Research article
02 Aug 2022
Research article
| 02 Aug 2022
Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe
Angelica Tarpanelli et al.
Related authors
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-403, https://doi.org/10.5194/essd-2022-403, 2022
Preprint under review for ESSD
Short summary
Short summary
Irrigation is the main source of global freswhwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signal are presented.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
EGUsphere, https://doi.org/10.5194/egusphere-2022-340, https://doi.org/10.5194/egusphere-2022-340, 2022
Short summary
Short summary
We analyzed the water budget of nested karst catchments with simple methods and modelling. Whilst karst pathways are not elusive, we exploit techniques to have information from the available data of precipitation and discharge which result in a reliable determination of the response lag-time. We also modelled snow cover dynamics and evapotranspiration obtaining a parsimonious account of the water budget of the basin and its subbasins. Data, models and workflows has been made available.
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-403, https://doi.org/10.5194/essd-2022-403, 2022
Preprint under review for ESSD
Short summary
Short summary
Irrigation is the main source of global freswhwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signal are presented.
Sara Modanesi, Christian Massari, Michel Bechtold, Hans Lievens, Angelica Tarpanelli, Luca Brocca, Luca Zappa, and Gabriëlle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 26, 4685–4706, https://doi.org/10.5194/hess-26-4685-2022, https://doi.org/10.5194/hess-26-4685-2022, 2022
Short summary
Short summary
Given the crucial impact of irrigation practices on the water cycle, this study aims at estimating irrigation through the development of an innovative data assimilation system able to ingest high-resolution Sentinel-1 radar observations into the Noah-MP land surface model. The developed methodology has important implications for global water resource management and the comprehension of human impacts on the water cycle and identifies main challenges and outlooks for future research.
Stefania Camici, Gabriele Giuliani, Luca Brocca, Christian Massari, Angelica Tarpanelli, Hassan Hashemi Farahani, Nico Sneeuw, Marco Restano, and Jérôme Benveniste
Geosci. Model Dev., 15, 6935–6956, https://doi.org/10.5194/gmd-15-6935-2022, https://doi.org/10.5194/gmd-15-6935-2022, 2022
Short summary
Short summary
This paper presents an innovative approach, STREAM (SaTellite-based Runoff Evaluation And Mapping), to derive daily river discharge and runoff estimates from satellite observations of soil moisture, precipitation, and terrestrial total water storage anomalies. Potentially useful for multiple operational and scientific applications, the added value of the STREAM approach is the ability to increase knowledge on the natural processes, human activities, and their interactions on the land.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
EGUsphere, https://doi.org/10.5194/egusphere-2022-340, https://doi.org/10.5194/egusphere-2022-340, 2022
Short summary
Short summary
We analyzed the water budget of nested karst catchments with simple methods and modelling. Whilst karst pathways are not elusive, we exploit techniques to have information from the available data of precipitation and discharge which result in a reliable determination of the response lag-time. We also modelled snow cover dynamics and evapotranspiration obtaining a parsimonious account of the water budget of the basin and its subbasins. Data, models and workflows has been made available.
Andrea Manconi, Alessandro C. Mondini, and the AlpArray working group
Nat. Hazards Earth Syst. Sci., 22, 1655–1664, https://doi.org/10.5194/nhess-22-1655-2022, https://doi.org/10.5194/nhess-22-1655-2022, 2022
Short summary
Short summary
Information on when, where, and how landslide events occur is the key to building complete catalogues and performing accurate hazard assessments. Here we show a procedure that allows us to benefit from the increased density of seismic sensors installed on ground for earthquake monitoring and from the unprecedented availability of satellite radar data. We show how the procedure works on a recent sequence of landslides that occurred at Piz Cengalo (Swiss Alps) in 2017.
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
Christian Massari, Francesco Avanzi, Giulia Bruno, Simone Gabellani, Daniele Penna, and Stefania Camici
Hydrol. Earth Syst. Sci., 26, 1527–1543, https://doi.org/10.5194/hess-26-1527-2022, https://doi.org/10.5194/hess-26-1527-2022, 2022
Short summary
Short summary
Droughts are a creeping disaster, meaning that their onset, duration and recovery are challenging to monitor and forecast. Here, we provide further evidence of an additional challenge of droughts, i.e. the fact that the deficit in water supply during droughts is generally much more than expected based on the observed decline in precipitation. At a European scale we explain this with enhanced evapotranspiration, sustained by higher atmospheric demand for moisture during such dry periods.
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021, https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Short summary
Worldwide, the amount of water used for agricultural purposes is rising and the quantification of irrigation is becoming a crucial topic. Land surface models are not able to correctly simulate irrigation. Remote sensing observations offer an opportunity to fill this gap as they are directly affected by irrigation. We equipped a land surface model with an observation operator able to transform Sentinel-1 backscatter observations into realistic vegetation and soil states via data assimilation.
Daniele Masseroni, Stefania Camici, Alessio Cislaghi, Giorgio Vacchiano, Christian Massari, and Luca Brocca
Hydrol. Earth Syst. Sci., 25, 5589–5601, https://doi.org/10.5194/hess-25-5589-2021, https://doi.org/10.5194/hess-25-5589-2021, 2021
Short summary
Short summary
We evaluate 63 years of changes in annual streamflow volume across Europe, using a data set of more than 3000 stations, with a special focus on the Mediterranean basin. The results show decreasing (increasing) volumes in the southern (northern) regions. These trends are strongly consistent with the changes in temperature and precipitation.
Louise Mimeau, Yves Tramblay, Luca Brocca, Christian Massari, Stefania Camici, and Pascal Finaud-Guyot
Hydrol. Earth Syst. Sci., 25, 653–669, https://doi.org/10.5194/hess-25-653-2021, https://doi.org/10.5194/hess-25-653-2021, 2021
Short summary
Short summary
Soil moisture is a key variable related to droughts and flood genesis, but little is known about the evolution of soil moisture under climate change. Here, using a simulation approach, we show that changes in soil moisture are driven by changes in precipitation intermittence rather than changes in precipitation intensity or in temperature.
