Articles | Volume 22, issue 8
https://doi.org/10.5194/nhess-22-2531-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2531-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Zélie Stalhandske
CORRESPONDING AUTHOR
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Valentina Nesa
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Marius Zumwald
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Martina S. Ragettli
Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland
University of Basel, Basel, 4001, Switzerland
Alina Galimshina
Institute of Construction & Infrastructure Management, ETH Zurich, Zurich, 8093, Switzerland
Niels Holthausen
Amt für Abfall, Wasser, Energie und Luft, Canton of Zurich, Zurich, 8090, Switzerland
Martin Röösli
Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland
University of Basel, Basel, 4001, Switzerland
David N. Bresch
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Related authors
No articles found.
Christophe Lienert, Andreas Paul Zischg, Horst Kremers, Jamie McCaughey, Lara Zinkl, and David N. Bresch
Abstr. Int. Cartogr. Assoc., 9, 1, https://doi.org/10.5194/ica-abs-9-1-2025, https://doi.org/10.5194/ica-abs-9-1-2025, 2025
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, https://doi.org/10.5194/nhess-21-393-2021, 2021
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Samuel Eberenz, Dario Stocker, Thomas Röösli, and David N. Bresch
Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, https://doi.org/10.5194/essd-12-817-2020, 2020
Short summary
Short summary
The modeling of economic disaster risk on a global scale requires high-resolution maps of exposed asset values. We have developed a generic and scalable method to downscale national asset value estimates proportional to a combination of nightlight intensity and population data. Here, we present the methodology together with an evaluation of its performance for the subnational downscaling of GDP. The resulting exposure data for 224 countries and the open-source Python code are available online.
Gabriela Aznar-Siguan and David N. Bresch
Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, https://doi.org/10.5194/gmd-12-3085-2019, 2019
Short summary
Short summary
The need for assessing the risk of weather events is ever increasing. In addition to quantification of risk today, the role of aggravating factors such as population growth and changing climate conditions matter too. We present the open-source software CLIMADA, which integrates hazard, exposure, and vulnerability to compute metrics to assess risk and to quantify socio-economic impact, and use it to estimate and contextualize the damage of hurricane Irma through the Caribbean in 2017.
Elisabeth Maidl, David N. Bresch, and Matthias Buchecker
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-393, https://doi.org/10.5194/nhess-2018-393, 2019
Publication in NHESS not foreseen
Short summary
Short summary
Natural hazard risk management today aims to involve all actors possibly affected by damage. Citizens are regarded as responsible actors in risk mitigation. Practitioners therefore face the challenge of building social capacity towards such a culture of risk. Research on capacity building in Alpine countries, however, so far lacks empirical evidence on individual preparedness in the common population. This study for the first time provides insights for research and practice.
Tobias Geiger, Katja Frieler, and David N. Bresch
Earth Syst. Sci. Data, 10, 185–194, https://doi.org/10.5194/essd-10-185-2018, https://doi.org/10.5194/essd-10-185-2018, 2018
Short summary
Short summary
Tropical cyclones (TCs) pose a major risk to societies worldwide but very limited data exist on their socioeconomic impacts. Here, we apply a common wind field model to comprehensively and consistently estimate the number of people and the sum of assets exposed by all TCs between 1950 and 2015. This information is crucial to assess changes in societal vulnerabilites, to calibrate TC damage functions, and to make risk data more accessible to non-experts and stakeholders.
