Articles | Volume 22, issue 8
https://doi.org/10.5194/nhess-22-2531-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2531-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Zélie Stalhandske
CORRESPONDING AUTHOR
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Valentina Nesa
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Marius Zumwald
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Martina S. Ragettli
Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland
University of Basel, Basel, 4001, Switzerland
Alina Galimshina
Institute of Construction & Infrastructure Management, ETH Zurich, Zurich, 8093, Switzerland
Niels Holthausen
Amt für Abfall, Wasser, Energie und Luft, Canton of Zurich, Zurich, 8090, Switzerland
Martin Röösli
Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland
University of Basel, Basel, 4001, Switzerland
David N. Bresch
Institute for Environmental Decisions, ETH Zurich, Zurich, 8092, Switzerland
Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, Zurich, 8058, Switzerland
Related authors
Sophie L. Buijs, Inga J. Sauer, Chahan M. Kropf, Samuel Juhel, Zélie Stalhandske, and Marleen C. De Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3200, https://doi.org/10.5194/egusphere-2025-3200, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how repeated disasters affect recovery across housing, health, economic systems, and governance. Our findings show that failing to recover fully between events can increase long-term risks but also offers opportunities for learning and adaptation. Understanding these dynamics can help societies plan better, reduce vulnerability, and build resilience to increasingly frequent and severe hazards.
Sophie L. Buijs, Inga J. Sauer, Chahan M. Kropf, Samuel Juhel, Zélie Stalhandske, and Marleen C. De Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2025-3200, https://doi.org/10.5194/egusphere-2025-3200, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how repeated disasters affect recovery across housing, health, economic systems, and governance. Our findings show that failing to recover fully between events can increase long-term risks but also offers opportunities for learning and adaptation. Understanding these dynamics can help societies plan better, reduce vulnerability, and build resilience to increasingly frequent and severe hazards.
Christophe Lienert, Andreas Paul Zischg, Horst Kremers, Jamie McCaughey, Lara Zinkl, and David N. Bresch
Abstr. Int. Cartogr. Assoc., 9, 1, https://doi.org/10.5194/ica-abs-9-1-2025, https://doi.org/10.5194/ica-abs-9-1-2025, 2025
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Lukas Riedel, Thomas Röösli, Thomas Vogt, and David N. Bresch
Geosci. Model Dev., 17, 5291–5308, https://doi.org/10.5194/gmd-17-5291-2024, https://doi.org/10.5194/gmd-17-5291-2024, 2024
Short summary
Short summary
River floods are among the most devastating natural hazards. We propose a flood model with a statistical approach based on openly available data. The model is integrated in a framework for estimating impacts of physical hazards. Although the model only agrees moderately with satellite-detected flood extents, we show that it can be used for forecasting the magnitude of flood events in terms of socio-economic impacts and for comparing these with past events.
Luise J. Fischer, David N. Bresch, Dominik Büeler, Christian M. Grams, Matthias Röthlisberger, and Heini Wernli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1253, https://doi.org/10.5194/egusphere-2024-1253, 2024
Short summary
Short summary
Atmospheric flows over the North Atlantic can be meaningfully classified into weather regimes, and climate simulations suggest that the regime frequencies might change in the future. We provide a quantitative framework that helps assessing whether these regime frequency changes are relevant for understanding climate change signals in precipitation. At least in our example application, this is not the case, i.e., regime frequency changes explain little of the projected precipitation changes.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Chahan M. Kropf, Alessio Ciullo, Laura Otth, Simona Meiler, Arun Rana, Emanuel Schmid, Jamie W. McCaughey, and David N. Bresch
Geosci. Model Dev., 15, 7177–7201, https://doi.org/10.5194/gmd-15-7177-2022, https://doi.org/10.5194/gmd-15-7177-2022, 2022
Short summary
Short summary
Mathematical models are approximations, and modellers need to understand and ideally quantify the arising uncertainties. Here, we describe and showcase the first, simple-to-use, uncertainty and sensitivity analysis module of the open-source and open-access climate-risk modelling platform CLIMADA. This may help to enhance transparency and intercomparison of studies among climate-risk modellers, help focus future research, and lead to better-informed decisions on climate adaptation.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 393–415, https://doi.org/10.5194/nhess-21-393-2021, https://doi.org/10.5194/nhess-21-393-2021, 2021
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions, as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Cited articles
Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Tank, A.