Luca Brocca, Paolo Filippucci, Sebastian Hahn, Luca Ciabatta, Christian Massari, Stefania Camici, Lothar Schüller, Bojan Bojkov, and Wolfgang Wagner
Earth Syst. Sci. Data, 11, 1583–1601, https://doi.org/10.5194/essd-11-1583-2019, https://doi.org/10.5194/essd-11-1583-2019, 2019
Short summary
Short summary
SM2RAIN–ASCAT is a new 12-year (2007–2018) global-scale rainfall dataset obtained by applying the SM2RAIN algorithm to ASCAT soil moisture data. The dataset has a spatiotemporal sampling resolution of 12.5 km and 1 d. Results show that the new dataset performs particularly well in Africa and South America, i.e. in the continents in which ground observations are scarce and the need for satellite rainfall data is high. SM2RAIN–ASCAT is available at http://doi.org/10.5281/zenodo.340556.
A. C. Mondini, A. Viero, M. Cavalli, L. Marchi, G. Herrera, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 1749–1759, https://doi.org/10.5194/nhess-14-1749-2014, https://doi.org/10.5194/nhess-14-1749-2014, 2014
Related subject area
Hydrological Hazards
How uncertain are precipitation and peak flow estimates for the July 2021 flooding event?
Estimating the likelihood of roadway pluvial flood based on crowdsourced traffic data and depression-based DEM analysis
A multi-strategy-mode waterlogging-prediction framework for urban flood depth
Multiscale flood risk assessment under climate change: the case of the Miño River in the city of Ourense, Spain
Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data
Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
A climate-conditioned catastrophe risk model for UK flooding
Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July 2021 floods in Germany
Brief communication: Western Europe flood in 2021 – mapping agriculture flood exposure from synthetic aperture radar (SAR)
Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
Bare-earth DEM Generation from ArcticDEM, and Its Use in Flood Simulation
A new index to quantify the extremeness of precipitation across scales
Assessing flood hazard changes using climate model forcing
Characterizing multivariate coastal flooding events in a semi-arid region: the implications of copula choice, sampling, and infrastructure
Different drought types and the spatial variability in their hazard, impact, and propagation characteristics
More than heavy rain turning into fast-flowing water – a landscape perspective on the 2021 Eifel floods
Integrated drought risk assessment to support adaptive policymaking in the Netherlands
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe. Part 1: Event description and analysis
Assessing flooding impact to riverine bridges: an integrated analysis
Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China
First application of the Integrated Karst Aquifer Vulnerability (IKAV) method – potential and actual vulnerability in Yucatán, Mexico
Brief communication: Seismological analysis of flood dynamics and hydrologically triggered earthquake swarms associated with Storm Alex
System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China
Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains
A performance-based approach to quantify atmospheric river flood risk
Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme
A globally-applicable framework for compound flood hazard modeling
Extreme-coastal-water-level estimation and projection: a comparison of statistical methods
Spatiotemporal evolution and meteorological triggering conditions of hydrological drought in the Hun River basin, NE China
The Cambodian Mekong floodplain under future development plans and climate change
Geo-historical database of flood impacts in Alpine catchments (HIFAVa database, Arve River, France, 1850–2015)
Compound flood modeling framework for surface–subsurface water interactions
Assessing tropical cyclone compound flood risk using hydrodynamic modelling: a case study in Haikou City, China
An approach to identify the best climate models for the assessment of climate change impacts on meteorological and hydrological droughts
Evolution of multivariate drought hazard, vulnerability and risk in India under climate change
Flash flood warnings in context: combining local knowledge and large-scale hydro-meteorological patterns
Comparison of Flood Inundation Modeling Frameworks within a Small Coastal Watershed during a Compound Flood Event
A comparative flood damage and risk impact assessment of land use changes
Temporal changes in rainfall intensity–duration thresholds for post-wildfire flash floods in southern California
Compound inland flood events: different pathways, different impacts and different coping options
Review article: Factors leading to the occurrence of flood fatalities: a systematic review of research papers published between 2010 and 2020
Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow
Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning – a case study of the 2019 floods in southern Malawi
Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China
Evaluating integrated water management strategies to inform hydrological drought mitigation
Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?
Global flood exposure from different sized rivers
A paradigm of extreme rainfall pluvial floods in complex urban areas: the flood event of 15 July 2020 in Palermo (Italy)
Space-time clustering of climate extremes amplify global climate impacts, leading to fat-tailed risk
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Arefeh Safaei-Moghadam, David Tarboton, and Barbara Minsker
Nat. Hazards Earth Syst. Sci., 23, 1–19, https://doi.org/10.5194/nhess-23-1-2023, https://doi.org/10.5194/nhess-23-1-2023, 2023
Short summary
Short summary
Climate change, urbanization, and aging infrastructure contribute to flooding on roadways. This study evaluates the potential for flood reports collected from Waze – a community-based navigation app – to predict these events. Waze reports correlate primarily with low-lying depressions on roads. Therefore, we developed two data-driven models to determine whether roadways will flood. Analysis showed that in the city of Dallas, drainage area and imperviousness are the most significant contributors.
Zongjia Zhang, Jun Liang, Yujue Zhou, Zhejun Huang, Jie Jiang, Junguo Liu, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 4139–4165, https://doi.org/10.5194/nhess-22-4139-2022, https://doi.org/10.5194/nhess-22-4139-2022, 2022
Short summary
Short summary
An innovative multi-strategy-mode waterlogging-prediction framework for predicting waterlogging depth is proposed in the paper. The framework selects eight regression algorithms for comparison and tests the prediction accuracy and robustness of the model under different prediction strategies. Ultimately, the accuracy of predicting water depth after 30 min can exceed 86.1 %. This can aid decision-making in terms of issuing early warning information and determining emergency responses in advance.
Diego Fernández-Nóvoa, Orlando García-Feal, José González-Cao, Maite deCastro, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3957–3972, https://doi.org/10.5194/nhess-22-3957-2022, https://doi.org/10.5194/nhess-22-3957-2022, 2022
Short summary
Short summary
A multiscale analysis, where the historical and future precipitation data from the CORDEX project were used as input in a hydrological model (HEC-HMS) that, in turn, feeds a 2D hydraulic model (Iber+), was applied to the case of the Miño-Sil basin (NW Spain), specifically to Ourense city, in order to analyze future changes in flood hazard. Detailed flood maps indicate an increase in the frequency and intensity of future floods, implying an increase in flood hazard in important areas of the city.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022, https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Short summary
Nepal’s second-largest city has been rapidly growing since the 1970s, although its valley has been affected by rare, catastrophic floods in recent and historic times. We analyse potential impacts of such floods on urban areas and infrastructure by modelling 10 physically plausible flood scenarios along Pokhara’s main river. We find that hydraulic effects would largely affect a number of squatter settlements, which have expanded rapidly towards the river by a factor of up to 20 since 2008.