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Disaster management following the great Kahramanmaraş earthquakes in 2023, Türkiye
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Assessing future impacts of tropical cyclones on global banana production
Review article: Applicability and effectiveness of structural measures for subsidence (risk) reduction in urban areas
Unravelling the capacity–action gap in flood risk adaptation
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
Modeling Regional Production Capacity Loss Rates Considering Response Bias: Insights from a Questionnaire Survey on Zhengzhou Flood
Warnings based on risk matrices: a coherent framework with consistent evaluation
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Content analysis of multi-annual time series of flood-related Twitter (X) data
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Flood exposure of environmental assets
A new method for calculating highway blocking due to high-impact weather conditions
Review Article: Analysis of sediment disaster risk assessment surveys in Brazil: A critical review and recommendations
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Tracing online flood conversations across borders: A watershed level analysis of geo-social media topics during the 2021 European flood
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
What if extreme droughts occur more frequently? – Mechanisms and limits of forest adaptation in pine monocultures and mixed forests in Berlin-Brandenburg, Germany
Brief Communication: Bridging the data gap – enhancing the representation of global coastal flood protection
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
An evaluation on the alignment of drought policy and planning guidelines with the contemporary disaster risk reduction agenda
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Measuring extremes-driven direct biophysical impacts in agricultural drought damages
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Invited perspectives: Fostering interoperability of data, models, communication and governance for disaster resilience through transdisciplinary knowledge co-production
Modelling Flood Losses to Microbusinesses in Ho Chi Minh City, Vietnam
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Flood relief logistics planning for coastal cities: a case study in Shanghai, China
Review article: Co-creating knowledge for drought impact assessment in socio-hydrology
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
How does perceived heat stress differ between urban forms and human vulnerability profiles? – case study Berlin
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Bektaş Sarı
Nat. Hazards Earth Syst. Sci., 25, 2031–2043, https://doi.org/10.5194/nhess-25-2031-2025, https://doi.org/10.5194/nhess-25-2031-2025, 2025
Short summary
Short summary
After the Kahramanmaraş earthquakes, the Turkish Government mobilized all available resources, ensured regular information updates, and deployed a significant number of rescue personnel to the affected areas. However, the scale of this devastating disaster, resulting in the loss of over 50 000 lives, underscores the critical importance of building earthquake-resistant structures as the most effective means to mitigate such calamities.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 1993–2005, https://doi.org/10.5194/nhess-25-1993-2025, https://doi.org/10.5194/nhess-25-1993-2025, 2025
Short summary
Short summary
Drought affects not only water availability but also agriculture, the economy, and communities. This study explores how public policies help reduce these impacts in Ceará, Northeast Brazil. Using qualitative drought monitoring data, interviews, and policy analysis, we found that policies supporting local economies help lessen drought effects. However, most reported impacts are still related to water shortages, showing the need for broader strategies beyond water supply investment.
Sophie Kaashoek, Žiga Malek, Nadia Bloemendaal, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 25, 1963–1974, https://doi.org/10.5194/nhess-25-1963-2025, https://doi.org/10.5194/nhess-25-1963-2025, 2025
Short summary
Short summary
Tropical storms are expected to get stronger all over the world, and this will have a big impact on people, buildings and important activities like growing bananas. Already, in different parts of the world, banana farms are being hurt by these storms, which makes banana prices go up and affects the people who grow them. We are not sure how these storms will affect bananas everywhere in the future. We assessed what happened to banana farms during storms in different parts of the world.
Nicoletta Nappo and Mandy Korff
Nat. Hazards Earth Syst. Sci., 25, 1811–1839, https://doi.org/10.5194/nhess-25-1811-2025, https://doi.org/10.5194/nhess-25-1811-2025, 2025
Short summary
Short summary
Cities in coastal and delta areas need effective engineering techniques to counteract subsidence and its damage. This paper presents a framework for choosing these techniques using a decision tree and four performance parameters. This procedure was tested on various cases representative of different scenarios. This demonstrated the potential of this method for initial screenings of techniques which site-specific assessments should always follow.
