannon, T., and Davis, I.: At Risk: Natural
Hazards, People’s Vulnerability and Disasters, 2nd edn., Rout-
ledge, London, UK, https://doi.org/10.4324/9780203714775,
2004.

Wood, H. O. and Neumann, F.: Modified Mercalli inten-
sity scale of 1931, B. Seismol. Soc. Am., 21, 277–283,
https://doi.org/10.1785/BSSA0210040277, 1931.

Nat. Hazards Earth Syst. Sci., 22, 4103–4118, 2022 https://doi.org/10.5194/nhess-22-4103-2022

https://doi.org/10.1061/(ASCE)NH.1527-6996.0000405
https://doi.org/10.15139/S3/DJV7CR
https://doi.org/10.1111/jfr3.12739
https://doi.org/10.1111/risa.13933
https://apps.dtic.mil/sti/citations/AD1016582
https://apps.dtic.mil/sti/citations/AD1016582
https://doi.org/10.1193/022618EQS046M
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000356
https://doi.org/10.1080/24694452.2020.1823807
https://doi.org/10.4324/9780203714775
https://doi.org/10.1785/BSSA0210040277

	Abstract
	Introduction
	A problem of scales
	Methodology
	Data collection
	Impact metric
	Equivalent magnitude

	Results
	Model calibration
	Comparisons of hazard magnitudes
	Earthquake, tornado, forest fire, and tropical cyclone
	Cold wave and heat wave
	Riverine flood and drought

	Sensitivity analysis

	Discussion
	Contributions
	Implication, limitations, and future work

	Conclusion
	Appendix A: Missing values and data aggregation
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