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
EGUsphere, https://doi.org/10.5194/egusphere-2022-829, https://doi.org/10.5194/egusphere-2022-829, 2022
Short summary
Short summary
In this work we present and validate a new flood model for the UK that simulates pluvial, fluvial and coastal flooding. We show that previous UK flood losses based on government data and used in national climate change risk assessments are overestimated by a factor of ~3. These official estimates lie well outside our modelled loss distribution, which is plausibly centred on the observations.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Yinxue Liu, Paul Bates, and Jeffery Neal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-210, https://doi.org/10.5194/nhess-2022-210, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper, we test two approaches for removing buildings and other above-ground objects from a state-of-the-art satellite photogrammetry topography product, ArcticDEM. Our best technique gives a 70 % reduction in vertical error, with an average difference of 1.02 m from a benchmark LIDAR for the city of Helsinki in Finland. When used in a simulation of rainfall-driven flooding the bare-earth version of ArcticDEM yields a significant improvement in predicted inundation extent and water depth.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 22, 2791–2805, https://doi.org/10.5194/nhess-22-2791-2022, https://doi.org/10.5194/nhess-22-2791-2022, 2022
Short summary
Short summary
To better understand how the frequency and intensity of heavy precipitation events (HPEs) will change with changing climate and to adapt disaster risk management accordingly, we have to quantify the extremeness of HPEs in a reliable way. We introduce the xWEI (cross-scale WEI) and show that this index can reveal important characteristics of HPEs that would otherwise remain hidden. We conclude that the xWEI could be a valuable instrument in both disaster risk management and research.
David P. Callaghan and Michael G. Hughes
Nat. Hazards Earth Syst. Sci., 22, 2459–2472, https://doi.org/10.5194/nhess-22-2459-2022, https://doi.org/10.5194/nhess-22-2459-2022, 2022
Short summary
Short summary
A new method was developed to estimate changes in flood hazard under climate change. We use climate projections covering New South Wales, Australia, with two emission paths of business as usual and one with reduced emissions. We apply our method to the lower floodplain of the Gwydir Valley with changes in flood hazard provided over the next 90 years compared with the previous 50 years. We find that changes in flood hazard decrease over time within the Gwydir Valley floodplain.
Joseph T. D. Lucey and Timu W. Gallien
Nat. Hazards Earth Syst. Sci., 22, 2145–2167, https://doi.org/10.5194/nhess-22-2145-2022, https://doi.org/10.5194/nhess-22-2145-2022, 2022
Short summary
Short summary
Coastal flooding can result from multiple flood drivers (e.g., tides, waves, river flows, rainfall) occurring at the same time. This study characterizes flooding events caused by high marine water levels and rain. Results show that wet-season coinciding sampling may better describe extreme flooding events in a dry, tidally dominated region. A joint-probability-based function is then used to estimate sea wall impacts on urban coastal flooding.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Marjolein J. P. Mens, Gigi van Rhee, Femke Schasfoort, and Neeltje Kielen
Nat. Hazards Earth Syst. Sci., 22, 1763–1776, https://doi.org/10.5194/nhess-22-1763-2022, https://doi.org/10.5194/nhess-22-1763-2022, 2022
Short summary
Short summary
Many countries have to prepare for droughts by proposing policy actions to increase water supply, reduce water demand, or limit the societal impact. Societal cost–benefit analysis is required to support decision-making for a range of future scenarios, accounting for climate change and socio-economic developments. This paper presents a framework to assess drought policy actions based on quantification of drought risk and exemplifies it for the Netherlands’ drought risk management strategy.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-137, https://doi.org/10.5194/nhess-2022-137, 2022
Preprint under review for NHESS
Short summary
Short summary
The flood event in July 2021 was one of the most severe natural disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examine the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. While Part 1 focuses on the description of the event, the second part puts the event in historical and climate change contexts.
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022, https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Lulu Liu, Jiangbo Gao, and Shaohong Wu
Nat. Hazards Earth Syst. Sci., 22, 1577–1590, https://doi.org/10.5194/nhess-22-1577-2022, https://doi.org/10.5194/nhess-22-1577-2022, 2022
Short summary
Short summary
The impact of extreme events is increasing with global warming. Based on future scenario data and an improved quantitative assessment model of natural-disaster risk, this study analyses the spatial and temporal patterns of floods in China at 1.5 °C and 2 °C of global warming, quantitatively assesses the socioeconomic risks posed by floods, and determines the integrated risk levels. Global warming of 1.5 °C can effectively reduce the population affected and the economic risks of floods.
Miguel Moreno-Gómez, Carolina Martínez-Salvador, Rudolf Liedl, Catalin Stefan, and Julia Pacheco
Nat. Hazards Earth Syst. Sci., 22, 1591–1608, https://doi.org/10.5194/nhess-22-1591-2022, https://doi.org/10.5194/nhess-22-1591-2022, 2022
Short summary
Short summary
Current vulnerability methods, as tools to protect groundwater resources from pollution, present some limitations and drawbacks: the roles of population and economic activities are not considered by such methods. The methodology presented in this work combines natural characteristics and human-driven conditions of a given region to improve the process of groundwater vulnerability analysis. Results indicate the reliability of this alternative method to improve groundwater protection strategies.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Corinne Bowers, Katherine A. Serafin, and Jack Baker
Nat. Hazards Earth Syst. Sci., 22, 1371–1393, https://doi.org/10.5194/nhess-22-1371-2022, https://doi.org/10.5194/nhess-22-1371-2022, 2022
Short summary
Short summary
Atmospheric rivers (ARs) cause significant flooding on the US west coast. We present a new Performance-based Atmospheric River Risk Analysis (PARRA) framework that connects models of atmospheric forcings, hydrologic impacts, and economic consequences to better estimate losses from AR-induced river flooding. We apply the PARRA framework to a case study in Sonoma County, CA, USA, and show that the framework can quantify the potential benefit of flood mitigation actions such as home elevation.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Hessel C. Winsemius, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2022-149, https://doi.org/10.5194/egusphere-2022-149, 2022
Short summary
Short summary
In coastal deltas flooding can occur from interactions between surge and waves, river discharge and precipitation, so-called compound flooding. Global flood models however ignore these interaction. We therefore present a framework to create a reproducible compound flood model anywhere at the globe and show how it can be used to better understand compound flooding. The framework is applied to two historical events tropical cyclone events in Mozambique with good results.