Annika Schubert, Anne von Streit, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 25, 1621–1653, https://doi.org/10.5194/nhess-25-1621-2025, https://doi.org/10.5194/nhess-25-1621-2025, 2025
Short summary
Short summary
Households play a crucial role in climate adaptation efforts. Yet, households require capacities to implement measures. We explore which capacities enable German households to adapt to flooding. Our results indicate that flood-related capacities such as risk perception, responsibility appraisal, and motivation are pivotal, whereas financial assets are secondary. Enhancing these specific capacities, e.g. through collaborations between households and municipalities, could promote local adaptation.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025, https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners' needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Lijiao Yang, Yan Luo, Zilong Li, and Xinyu Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3923, https://doi.org/10.5194/egusphere-2024-3923, 2025
Short summary
Short summary
This study proposes a response-bias-tolerant methodology for constructing production capacity loss rate (PCLR) curves, which addresses response bias in extreme flood scenarios and considers the distribution characteristics of PCLR under different damage states. The core value of this study is to provide a competing and promising input in economic modeling, such as input-output and computable general equilibrium models.
Robert J. Taggart and David J. Wilke
EGUsphere, https://doi.org/10.5194/egusphere-2025-323, https://doi.org/10.5194/egusphere-2025-323, 2025
Short summary
Short summary
Our research presents a new method for determining warning levels for any hazard. Using risk matrices, our framework addresses issues found in other approaches. We provide examples to demonstrate how the approach works. A powerful method for evaluating warning accuracy is given, allowing for a cycle of continuous improvement in warning services. This research is relevant to a broad audience, from those who develop forecast systems to practitioners who issue or communicate warnings.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025, https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. The spatial distribution of drought and famine during the Chenghua drought and the Wanli drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025, https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
Short summary
Environmental assets are crucial to sustaining and fulfilling life on Earth via ecosystem services (ESs). Studying their flood risk is thus seminal, in addition to being required by several norms. However, this field is not yet adequately developed. We studied the exposure component of flood risk and developed an evaluating methodology based on the ESs provided by environmental assets to discern assets and areas that are more important than others with metrics suitable to large-scale studies.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci., 25, 493–513, https://doi.org/10.5194/nhess-25-493-2025, https://doi.org/10.5194/nhess-25-493-2025, 2025
Short summary
Short summary
Highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is catagorized into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East, and Southwest China.
Thiago Dutra dos Santos and Taro Uchida
EGUsphere, https://doi.org/10.5194/egusphere-2024-2255, https://doi.org/10.5194/egusphere-2024-2255, 2025
Short summary
Short summary
Five federal sediment-related disaster risk assessments have been conducted in Brazil, each with distinct objectives and methodologies. To evaluate their effectiveness and identify issues, we analyzed the methods, the outcome data, and reviewed the status of disaster prevention initiatives based on the assessment results. Our findings revealed persistent problems across all methods. Consequently, we recommended improvements to enhance their efficacy and reliability.
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Sébastien Dujardin, Dorian Arifi, Sebastian Schmidt, Catherine Linard, and Bernd Resch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3255, https://doi.org/10.5194/egusphere-2024-3255, 2024
Short summary
Short summary
Our research explores how social media can help understand public responses to floods, focusing on the 2021 Western European flood. By analysing flood-related topics on social media, we found that conversations varied depending on the location and impact of the flood, with in-disaster concerns emerging in severely affected upstream areas and post-disaster discussions in less affected regions. This shows the potential of social media for better disaster coordination along border crossing rivers.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Jamir Priesner, Boris Sakschewski, Maik Billing, Werner von Bloh, Sebastian Fiedler, Sarah Bereswill, Kirsten Thonicke, and Britta Tietjen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3066, https://doi.org/10.5194/egusphere-2024-3066, 2024
Short summary
Short summary
Our simulations suggest that increased drought frequencies lead to a drastic reduction in biomass in pine monoculture and mixed forest. Mixed forest eventually recovered, as long as drought frequencies was not too high. The higher resilience of mixed forests was due to higher adaptive capacity. After adaptation mixed forests were mainly composed of smaller, broad-leaved trees with higher wood density and slower growth.This would have strong implications for forestry and other ecosystem services.