M. K., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A.,
Kumar, K. R., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B.,
Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci,
M., and Vazquez-Aguirre, J. L.: Global observed changes in daily climate
extremes of temperature and precipitation, J. Geophys. Res.-Atmos., 111, D05109, https://doi.org/10.1029/2005JD006290, 2006. a
Aznar-Siguan, G. and Bresch, D. N.: CLIMADA v1: a global weather and climate risk assessment platform, Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, 2019. a, b, c
BFS: Statistik der Unternehmensstruktur (STATENT), Beschäftigte und
Arbeitsstätten: Geodaten,
https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/arbeitsstaetten-beschaeftigung/statistik-unternehmensstruktur-statent-ab-2011.assetdetail.9526894.html
(last access: December 2020), 2017. a
BFS: Statistik der Bevölkerung und Haushalte (STATPOP), Geodaten 2018,
https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/gebaeude-wohnungen-haushalte-personen/bevoelkerung-haushalte-ab-2010.assetdetail.9947069.html
(last access: December 2020), 2018. a
BFS: Swiss Earnings Structure Survey in 2018: initial findings,
https://www.bfs.admin.ch/bfs/en/home/statistics/work-income/wages-income-employment-labour-costs.gnpdetail.2019-0502.html
(last access: December 2020), 2020a. a
BFS: Deaths per week by 5-year age group, sex and major region, 2000–2019,
https://www.bfs.admin.ch/bfs/en/home/statistics/population/births-deaths/deaths.assetdetail.13187304.html
(last access: December 2020), 2020b. a
Bresch, D. N. and Aznar-Siguan, G.: CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool, Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, 2021. a, b
Carleton, T. A. and Hsiang, S. M.: Social and economic impacts of climate,
Science, 353, aad9837, https://doi.org/10.1126/science.aad9837, 2016. a, b
Casanueva, A., Kotlarski, S., Fischer, A. M., Flouris, A. D., Kjellstrom, T.,
Lemke, B., Nybo, L., Schwierz, C., and Liniger, M. A.: Escalating
environmental summer heat exposure – a future threat for the European
workforce, Reg. Environ. Change, 20, 40,
https://doi.org/10.1007/s10113-020-01625-6, 2020. a
Coumou, D., Robinson, A., and Rahmstorf, S.: Global increase in record-breaking
monthly-mean temperatures, Climatic Change, 118, 771–782, https://doi.org/10.1007/s10584-012-0668-1,
2013. a
Dasgupta, S., van Maanen, N., Gosling, S. N., Piontek, F., Otto, C., and
Schleussner, C.-F.: Effects of climate change on combined labour productivity
and supply: an empirical, multi-model study, The Lancet Planetary Health, 5,
e455–e465, https://doi.org/10.1016/S2542-5196(21)00170-4, 2021. a, b, c
Della-Marta, P. M., Haylock, M. R., Luterbacher, J., and Wanner, H.: The role
of increasing temperature variability, J. Geophys. Res.-Atmos., 112, D15103, https://doi.org/10.1029/2007JD008510, 2007. a
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J.,
Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C.,
Tank, A. M. K., Kruger, A. C., Marengo, J., Peterson, T. C., Renom, M.,
Rojas, C. O., Rusticucci, M., Salinger, J., Elrayah, A. S., Sekele, S. S.,
Srivastava, A. K., Trewin, B., Villarroel, C., Vincent, L. A., Zhai, P.,
Zhang, X., and Kitching, S.: Updated analyses of temperature and
precipitation extreme indices since the beginning of the twentieth century:
The HadEX2 dataset, J. Geophys. Res.-Atmos., 118, 2098–2118,
https://doi.org/10.1002/jgrd.50150, 2013. a
Dunne, J. P., Stouffer, R. J., and John, J. G.: Reductions in labour capacity
from heat stress under climate warming, Nat. Clim. Change, 3, 563–566,
https://doi.org/10.1038/nclimate1827, 2013. a
Fischer, E. M. and Knutti, R.: Detection of spatially aggregated changes in
temperature and precipitation extremes, Geophys. Res. Lett., 41, 547–554,
https://doi.org/10.1002/2013GL058499, 2014. a
Fischer, E. M. and Schär, C.: Future changes in daily summer temperature
variability: Driving processes and role for temperature extremes, Clim.