Maria Francesca Caruso and Marco Marani
Nat. Hazards Earth Syst. Sci., 22, 1109–1128, https://doi.org/10.5194/nhess-22-1109-2022, https://doi.org/10.5194/nhess-22-1109-2022, 2022
Short summary
Short summary
We comparatively evaluate the predictive performance of traditional and new approaches to estimate the probability distributions of extreme coastal water levels. The metastatistical approach maximizes the use of observational information and provides reliable estimates of high quantiles with respect to traditional methods. Leveraging the increased estimation accuracy afforded by this approach, we investigate future changes in the frequency of extreme total water levels.
Shupeng Yue, Xiaodan Sheng, and Fengtian Yang
Nat. Hazards Earth Syst. Sci., 22, 995–1014, https://doi.org/10.5194/nhess-22-995-2022, https://doi.org/10.5194/nhess-22-995-2022, 2022
Short summary
Short summary
To develop drought assessment and early warning systems, it is necessary to explore the characteristics of drought and its propagation process. In this article, a generalized and efficient drought research framework is studied and verified. It includes the evaluation of the spatiotemporal evolution, the construction of the return period calculation model, and the quantitative analysis of the meteorological trigger conditions of drought based on an improved Bayesian network model.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Eva Boisson, Bruno Wilhelm, Emmanuel Garnier, Alain Mélo, Sandrine Anquetin, and Isabelle Ruin
Nat. Hazards Earth Syst. Sci., 22, 831–847, https://doi.org/10.5194/nhess-22-831-2022, https://doi.org/10.5194/nhess-22-831-2022, 2022
Short summary
Short summary
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports flood occurrences and impacts (1850–2015) in a French Alpine catchment. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effects and/or increasing exposure rather than hydrological changes. The analysis reveals that small mountain streams caused more impacts (67 %) than the main river.
Francisco Peña, Fernando Nardi, Assefa Melesse, Jayantha Obeysekera, Fabio Castelli, René M. Price, Todd Crowl, and Noemi Gonzalez-Ramirez
Nat. Hazards Earth Syst. Sci., 22, 775–793, https://doi.org/10.5194/nhess-22-775-2022, https://doi.org/10.5194/nhess-22-775-2022, 2022
Short summary
Short summary
Groundwater-induced flooding, a rare phenomenon that is increasing in low-elevation coastal cities due to higher water tables, is often neglected in flood risk mapping due to its sporadic frequency and considerably lower severity with respect to other flood hazards. A loosely coupled flood model is used to simulate the interplay between surface and subsurface flooding mechanisms simultaneously. This work opens new horizons on the development of compound flood models from a holistic perspective.
Qing Liu, Hanqing Xu, and Jun Wang
Nat. Hazards Earth Syst. Sci., 22, 665–675, https://doi.org/10.5194/nhess-22-665-2022, https://doi.org/10.5194/nhess-22-665-2022, 2022
Short summary
Short summary
The coastal area is a major floodplain in compound flood events in coastal cities, primarily due to storm tide, with the inundation severity positively correlated with the height of the storm tide. Simply accumulating every single-driven flood hazard (rainstorm inundation and storm tide flooding) to define the compound flood hazard may cause underestimation. The assessment of tropical cyclone compound flood risk can provide vital insight for research on coastal flooding prevention.
Antonio-Juan Collados-Lara, Juan-de-Dios Gómez-Gómez, David Pulido-Velazquez, and Eulogio Pardo-Igúzquiza
Nat. Hazards Earth Syst. Sci., 22, 599–616, https://doi.org/10.5194/nhess-22-599-2022, https://doi.org/10.5194/nhess-22-599-2022, 2022
Short summary
Short summary
This work studies the benefit of using more reliable local climate scenarios to analyse hydrological impacts. It has been applied in the Cenajo basin (south-eastern Spain), where we showed that the best approximations of the historical meteorology also provide the best approximations of the hydrology. The two selected climate models predict worrying changes in precipitation, temperature, streamflows and meteorological and hydrological droughts for the period 2071–2100 under the RCP8.5.
Venkataswamy Sahana and Arpita Mondal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-18, https://doi.org/10.5194/nhess-2022-18, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
In an agriculture-dependent, densely-populated country such as India, drought risk projection is important to assess future water security. This study presents the first comprehensive drought risk assessment over India, integrating hazard and vulnerability information. Future drought risk is found to be more significantly driven by increased vulnerability resulting from societal developments rather than climate-induced changes in hazard. These findings can inform planning for drought resilience.
Agathe Bucherie, Micha Werner, Marc van den Homberg, and Simon Tembo
Nat. Hazards Earth Syst. Sci., 22, 461–480, https://doi.org/10.5194/nhess-22-461-2022, https://doi.org/10.5194/nhess-22-461-2022, 2022
Short summary
Short summary
Local communities in northern Malawi have well-developed knowledge of the conditions leading to flash floods, spatially and temporally. Scientific analysis of catchment geomorphology and global reanalysis datasets corroborates this local knowledge, underlining the potential of these large-scale scientific datasets. Combining local knowledge with contemporary scientific datasets provides a common understanding of flash flood events, contributing to a more people-centred warning to flash floods.