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-137, https://doi.org/10.5194/nhess-2024-137, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection is limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTPROS-EU, which compiles coastal flood protection standards in Europe.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Ilyas Masih
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-163, https://doi.org/10.5194/nhess-2024-163, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study evaluates twelve drought policy and planning guidelines for their alignment with the four priority areas of the SENDAI Framework. The guidelines do not align very well with the contemporary disaster risk reduction agenda. The study highlights strengths, weaknesses, opportunities and threats, and provides useful insights to develop next generation of drought guidelines.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Mansi Nagpal, Jasmin Heilemann, Luis Samaniego, Bernd Klauer, Erik Gawel, and Christian Klassert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2585, https://doi.org/10.5194/egusphere-2024-2585, 2024
Short summary
Short summary
This study measures the direct effects of droughts in association with other extreme weather events on agriculture in Germany at district level. Using a statistical yield model, we quantify the direct impact of extremes on crop yields and farm revenues. Extreme events during drought cause an average annual damage of €781 million, accounting for 45 % of reported revenue losses. The insights can help develop better strategies for managing and mitigating the effects of future climate extremes.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
EGUsphere, https://doi.org/10.5194/egusphere-2024-2340, https://doi.org/10.5194/egusphere-2024-2340, 2024
Short summary
Short summary
Many households in Vietnam depend on revenues from microbusinesses (shop-houses). However, losses caused by regular flooding to the microbusinesses are not modelled. Business turnover, building age and water depth are found to be the main drivers of flood losses to microbusinesses. We built and validated probabilistic models (Non-parametric Bayesian Networks) that estimate flood losses to microbusinesses. The results help in flood risk management and adaption decision making for microbusinesses.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Pujun Liang, Jie Yin, Dandan Wang, Yi Lu, Yuhan Yang, Dan Gao, and Jianfeng Mai
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-88, https://doi.org/10.5194/nhess-2024-88, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Addressing coastal city flood risks, this article examines relief logistics planning, employing a GIS-network analysis and optimization model to minimize costs and dissatisfaction. The investigation, grounded in Shanghai's emergency infrastructure and flood relief logistics framework, presents feasible distribution strategies. Meanwhile, the case study indicates that the supply levels of Emergency Flood Shelters and Emergency Reserve Warehouses vary in different coastal flood scenarios.
Silvia De Angeli, Lorenzo Villani, Giulio Castelli, Maria Rusca, Giorgio Boni, Elena Bresci, and Luigi Piemontese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2207, https://doi.org/10.5194/egusphere-2024-2207, 2024
Short summary
Short summary
Despite droughts are deeply intertwined within sociohydrological systems, traditional top-down approaches often ignore those directly affected. By integrating insights from five research fields, we present a framework to guide the co-creation of knowledge for drought impact assessment. Emphasizing social dynamics and power imbalances, the framework guides a more inclusive approach to drought assessment and adaptation.
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Nimra Iqbal, Marvin Ravan, Zina Mitraka, Joern Birkmann, Sue Grimmond, Denise Hertwig, Nektarios Chrysoulakis, Giorgos Somarakis, and Angela Wendnagel-Beck
EGUsphere, https://doi.org/10.5194/egusphere-2024-1907, https://doi.org/10.5194/egusphere-2024-1907, 2024
Short summary
Short summary
This work deepens the understanding of how perceived heat stress, human vulnerability (e.g. age, income) and adaptive capacities (e.g. green, shaded spaces) are coupled with urban structures. The results show that perceived heat stress decreases with distance from urban center, however, human vulnerability and adaptive capacities depend stronger on inner-variations and differences between urban structures. Planning policies and adaptation strategies should account for these differences.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
Cited articles
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Tank, A.
