Articles | Volume 22, issue 6
https://doi.org/10.5194/nhess-22-2131-2022
https://doi.org/10.5194/nhess-22-2131-2022
Research article
 | 
24 Jun 2022
Research article |  | 24 Jun 2022

Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis

Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae

Related authors

Prediction of volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Manik Das Adhikari, Seung Woo Lee, Gihong Kim, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-90,https://doi.org/10.5194/nhess-2024-90, 2024
Revised manuscript under review for NHESS
Short summary
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023,https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Prediction of landslide induced debris’ severity using machine learning algorithms: a case of South Korea
Tuganishuri Jérémie, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-73,https://doi.org/10.5194/nhess-2023-73, 2023
Manuscript not accepted for further review
Short summary
Development of black ice prediction model using GIS-based multi-sensor model validation
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022,https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
A Comparative Analysis of Machine Learning Algorithms for Snowfall Prediction Models in South Korea
Moon-Soo Song, Hong-Sik Yun, Jae-Joon Lee, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-118,https://doi.org/10.5194/nhess-2022-118, 2022
Manuscript not accepted for further review
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024,https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024,https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024,https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Dynamic response of pile–slab retaining wall structure under rockfall impact
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024,https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024,https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary

Cited articles

Ajayi, A., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., Delgado, J. M. D., and Akanbi, L.: Deep learning models for health and safety risk prediction in power infrastructure projects, Risk Anal., 40, 2019–2039, 2019. 
Al Najar, M., Thoumyre, G., Bergsma, E. W., Almar, R., Benshila, R., and Wilson, D. G.: Satellite derived bathymetry using deep learning, Mach. Learn., 1–24, https://doi.org/10.1007/s10994-021-05977-w, 2021. 
Bae, S. W. and Yoo, J. S.: Apartment price estimation using machine learning: Gangnam-gu, Seoul as an example, Real Estate Stud., 24, 69–85, 2018. 
Bae, J., Yum, S. G., and Kim, J. M.: Harnessing machine learning for classifying economic damage trends in transportation infrastructure projects, Sustainability, 13, 1–12, https://doi.org/10.3390/su13116376, 2021. 
Blake, E. S., Landsea, C., and Gibney, E. J.: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts), https://repository.library.noaa.gov/view/noaa/6929 (last access: 20 June 2022), 2011. 
Download
Short summary
Insurance data has been utilized with deep learning techniques to predict natural disaster damage losses in South Korea.
Altmetrics
Final-revised paper
Preprint