Joseph Gutenson, Ahmad Tavakoly, Mohammad Islam, Oliver Wing, William Lehman, Chase Hamilton, Mark Wahl, and Chris Massey
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-27, https://doi.org/10.5194/nhess-2022-27, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Emergency managers use event-based flood inundation maps, or Event Maps, to plan and coordinate flood fights. We perform a case study test of three different flood mapping frameworks to see if the Event Map differences lead to substantial differences in the location and magnitude of flood exposure and consequences. We find that the Event Maps are much different physically and that the physical differences do produce differences in the location and magnitude of exposure and consequences.
Karen Gabriels, Patrick Willems, and Jos Van Orshoven
Nat. Hazards Earth Syst. Sci., 22, 395–410, https://doi.org/10.5194/nhess-22-395-2022, https://doi.org/10.5194/nhess-22-395-2022, 2022
Short summary
Short summary
As land use influences hydrological processes (e.g., forests have a high water retention and infiltration capacity), it also impacts floods downstream in the river system. This paper demonstrates an approach quantifying the impact of land use changes on economic flood damages: damages in an initial situation are quantified and compared to damages of simulated floods associated with a land use change scenario. This approach can be used as an explorative tool in sustainable flood risk management.
Tao Liu, Luke A. McGuire, Nina Oakley, and Forest Cannon
Nat. Hazards Earth Syst. Sci., 22, 361–376, https://doi.org/10.5194/nhess-22-361-2022, https://doi.org/10.5194/nhess-22-361-2022, 2022
Short summary
Short summary
A well-constrained rainfall-runoff model forced by radar-derived precipitation is used to define rainfall intensity-duration (ID) thresholds for flash floods. The rainfall ID doubles in 5 years after a severe wildfire in a watershed in southern California, USA. Rainfall ID performs stably well for intense pulses of rainfall over durations of 30-60 minutes that cover at least 15%-25% of the watershed. This finding could help issuing flash flood warnings based on radar-derived precipitation.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Olga Petrucci
Nat. Hazards Earth Syst. Sci., 22, 71–83, https://doi.org/10.5194/nhess-22-71-2022, https://doi.org/10.5194/nhess-22-71-2022, 2022
Short summary
Short summary
This systematic review highlights flood mortality factors and the strategies to mitigate them, as obtained from 44 scientific articles published between 2010 and 2020. The findings are the classification of flood mortality drivers in two groups and the identification of strategies to cope with them. Future studies should fill the data gaps regarding flood fatalities in developing countries and information on people who have survived floods, which can be useful in educational campaigns.
Yuhan Yang, Jie Yin, Weiguo Zhang, Yan Zhang, Yi Lu, Yufan Liu, Aoyue Xiao, Yunxiao Wang, and Wenming Song
Nat. Hazards Earth Syst. Sci., 21, 3563–3572, https://doi.org/10.5194/nhess-21-3563-2021, https://doi.org/10.5194/nhess-21-3563-2021, 2021
Short summary
Short summary
This is the first time the compound flooding process of heavy rain and levee-breach-induced flooding has been modeled. Real-life cases of historical flooding events have been adequately investigated. Our results provide a comprehensive view of the spatial patterns of the flood evolution, the dynamic process, and mechanism of these cases, which can help decision makers to develop effective emergency response plans and flood adaptation strategies.
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
Haixia Zhang, Weihua Fang, Hua Zhang, and Lu Yu
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, https://doi.org/10.5194/nhess-21-3161-2021, https://doi.org/10.5194/nhess-21-3161-2021, 2021
Short summary
Short summary
Taking a single flood disaster in Lishui city as an example, a rapid and refined assessment of economic loss is studied and verified, which can effectively simulate the distribution of loss ratio and loss value. It includes the construction of land use type and value based on data fusion and an expert questionnaire survey, the fitting and calibration of vulnerability curves based on an existing database and disaster loss reporting, and estimation of loss ratio and loss value by spatial analysis.
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021, https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Short summary
Managing water demand and supply during droughts is complex, as highly pressured human–water systems can overuse water sources to maintain water supply. We evaluated the impact of drought policies on water resources using a socio-hydrological model. For a range of hydrogeological conditions, we found that integrated drought policies reduce baseflow and groundwater droughts most if extra surface water is imported, reducing the pressure on water resources during droughts.
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Short summary
Riverine flood risk assessments require the identification of areas prone to potential flooding. We find that (topography-based) hydrogeomorphic floodplain maps can in many cases be useful for riverine flood risk assessments, particularly where hydrologic data are scarce. For 26 countries across the global south, we also demonstrate how dataset choice influences the estimated number of people living within flood-prone zones.
Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith
Nat. Hazards Earth Syst. Sci., 21, 2829–2847, https://doi.org/10.5194/nhess-21-2829-2021, https://doi.org/10.5194/nhess-21-2829-2021, 2021
Short summary
Short summary
The use of different global datasets to calculate flood exposure can lead to differences in global flood exposure estimates. In this study, we use three global population datasets and a simple measure of a river’s flood susceptibility (based on the terrain alone) to explore how the choice of population data and the size of river represented in global flood models affect global and national flood exposure estimates.
Antonio Francipane, Dario Pumo, Marco Sinagra, Goffredo La Loggia, and Leonardo Valerio Noto
Nat. Hazards Earth Syst. Sci., 21, 2563–2580, https://doi.org/10.5194/nhess-21-2563-2021, https://doi.org/10.5194/nhess-21-2563-2021, 2021
Short summary
Short summary
In the last few years, some cities in the Mediterranean area have witnessed an increase in extreme rainfall events such as urban floods. The study focuses on a particularly intense urban flood that occurred in Palermo on 15 July 2020, which highlighted the need for a shift in the way stormwater in urban settlements is managed. We think that the framework used to study the impacts of the event and some conclusive remarks could be easily transferred to other urban contexts.
Luc Bonnafous and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 21, 2277–2284, https://doi.org/10.5194/nhess-21-2277-2021, https://doi.org/10.5194/nhess-21-2277-2021, 2021
Short summary
Short summary
Extreme climate events can cause human and economic catastrophe at the global scale. For specific sectors, such as humanitarian aid or insurance, being able to understand how (i.e., with which frequency and intensity) these events can occur simultaneously at different locations or several times in a given amount of time and hit critical assets is all-important to design contingency plans. Here we develop an indicator to study co-occurence in space and time of wet and dry extremes.