M. K., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A.,
Kumar, K. R., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B.,
Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci,
M., and Vazquez-Aguirre, J. L.: Global observed changes in daily climate
extremes of temperature and precipitation, J. Geophys. Res.-Atmos., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006. a
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, 2019. a, b, c
BFS: Statistik der Unternehmensstruktur (STATENT), Beschäftigte und
Arbeitsstätten: Geodaten,
https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/arbeitsstaetten-beschaeftigung/statistik-unternehmensstruktur-statent-ab-2011.assetdetail.9526894.html
(last access: December 2020), 2017. a
BFS: Statistik der Bevölkerung und Haushalte (STATPOP), Geodaten 2018,
https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/gebaeude-wohnungen-haushalte-personen/bevoelkerung-haushalte-ab-2010.assetdetail.9947069.html
(last access: December 2020), 2018. a
BFS: Swiss Earnings Structure Survey in 2018: initial findings,
https://www.bfs.admin.ch/bfs/en/home/statistics/work-income/wages-income-employment-labour-costs.gnpdetail.2019-0502.html
(last access: December 2020), 2020a. a
BFS: Deaths per week by 5-year age group, sex and major region, 2000–2019,
https://www.bfs.admin.ch/bfs/en/home/statistics/population/births-deaths/deaths.assetdetail.13187304.html
(last access: December 2020), 2020b. a
Bresch, D. N. and Aznar-Siguan, G.: CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool, Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, 2021. a, b
Carleton, T. A. and Hsiang, S. M.: Social and economic impacts of climate,
Science, 353, aad9837, https://doi.org/10.1126/science.aad9837, 2016. a, b
Casanueva, A., Kotlarski, S., Fischer, A. M., Flouris, A. D., Kjellstrom, T.,
Lemke, B., Nybo, L., Schwierz, C., and Liniger, M. A.: Escalating
environmental summer heat exposure – a future threat for the European
workforce, Reg. Environ. Change, 20, 40,
https://doi.org/10.1007/s10113-020-01625-6, 2020. a
Coumou, D., Robinson, A., and Rahmstorf, S.: Global increase in record-breaking
monthly-mean temperatures, Climatic Change, 118, 771–782, https://doi.org/10.1007/s10584-012-0668-1,
2013. a
Dasgupta, S., van Maanen, N., Gosling, S. N., Piontek, F., Otto, C., and
Schleussner, C.-F.: Effects of climate change on combined labour productivity
and supply: an empirical, multi-model study, The Lancet Planetary Health, 5,
e455–e465, https://doi.org/10.1016/S2542-5196(21)00170-4, 2021. a, b, c
Della-Marta, P. M., Haylock, M. R., Luterbacher, J., and Wanner, H.: The role
of increasing temperature variability, J. Geophys. Res.-Atmos., 112, D15103, https://doi.org/10.1029/2007JD008510, 2007. a
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J.,
Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C.,
Tank, A. M. K., Kruger, A. C., Marengo, J., Peterson, T. C., Renom, M.,
Rojas, C. O., Rusticucci, M., Salinger, J., Elrayah, A. S., Sekele, S. S.,
Srivastava, A. K., Trewin, B., Villarroel, C., Vincent, L. A., Zhai, P.,
Zhang, X., and Kitching, S.: Updated analyses of temperature and
precipitation extreme indices since the beginning of the twentieth century:
The HadEX2 dataset, J. Geophys. Res.-Atmos., 118, 2098–2118,
https://doi.org/10.1002/jgrd.50150, 2013. a
Dunne, J. P., Stouffer, R. J., and John, J. G.: Reductions in labour capacity
from heat stress under climate warming, Nat. Clim. Change, 3, 563–566,
https://doi.org/10.1038/nclimate1827, 2013. a
Fischer, E. M. and Knutti, R.: Detection of spatially aggregated changes in
temperature and precipitation extremes, Geophys. Res. Lett., 41, 547–554,
https://doi.org/10.1002/2013GL058499, 2014. a
Fischer, E. M. and Schär, C.: Future changes in daily summer temperature
variability: Driving processes and role for temperature extremes, Clim.