Dynam., 33, 917, https://doi.org/10.1007/s00382-008-0473-8, 2009. a
Fischer, E. M. and Schär, C.: Consistent geographical patterns of changes in
high-impact European heatwaves, Nat. Geosci., 3, 398,
https://doi.org/10.1038/ngeo866, 2010. a
Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A. M., Huber, V., Tong, S.,
de Sousa Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Lavigne, E.,
Correa, P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A.,
Jaakkola, J. J., Ryti, N. R., Pascal, M., Goodman, P. G., Zeka, A.,
Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Diaz, M.,
Cruz, J. C., Seposo, X., Kim, H., Tobias, A., Iñiguez, C., Forsberg, B.,
Åström, D. O., Ragettli, M. S., Guo, Y. L., fu Wu, C., Zanobetti, A.,
Schwartz, J., Bell, M. L., Dang, T. N., Van, D. D., Heaviside, C.,
Vardoulakis, S., Hajat, S., Haines, A., and Armstrong, B.: Projections of
temperature-related excess mortality under climate change scenarios,
The Lancet Planetary Health, 1, e360-e367, https://doi.org/10.1016/S2542-5196(17)30156-0, 2017. a, b
Haines, A., Kovats, R., Campbell-Lendrum, D., and Corvalan, C.: Climate change
and human health: impacts, vulnerability, and mitigation, Lancet, 367, 2101–2109,
https://doi.org/10.1016/S0140-6736(06)68933-2, 2006. a
Hancock, P. A., Ross, J. M., and Szalma, J. L.: A meta-analysis of performance
response under thermal stressors, Human Factors, 49, 851–877,
https://doi.org/10.1518/001872007X230226, 2007. a
Huber, V., Krummenauer, L., Peña-Ortiz, C., Lange, S., Gasparrini, A.,
Vicedo-Cabrera, A. M., Garcia-Herrera, R., and Frieler, K.:
Temperature-related excess mortality in German cities at 2 °C and higher
degrees of global warming, Environ. Res., 186, 109447,
https://doi.org/10.1016/j.envres.2020.109447, 2020. a, b
IPCC: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Tech. rep., 2013. a
IPCC: Climate change 2014 impacts, adaptation and vulnerability: Part A: Global
and sectoral aspects: Working group II contribution to the fifth assessment
report of the intergovernmental panel on climate change,
https://doi.org/10.1017/CBO9781107415379, 2014. a, b
ISO: Hot environments-{Estimation} of heat stress on working man, based on
the {WBGT}-index (wet bulb globe temperature), Geneva: International
Standards Organization, 1989. a
Kjellstrom, T., Gabrysch, S., Lemke, B., and Dear, K.: The 'hothaps' programme
for assessing climate change impacts on occupational health and productivity:
An invitation to carry out field studies, Global Health Action, 2, 2082,
https://doi.org/10.3402/gha.v2i0.2082, 2009a. a, b, c
Kjellstrom, T., Holmer, I., and Lemke, B.: Workplace heat stress, health and
productivity-an increasing challenge for low and middle-income countries
during climate change, Global Health Action, 2, 2082, https://doi.org/10.3402/gha.v2i0.2047,
2009b. a
Kjellstrom, T., Kovats, R. S., Lloyd, S. J., Holt, T., and Tol, R. S.: The
direct impact of climate change on regional labor productivity,
Archives of Environmental and Occupational Health, 64, 217–227, https://doi.org/10.1080/19338240903352776,
2009c. a, b
Kjellstrom, T., Otto, M., Lemke, B., Hyatt, O., Briggs, D., Freyberg, C.,
Lines, L., and Kjellstrom, T.: Climate change and labour: Impacts of heat in
the workplace, Tech. rep.,
https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---gjp/documents/publication/wcms_476194.pdf (last access: July 2020),
2016. a
Lay, C. R., Sarofim, M. C., Vodonos Zilberg, A., Mills, D. M., Jones, R. W.,
Schwartz, J., and Kinney, P. L.: City-level vulnerability to
temperature-related mortality in the USA and future projections: a
geographically clustered meta-regression, The Lancet Planetary Health, 5,
e338–e346, https://doi.org/10.1016/S2542-5196(21)00058-9, 2021. a