Cited articles
Amici, G., Dell'Acqua, F., Gamba, P., and Pulina, G.: A comparison of fuzzy
and neuro-fuzzy data fusion for flooded area mapping using SAR images, Int. J. Remote Sens., 25, 4425–4430, https://doi.org/10.1080/01431160412331269634, 2004.
Amitrano, D., Di Martino, G., Iodice, A., Riccio, D., and Ruello, G.:
Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images, IEEE T.
Geosci. Remote, 56, 3290–3299, https://doi.org/10.1109/tgrs.2018.2797536, 2018.
Anusha, N. and Bharathi, B.: Flood detection and flood mapping using
multi-temporal synthetic aperture radar and optical data Egypt, J. Remote
Sens. Space Sci., 23, 207–219, https://doi.org/10.1016/j.ejrs.2019.01.001, 2019.
Aschbacher, J. and Milagro-Pérez, M. P.: The European Earth monitoring (GMES) programme: Status and perspectives, Remote Sens. Environ., 20, 3–8, https://doi.org/10.1016/j.rse.2011.08.028, 2012.
Bazi, Y., Bruzzone, L., and Melgani, F.: An Unsupervised Approach Based on
the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images, IEEE T. Geosci. Remote, 43, 874–887, https://doi.org/10.1109/TGRS.2004.842441, 2005.
Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., and Hanssen, R. F.: ESA's sentinel missions in support of Earth system science, Remote Sens.
Environ., 20, 84–90, https://doi.org/10.1016/j.rse.2011.07.023, 2012.
Bioresita, F., Puissant, A., Stumpf, A., and Malet, J. P.: A Method for
Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery, Remote Sens., 10, 217, https://doi.org/10.3390/rs10020217, 2018.
Brill, F., Schlaffer, S., Martinis, S., Schröter, K., and Kreibich, H.:
Extrapolating Satellite-Based Flood Masks by One-Class Classification – A
Test Case in Houston, Remote Sens., 13, 2042, https://doi.org/10.3390/rs13112042, 2021.
Caballero, I., Ruiz, J., and Navarro, G.: Sentinel-2 satellites provide
near-real time evaluation of catastrophic floods in the west mediterranean,
Water, 11, 2499, https://doi.org/10.3390/w11122499, 2019.
Cao, H., Zhang, H., Wang, C. ,and Zhang, B.: Operational flood detection using Sentinel-1 SAR data over large areas, Water, 11, 786,
https://doi.org/10.3390/w11040786, 2019.
Carincotte, C., Derrode, S., and Bourennane, S.: Unsupervised Change
Detection on SAR Images Using Fuzzy Hidden Markov Chains, IEEE T. Geosci.
Remote, 44, 432–441, https://doi.org/10.1109/TGRS.2005.861007, 2006.
Celik, T.: A Bayesian approach to unsupervised multiscale change detection in synthetic aperture radar images, Signal Process., 90, 1471–1485, https://doi.org/10.1016/j.sigpro.2009.10.018, 2010.
Chini, M., Pulvirenti, L., and Pierdicca, N.: Analysis and interpretation of
the COSMO-SkyMed Observations of the 2011 Japan Tsunami, IEEE Geosci. Remote
Sens. Lett., 9, 467–471, https://doi.org/10.1109/LGRS.2011.2182495, 2012.
Clement, M. A., Kilsby, C. G., and Moore, P.: Multi-temporal synthetic aperture radar flood mapping using change detection, J. Flood Risk Manage.,
11, 152–168, https://doi.org/10.1111/jfr3.12303, 2018.
Cohen, S., Brakenridge, G. R., Kettner, A., Bates B., Nelson, J., McDonald, R., Huang, Y.-F., Munasinghe, D., and Zhang, J.: Estimating floodwater depths from flood inundation maps and topography, J. Am. Water Resour. Assoc., 54, 847–858, https://doi.org/10.1111/1752-1688.12609, 2018.
Copernicus: Copoernicus Emergency Management Service, https://emergency.copernicus.eu/, last access: 2 August 2022.
Crochemore, L., Isberg, K., Pimentel, R., Pineda, L., Hasan, A., and Arheimer, B.: Lessons learnt from checking the quality of openly accessible river flow data worldwide, Hydrolog. Sci. J., 65, 699–711,
https://doi.org/10.1080/02626667.2019.1659509, 2020.
DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Huang, W., Creed, I. F., and Carroll, M. L.: Automated quantification of surface water inundation in
wetlands using optical satellite imagery, Remote Sens., 9, 807,
https://doi.org/10.3390/rs9080807, 2017.
Di Baldassarre, G., Schumann, G., and Bates P. D.: A technique for the
calibration of hydraulic models using uncertain satellite observations of
flood extent, J. Hydrol., 367, 276–282, https://doi.org/10.1016/j.jhydrol.2009.01.020, 2009.
Directive 2007/60/EC: DIRECTIVE 2007/60/EC Of The European Parliament And Of the Council of 23 October 2007 on the assessment and management of
flood risks, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060, (last access: 28 July 2022), 2007.
Domeneghetti, A., Schumann, G. J., and Tarpanelli, A.: Preface: remote sensing for flood mapping and monitoring of flood dynamics, Remote Sens., 11, 943, https://doi.org/10.3390/rs11080943, 2019.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's optical
high-resolution mission for GMES operational services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
EM-DAT: C. R. E. D., The international disasters database, https://www.emdat.be (last access: 6 September 2021), 2019.
Gianinetto, M., Villa, P., and Lechi, G.: Postflood Damage Evaluation Using
Landsat TM and ETM+ Data Integrated With DEM, IEEE T. Geosci. Remote, 44, 236–243, https://doi.org/10.1109/TGRS.2005.859952, 2006.
Giordan, D., Notti, D., Villa, A., Zucca, F., Calò, F., Pepe, A., Dutto,
F., Pari, P., Baldo, M., and Allasia, P.: Low cost, multiscale and multi-sensor application for flooded area mapping, Nat. Hazards Earth Syst.
Sci., 18, 1493–1516, https://doi.org/10.5194/nhess-18-1493-2018, 2018.
Giustarini, L., Hostache, R., Matgen, P., Schumann, G., Bates, P., and Mason,
D. C.: A change detection approach to flood mapping in urban areas using
TerraSar-X, IEEE T. Geosci. Remote, 51, 2417–2430, https://doi.org/10.1109/TGRS.2012.2210901, 2013.