Dynam., 33, 917, https://doi.org/10.1007/s00382-008-0473-8, 2009. a
Fischer, E. M. and Schär, C.: Consistent geographical patterns of changes in
high-impact European heatwaves, Nat. Geosci., 3, 398,
https://doi.org/10.1038/ngeo866, 2010. a
Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A. M., Huber, V., Tong, S.,
de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Lavigne, E.,
Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A.,
Jaakkola, J. J., Ryti, N. R., Pascal, M., Goodman, P. G., Zeka, A.,
Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Diaz, M.,
Cruz, J. C., Seposo, X., Kim, H., Tobias, A., Iñiguez, C., Forsberg, B.,
Åström, D. O., Ragettli, M. S., Guo, Y. L., fu Wu, C., Zanobetti, A.,
Schwartz, J., Bell, M. L., Dang, T. N., Van, D. D., Heaviside, C.,
Vardoulakis, S., Hajat, S., Haines, A., and Armstrong, B.: Projections of
temperature-related excess mortality under climate change scenarios,
The Lancet Planetary Health, 1, e360-e367, https://doi.org/10.1016/S2542-5196(17)30156-0, 2017. a, b
Haines, A., Kovats, R., Campbell-Lendrum, D., and Corvalan, C.: Climate change
and human health: impacts, vulnerability, and mitigation, Lancet, 367, 2101–2109,
https://doi.org/10.1016/S0140-6736(06)68933-2, 2006. a
Hancock, P. A., Ross, J. M., and Szalma, J. L.: A meta-analysis of performance
response under thermal stressors, Human Factors, 49, 851–877,
https://doi.org/10.1518/001872007X230226, 2007. a
Huber, V., Krummenauer, L., Peña-Ortiz, C., Lange, S., Gasparrini, A.,
Vicedo-Cabrera, A. M., Garcia-Herrera, R., and Frieler, K.:
Temperature-related excess mortality in German cities at 2 °C and higher
degrees of global warming, Environ. Res., 186, 109447,
https://doi.org/10.1016/j.envres.2020.109447, 2020. a, b
IPCC: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Tech. rep., 2013. a
IPCC: Climate change 2014 impacts, adaptation and vulnerability: Part A: Global
and sectoral aspects: Working group II contribution to the fifth assessment
report of the intergovernmental panel on climate change,
https://doi.org/10.1017/CBO9781107415379, 2014. a, b
ISO: Hot environments-{Estimation} of heat stress on working man, based on
the {WBGT}-index (wet bulb globe temperature), Geneva: International
Standards Organization, 1989. a
Kjellstrom, T., Gabrysch, S., Lemke, B., and Dear, K.: The 'hothaps' programme
for assessing climate change impacts on occupational health and productivity:
An invitation to carry out field studies, Global Health Action, 2, 2082,
https://doi.org/10.3402/gha.v2i0.2082, 2009a. a, b, c
Kjellstrom, T., Holmer, I., and Lemke, B.: Workplace heat stress, health and
productivity-an increasing challenge for low and middle-income countries
during climate change, Global Health Action, 2, 2082, https://doi.org/10.3402/gha.v2i0.2047,
2009b. a
Kjellstrom, T., Kovats, R. S., Lloyd, S. J., Holt, T., and Tol, R. S.: The
direct impact of climate change on regional labor productivity,
Archives of Environmental and Occupational Health, 64, 217–227, https://doi.org/10.1080/19338240903352776,
2009c. a, b
Kjellstrom, T., Otto, M., Lemke, B., Hyatt, O., Briggs, D., Freyberg, C.,
Lines, L., and Kjellstrom, T.: Climate change and labour: Impacts of heat in
the workplace, Tech. rep.,
https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---gjp/documents/publication/wcms_476194.pdf (last access: July 2020),
2016. a
Lay, C. R., Sarofim, M. C., Vodonos Zilberg, A., Mills, D. M., Jones, R. W.,
Schwartz, J., and Kinney, P. L.: City-level vulnerability to
temperature-related mortality in the USA and future projections: a
geographically clustered meta-regression, The Lancet Planetary Health, 5,