Martinez, G. S., Linares, C., Ayuso, A., Kendrovski, V., Boeckmann, M., and
Diaz, J.: Heat-health action plans in Europe: Challenges ahead and how to
tackle them, Environ. Res., 176, 108548, https://doi.org/10.1016/j.envres.2019.108548,
2019. a
Martínez-Solanas, È., Quijal-Zamorano, M., Achebak, H., Petrova, D.,
Robine, J.-M., Herrmann, F. R., Rodó, X., and Ballester, J.: Projections
of temperature-attributable mortality in Europe: a time series analysis of
147 contiguous regions in 16 countries, The Lancet Planetary Health, 5,
e446–e454, 2021. a
MeteoSwiss: Climate scenarios indoor climate,
https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/climate-scenarios-indoor-climate.html (last access: July 2022),
2022. a
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C.,
Bielecki, C. R., Counsell, C. W., Dietrich, B. S., Johnston, E. T., Louis,
L. V., Lucas, M. P., Mckenzie, M. M., Shea, A. G., Tseng, H., Giambelluca,
T. W., Leon, L. R., Hawkins, E., and Trauernicht, C.: Global risk of deadly
heat, Nat. Clim. Change, 7, 501–506, https://doi.org/10.1038/nclimate3322, 2017. a
Morabito, M., Crisci, A., Messeri, A., Messeri, G., Betti, G., Orlandini, S.,
Raschi, A., and Maracchi, G.: Increasing heatwave hazards in the southeastern
European Union capitals, Atmosphere, 8, 115, https://doi.org/10.3390/atmos8070115, 2017. a
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteorol. Soc., 108, 1–24, https://doi.org/10.1002/qj.49710845502, 1982. a
Orlov, A., Sillmann, J., Aaheim, A., Aunan, K., and de Bruin, K.: Economic
Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case
Study of Europe, Economics of Disasters and Climate Change, 3, 191–211,
https://doi.org/10.1007/s41885-019-00044-0, 2019. a
Park, J.: Hot Temperature, Human Capital and Adaptation to Climate Change,
Harvard University Economics Department, https://scholar.harvard.edu/files/jisungpark/files/paper_nyc_aer.pdf (last access: July 2022), 2017. a
Parsons, K.: Human thermal environments: The effects of hot, moderate, andcold
environments on human health, comfort, and performance, CRC Press, third edition,
https://doi.org/10.1201/b16750, 2014. a
Perez, L. and Künzli, N.: From measures of effects to measures of potential
impact, International J. Pub. Health, 54, 45–48,
https://doi.org/10.1007/s00038-008-8025-x, 2009. a
Ragettli, M. S. and Röösli, M.: Gesundheitliche Auswirkungen von Hitze in der
Schweiz und die Bedeutung von Präventionsmassnahmen, Tech. rep.,
https://so.ch/fileadmin/internet/ddi/ddi-gesa/pdf/kaed/Umwelt/BT_SwissTPH_2020_Gesundheitliche_Auswirkungen_von_Hitze_2019_Vergleich_2003-2015-2018_d.pdf (last access: July 2022),
2020. a, b
Roudsari, M. S. and Pak, M.: Ladybug: A parametric environmental plugin for
grasshopper to help designers create an environmentally-conscious design,
Proceedings of BS 2013: 13th Conference of the International Building
Performance Simulation Association, Chambery, France, 26–28 August 2013, 2013. a, b
Sahu, S., Sett, M., and Kjellstrom, T.: Heat exposure, cardiovascular stress
and work productivity in rice harvesters in India: Implications for a climate
change future, Industrial Health, 51, 424–431, https://doi.org/10.2486/indhealth.2013-0006, 2013. a, b
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A.,
and Appenzeller, C.: The role of increasing temperature variability in
European summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004. a
Seppänen, O., Fisk, W., and Lei, Q.: Effect of Temperature on Task Performance
in Office Environment, Lawrence Berkeley National Laboratory, https://indoor.lbl.gov/publications/effect-temperature-task-performance (last access: July 2022), 2006. a
Shayegh, S., Manoussi, V., and Dasgupta, S.: Climate change and development in
South Africa: the impact of rising temperatures on economic productivity and