Goffi, A., Stroppiana, D., Brivio, P. A., Bordogna, G., and Boschetti, M.:
Towards an automated approach to map flooded areas from Sentinel-2 MSI data
and soft integration of water spectral features, Int. J. Appl. Earth Obs.,
84, 101951, https://doi.org/10.1016/j.jag.2019.101951, 2020.
Google Earth Engine: A planetary-scale platform for Earth science data & analysis, https://earthengine.google.com/, last access: 2 August 2022.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
GRDC – The Global Runoff Data Centre: The GRDC - the world-wide repository of river discharge data and associated metadata, GRDC, Koblenz, Germany,
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html, last access: 28 July 2022.
Hanna, D. M., Demuth, S., van Lanen, H. A. J., Looser, U., Prudhomme, C.,
Rees, G., Stahl, K., and Tallaksen, L. M.: Large-scale river flow archives:
Importance, current status and future needs, Hydrol. Process., 25, 1191–1200, https://doi.org/10.1002/hyp.7794, 2011.
Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., and Pfister,
L.: Water Level Estimation and Reduction of Hydraulic Model Calibration
Uncertainties Using Satellite SAR Images of Floods, IEEE T. Geosci. Remote,
47, 431–441, https://doi.org/10.1109/TGRS.2008.2008718, 2009.
Huang, W., DeVries, B., Huang, C., Lang, M. W., Jones, J. W., Creed, I. F., and Carroll, M. L.: Automated Extraction of Surface Water Extent from Sentinel-1 Data, Remote Sens., 10, 797, https://doi.org/10.3390/rs10050797, 2018.
IFRC: World Disasters Report 2020: Come Heat or High Water, in: World
Disaster Report 2020,
https://www.ifrc.org/document/world-disasters-report-2020 (last access: 28 July 2022), 2020.
Landuyt, L., Van Wesemael, A., Schumann, G. J. P., Hostache, R., Verhoest, N. E. C., and Van Coillie, F. M. B.: Flood Mapping Based on Synthetic Aperture
Radar: An Assessment of Established Approaches, IEEE T. Geosci. Remote, 57, 722–739, https://doi.org/10.1109/TGRS.2018.2860054, 2019.
Long, N. T. and Trong, B. D.: Flood monitoring of Mekong river delta, Vietnam
using ERS SAR data, in: 22nd Asian Conference on Remote Sensing, 5–9 November 2001, Singapore International Convention and Exhibition Centre, Singapore, 2001.
Longbotham, N., Pacifici, F., Glenn, T., Zare, A., Volpi, M., Tuia, D.,
Christophe, E., Michel, J., Inglada, J., Chanussot, J., and Du, Q.: Multi-modal change detection, application to the detection of flooded areas:
Outcome of the 2009–2010 data fusion contest, IEEE J. Selct. Top. Appl., 5,
331–342, https://doi.org/10.1109/JSTARS.2011.2179638, 2012.
Luo, T., Maddocks, A., Iceland, C., Ward, P., and Winsemius, H.: World's 15 Countries with the Most People Exposed to River Floods, World Resources
Institute,
https://www.wri.org/blog/2015/03/world-s-15-countries-most-people-exposed-river-floods (last access: 2 March 2021), 2015.
Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-Santos, G., Fernandes, R., and Berger, M.: Sentinels for science:
Potential of Sentinel-1, -2, and -3 missions for scientific observations of
ocean, cryosphere, and land, Remote Sens. Environ., 120, 91–101,
https://doi.org/10.1016/j.rse.2011.09.026, 2012.
Martinez, J. M. and Le Toan, T.: Mapping of flood dynamics and vegetation
spatial distribution in the Amazon flooplain using multitemporal SAR data,
Remote Sens. Environ., 108, 209–233, https://doi.org/10.1016/j.rse.2006.11.012, 2007.
Martinis, S., Twele, A., and Voigt, S.: Towards operational near real-time
flood detection using a split-based automatic thresholding procedure on high
resolution TerraSAR-X data, Nat. Hazard Earth Syst Sci.., 9, 303–314,
https://doi.org/10.5194/nhess-9-303-2009, 2009.
Mason, D. C., Horritt, M. S., Dall'Amico, J. T. , Scott, T. R., and Bates, P.
D.: Improving river flood extent delineation from synthetic aperture radar
using airborne laser altimetry, IEEE T. Geosci. Remote, 45, 3932–3943,
https://doi.org/10.1109/TGRS.2007.901032, 2007.
Mason, D. C., Schumann, G. J. P., Neal, J. C., Garcia-Pintado, J., and Bates,
P. D.: Automatic near real-time selection of flood water levels from high
resolution synthetic aperture radar images for assimilation into hydraulic
models: a case study, Remote Sens. Environ., 124, 705–716,
https://doi.org/10.1016/j.rse.2012.06.017, 2012.
Massari, C., Tarpanelli, A., and Moramarco, T.: A fast simplified model for
predicting river flood inundation probabilities conditioned on flood extent
data, Hydrol. Process., 29, 2275–2289, https://doi.org/10.1002/hyp.10367, 2015.
Matgen, P., Schumann, G., Henry, J. B., Hoffmann, L., and Pfister, L.: Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management, Int. J. Appl. Earth Obs., 9, 247–263, https://doi.org/10.1016/j.jag.2006.03.003, 2007.
Meybeck, M., Dürr, H. H., and Vörösmarty, C. J.: Global coastal
segmentation and its river catchment contributors: A new look at land-ocean
linkage, Global Biogeochem. Cy., 20, GB1S90, https://doi.org/10.1029/2005GB002540, 2006.
Moramarco, T., Barbetta, S., Pandolfo, C., Tarpanelli, A., Berni, N., and
Morbidelli, R.: The spillway collapse of the Montedoglio dam on the Tiber
River (central Italy): data collection and event analysis, J. Hydrol. Eng., 19, 1264–1270, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000890, 2014.
Mudashiru, R. B., Sabtu, N., Abustan, I., and Balogun, W.: Flood hazard mapping methods: A review, J. Hydrol., 603, 126846, https://doi.org/10.1016/j.jhydrol.2021.126846, 2021.