e338–e346, https://doi.org/10.1016/S2542-5196(21)00058-9, 2021. a
Martinez, G. S., Linares, C., Ayuso, A., Kendrovski, V., Boeckmann, M., and
Diaz, J.: Heat-health action plans in Europe: Challenges ahead and how to
tackle them, Environ. Res., 176, 108548, https://doi.org/10.1016/j.envres.2019.108548,
2019. a
Martínez-Solanas, È., Quijal-Zamorano, M., Achebak, H., Petrova, D.,
Robine, J.-M., Herrmann, F. R., Rodó, X., and Ballester, J.: Projections
of temperature-attributable mortality in Europe: a time series analysis of
147 contiguous regions in 16 countries, The Lancet Planetary Health, 5,
e446–e454, 2021. a
MeteoSwiss: Climate scenarios indoor climate,
https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/climate-scenarios-indoor-climate.html (last access: July 2022),
2022. a
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C.,
Bielecki, C. R., Counsell, C. W., Dietrich, B. S., Johnston, E. T., Louis,
L. V., Lucas, M. P., Mckenzie, M. M., Shea, A. G., Tseng, H., Giambelluca,
T. W., Leon, L. R., Hawkins, E., and Trauernicht, C.: Global risk of deadly
heat, Nat. Clim. Change, 7, 501–506, https://doi.org/10.1038/nclimate3322, 2017. a
Morabito, M., Crisci, A., Messeri, A., Messeri, G., Betti, G., Orlandini, S.,
Raschi, A., and Maracchi, G.: Increasing heatwave hazards in the southeastern
European Union capitals, Atmosphere, 8, 115, https://doi.org/10.3390/atmos8070115, 2017. a
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteorol. Soc., 108, 1–24, https://doi.org/10.1002/qj.49710845502, 1982. a
Orlov, A., Sillmann, J., Aaheim, A., Aunan, K., and de Bruin, K.: Economic
Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case
Study of Europe, Economics of Disasters and Climate Change, 3, 191–211,
https://doi.org/10.1007/s41885-019-00044-0, 2019. a
Park, J.: Hot Temperature, Human Capital and Adaptation to Climate Change,
Harvard University Economics Department, https://scholar.harvard.edu/files/jisungpark/files/paper_nyc_aer.pdf (last access: July 2022), 2017. a
Parsons, K.: Human thermal environments: The effects of hot, moderate, andcold
environments on human health, comfort, and performance, CRC Press, third edition,
https://doi.org/10.1201/b16750, 2014. a
Perez, L. and Künzli, N.: From measures of effects to measures of potential
impact, International J. Pub. Health, 54, 45–48,
https://doi.org/10.1007/s00038-008-8025-x, 2009. a
Ragettli, M. S. and Röösli, M.: Gesundheitliche Auswirkungen von Hitze in der
Schweiz und die Bedeutung von Präventionsmassnahmen, Tech. rep.,
https://so.ch/fileadmin/internet/ddi/ddi-gesa/pdf/kaed/Umwelt/BT_SwissTPH_2020_Gesundheitliche_Auswirkungen_von_Hitze_2019_Vergleich_2003-2015-2018_d.pdf (last access: July 2022),
2020. a, b
Roudsari, M. S. and Pak, M.: Ladybug: A parametric environmental plugin for
grasshopper to help designers create an environmentally-conscious design,
Proceedings of BS 2013: 13th Conference of the International Building
Performance Simulation Association, Chambery, France, 26–28 August 2013, 2013. a, b
Sahu, S., Sett, M., and Kjellstrom, T.: Heat exposure, cardiovascular stress
and work productivity in rice harvesters in India: Implications for a climate
change future, Industrial Health, 51, 424–431, https://doi.org/10.2486/indhealth.2013-0006, 2013. a, b
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A.,
and Appenzeller, C.: The role of increasing temperature variability in
European summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004. a
Seppänen, O., Fisk, W., and Lei, Q.: Effect of Temperature on Task Performance
in Office Environment, Lawrence Berkeley National Laboratory, https://indoor.lbl.gov/publications/effect-temperature-task-performance (last access: July 2022), 2006. a