labour availability, Clim. Develop., 13, 1–11,
https://doi.org/10.1080/17565529.2020.1857675, 2020. a
Sørland, S. L., Fischer, A. M., Kotlarski, S., Künsch, H. R., Liniger, M. A.,
Rajczak, J., Schär, C., Spirig, C., Strassmann, K., and Knutti, R.: CH2018
– National climate scenarios for Switzerland: How to construct
consistent multi-model projections from ensembles of opportunity, Climate
Services, 20, 100196, https://doi.org/10.1016/j.cliser.2020.100196, 2020. a
Stalhandske, Z. and Nesa, V.: zeliest/heat_mortality_productivity_impacts: v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.6908285, 2022a. a
Stalhandske, Z. and Nesa, V.: Data from “Projected Impact of Heat on Mortality and Labour Productivity under Climate Change in Switzerland”, ETH Zürich [data set], https://doi.org/10.3929/ethz-b-000556636, 2022b. a
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R.,
Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D. M., Abrutzky, R.,
Tong, S., Coelho, M. d. S. Z. S., Saldiva, P. H. N., Lavigne, E., Correa,
P. M., Ortega, N. V., Kan, H., Osorio, S., Kyselý, J., Urban, A., Orru, H.,
Indermitte, E., Jaakkola, J. J. K., Ryti, N., Pascal, M., Schneider, A.,
Katsouyanni, K., Samoli, E., Mayvaneh, F., Entezari, A., Goodman, P., Zeka,
A., Michelozzi, P., de’Donato, F., Hashizume, M., Alahmad, B., Diaz, M. H.,
Valencia, C. D. L. C., Overcenco, A., Houthuijs, D., Ameling, C., Rao, S.,
Di Ruscio, F., Carrasco-Escobar, G., Seposo, X., Silva, S., Madureira, J.,
Holobaca, I. H., Fratianni, S., Acquaotta, F., Kim, H., Lee, W., Iniguez, C.,
Forsberg, B., Ragettli, M. S., Guo, Y. L. L., Chen, B. Y., Li, S., Armstrong,
B., Aleman, A., Zanobetti, A., Schwartz, J., Dang, T. N., Dung, D. V.,
Gillett, N., Haines, A., Mengel, M., Huber, V., and Gasparrini, A.: The
burden of heat-related mortality attributable to recent human-induced climate
change, Nat. Clim. Change, 11, 492–500,
https://doi.org/10.1038/s41558-021-01058-x, 2021. a
WHO: Heatwaves and health: guidance on warning-system development, Tech. rep.,
World Health Organization, Geneva,
https://public.wmo.int/en/resources/library/heatwaves-and-health-guidance-warning-system-development (last access: July 2022),
2015.
a
Willett, K. M. and Sherwood, S.: Exceedance of heat index thresholds for 15
regions under a warming climate using the wet-bulb globe temperature,
Int. J. Climatol., 32, 161–177, https://doi.org/10.1002/joc.2257, 2012. a
Wyndham, C. H.: Adaptation to heat and cold, Environ. Res., 2, 442–469,
https://doi.org/10.1016/0013-9351(69)90015-2, 1969. a, b
Zhang, Y. and Shindell, D. T.: Costs from labor losses due to extreme heat in
the USA attributable to climate change, Climatic Change, 164, 35,
https://doi.org/10.1007/s10584-021-03014-2, 2021. a
Zhao, M., Lee, J. K. W., Kjellstrom, T., and Cai, W.: Assessment of the
economic impact of heat-related labor productivity loss: a systematic review,
Climatic Change, 167, 22, https://doi.org/10.1007/s10584-021-03160-7, 2021. a
Zhao, Y., Ducharne, A., Sultan, B., Braconnot, P., and Vautard, R.: Estimating
heat stress from climate-based indicators: Present-day biases and future
spreads in the CMIP5 global climate model ensemble, Environ. Res.
Lett., 10, 084013, https://doi.org/10.1088/1748-9326/10/8/084013, 2015. a
Zivin, J. G., Song, Y., Zhang, P., and Tang, Q.: Temperature and High-Stakes
Cognitive Performance: Evidence From The National College Entrance
Examination in China, SSRN Electronic Journal, NBER Working Paper No. w24821, https://doi.org/10.2139/ssrn.3296057,
2018. a
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
We model the impacts of heat on both mortality and labour productivity in Switzerland in a...
Altmetrics
Final-revised paper
Preprint