Musa, Z. N., Popescu, I., and Mynett, A.: A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation, Hydrol. Earth Syst. Sci., 19, 3755–3769, https://doi.org/10.5194/hess-19-3755-2015, 2015.
Notti, D., Giordan, D., Caló, F., Pepe, A., Zucca, F., and Galve, J. P.:
Potential and Limitations of Open Satellite Data for Flood Mapping, Remote
Sens., 10, 1673, https://doi.org/10.3390/rs10111673, 2018.
Oberstadler, R., Hönsch, H., and Huth, D.: Assessment of the mapping capabilities of ERS‐1 SAR data for flood mapping: a case study in Germany, Hydrol. Process., 11, 1415–1425, https://doi.org/10.1002/(SICI)1099-1085(199708)11:10<1415::AID-HYP532>3.0.CO;2-2, 1997.
Ogilvie, A., Belaud, G., Delenne, C., Bailly, J., Bader, J., Oleksiak, A.,
Ferry, L., and Martin, D.: Decadal monitoring of the Niger Inner Delta flood
dynamics using MODIS optical data, J. Hydrol., 523, 368–383,
https://doi.org/10.1016/j.jhydrol.2015.01.036, 2015.
Plank, S.: Rapid damage assessment by means of multi-temporal SAR – A
comprehensive review and outlook to Sentinel-1, Remote Sens., 6, 4870–4906, https://doi.org/10.3390/rs6064870, 2014.
Sakamoto, T., Van Nguyen, N., Kotera, A., Ohno, H., Ishitsuka, N., and Yokozawa, M.: Detecting temporal changes in the extent of annual flooding
within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series
imagery, Remote Sens. Environ., 109, 295–313, https://doi.org/10.1016/j.rse.2007.01.011, 2007.
Schumann, G. J.: The Full Potential of EO for Flood Applications: Managing Expectations, in: Earth Observation for Flood Applications, Elsevier, 305–320, https://doi.org/10.1016/B978-0-12-819412-6.00014-6, 2021.
Schumann, G. J. P.: The need for scientific rigour and accountability in flood mapping to better support disaster response, Hydrol. Process., 33,
3138–3142, https://doi.org/10.1002/hyp.13547, 2019.
Schumann, G. J. P. and Domeneghetti, A.: Exploiting the proliferation of
current and future satellite observations of rivers, Hydrol. Proceess., 30,
2891–2896, https://doi.org/10.1002/hyp.10825, 2016.
Schumann, G. J. P. and Moller, D. K.: Microwave remote sensing of flood
inundation, Phys. Chem. Earth Pt. A/B/C, 83, 84–95,
https://doi.org/10.1016/j.pce.2015.05.002, 2015.
Schumann, G. J. P., Neal, J. C., Mason, D. C., and Bates, P. D.: The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods, Remote Sens. Environ.,
115, 2536–2546, https://doi.org/10.1016/j.rse.2011.04.039, 2011.
Seiler, R., Schmidt, J., Diallo, O., and Csaplovics, E.: Flood monitoring in
a semi-arid environment using spatially high resolution radar and optical
data, J. Environ. Manage., 90, 2121–2129, https://doi.org/10.1016/j.jenvman.2007.07.035, 2009.
Takeuchi, S., Konishi, T., Suga, Y., and Kishi, S.: Comparative study for flood detection using JERS-1 SAR and Landsat TM data, in: Proceedings of IGARSs'99, Hamburg, Germany, 873–875, https://doi.org/10.1109/IGARSS.1999.774470, 1999.
Tarpanelli, A.: Codes and dataset of the publication “Effectiveness of Sentinel-1 and Sentinel-2 for Flood Detection Assessment in Europe” (1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.6939820, 2022.
Tarpanelli, A., Brocca, L., Melone, F., and Moramarco, T.: Hydraulic modelling calibration in small basins by using coarse resolution synthetic aperture radar imagery, Hydrol. Process., 27, 1321–1330, https://doi.org/10.1002/hyp.9550, 2013.
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., and Kim, S. J. E. M.: Flood inundation modelling: A review of methods, recent advances and
uncertainty analysis, Environ. Model. Softw., 90, 201–216,
https://doi.org/10.1016/j.envsoft.2017.01.006, 2017.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Navas Traver, I., Deghaye, P.,
Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R.,
Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission, Remote
Sens. Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Townsend, P. A.: Estimating forest structure in wetlands using multitemporal
SAR, Remote Sens. Environ., 79, 288–304, https://doi.org/10.1016/S0034-4257(01)00280-2, 2002.
Townsend, P. A. and Walsh, S. J.: Modelling flood plain inundation using
integrated GIS with radar and optical remote sensing, Geomorphology, 21,
295–312, https://doi.org/10.1016/S0169-555X(97)00069-X, 1998.
Twele, A., Cao, W., Plank, S., and Martinis, S.: Sentinel-1-based flood mapping: a fully automated processing chain, Int. J. Remote Sens., 37, 2990–3004, https://doi.org/10.1080/01431161.2016.1192304, 2016.
Uddin, K., Matin, M. A., and Meyer, F. J.: Operational flood mapping using
multi-temporal Sentinel-1 SAR images: a case study from Bangladesh, Remote
Sens., 11, 1581, https://doi.org/10.3390/rs11131581, 2019.
Wilson, A. M. and Jetz, W.: Remotely Sensed High-Resolution Global Cloud
Dynamics for Predicting Ecosystem and Biodiversity Distributions, PLoS Biol.,
14, e1002415, https://doi.org/10.1371/journal.pbio.1002415, 2016.
Yonghua, S., Xiaojuan, L., Huili, G., Wenji, Z., and Zhaoning, G.: A study on
optical and SAR data fusion for extracting flooded area, in: Geoscience and
Remote Sensing Symposium, IGARSS 2007, 23–27 July 2007, Barcelona, Spain, 3086–3089, 2007.
Short summary
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they were able to observe. Results show that on average 58 % of flood events are potentially observable by Sentinel-1 and only 28 % by Sentinel-2 due to the obstacle of cloud coverage.
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted...
Altmetrics
Final-revised paper
Preprint