Shayegh, S., Manoussi, V., and Dasgupta, S.: Climate change and development in
South Africa: the impact of rising temperatures on economic productivity and
labour availability, Clim. Develop., 13, 1–11,
https://doi.org/10.1080/17565529.2020.1857675, 2020. a
Sørland, S. L., Fischer, A. M., Kotlarski, S., Künsch, H. R., Liniger, M. A.,
Rajczak, J., Schär, C., Spirig, C., Strassmann, K., and Knutti, R.: CH2018
– National climate scenarios for Switzerland: How to construct
consistent multi-model projections from ensembles of opportunity, Climate
Services, 20, 100196, https://doi.org/10.1016/j.cliser.2020.100196, 2020. a
Stalhandske, Z. and Nesa, V.: zeliest/heat_mortality_productivity_impacts: v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.6908285, 2022a. a
Stalhandske, Z. and Nesa, V.: Data from “Projected Impact of Heat on Mortality and Labour Productivity under Climate Change in Switzerland”, ETH Zürich [data set], https://doi.org/10.3929/ethz-b-000556636, 2022b. a
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R.,
Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R.,
Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa,
P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H.,
Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A.,
Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka,
A., Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H.,
Valencia, C. D. L. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S.,
Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J.,
Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C.,
Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong,
B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V.,
Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The
burden of heat-related mortality attributable to recent human-induced climate
change, Nat. Clim. Change, 11, 492–500,
https://doi.org/10.1038/s41558-021-01058-x, 2021. a
WHO: Heatwaves and health: guidance on warning-system development, Tech. rep.,
World Health Organization, Geneva,
https://public.wmo.int/en/resources/library/heatwaves-and-health-guidance-warning-system-development (last access: July 2022),
2015.
a
Willett, K. M. and Sherwood, S.: Exceedance of heat index thresholds for 15
regions under a warming climate using the wet-bulb globe temperature,
Int. J. Climatol., 32, 161–177, https://doi.org/10.1002/joc.2257, 2012. a
Wyndham, C. H.: Adaptation to heat and cold, Environ. Res., 2, 442–469,
https://doi.org/10.1016/0013-9351(69)90015-2, 1969. a, b
Zhang, Y. and Shindell, D. T.: Costs from labor losses due to extreme heat in
the USA attributable to climate change, Climatic Change, 164, 35,
https://doi.org/10.1007/s10584-021-03014-2, 2021. a
Zhao, M., Lee, J. K. W., Kjellstrom, T., and Cai, W.: Assessment of the
economic impact of heat-related labor productivity loss: a systematic review,
Climatic Change, 167, 22, https://doi.org/10.1007/s10584-021-03160-7, 2021. a
Zhao, Y., Ducharne, A., Sultan, B., Braconnot, P., and Vautard, R.: Estimating
heat stress from climate-based indicators: Present-day biases and future
spreads in the CMIP5 global climate model ensemble, Environ. Res.
Lett., 10, 084013, https://doi.org/10.1088/1748-9326/10/8/084013, 2015. a
Zivin, J. G., Song, Y., Zhang, P., and Tang, Q.: Temperature and High-Stakes
Cognitive Performance: Evidence From The National College Entrance
Examination in China, SSRN Electronic Journal, NBER Working Paper No. w24821, https://doi.org/10.2139/ssrn.3296057,
2018. a
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
We model the impacts of heat on both mortality and labour productivity in Switzerland in a...
Altmetrics
Final-revised paper
Preprint