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Abstract. Given trends in more frequent and severe natural
disaster events, developing effective risk mitigation strate-
gies is crucial to reduce negative economic impacts, due to
the limited budget for rehabilitation. To address this need,
this study aims to develop a strategic framework for natural
disaster risk mitigation, highlighting two different strategic
implementation processes (SIPs). SIP-1 is intended to im-
prove the predictability of natural disaster-triggered financial
losses using deep learning. To demonstrate SIP-1, SIP-1 ex-
plores deep neural networks (DNNs) that learn storm and
flood insurance loss ratios associated with selected major in-
dicators and then develops an optimal DNN model. SIP-2
underlines the risk mitigation strategy at the project level, by
adopting a cost–benefit analysis method that quantifies the
cost effectiveness of disaster prevention projects. In SIP-2,
a case study of disaster risk reservoir projects in South Ko-
rea was adopted. The validated result of SIP-1 confirmed that
the predictability of the developed DNN is more accurate and
reliable than a traditional parametric model, while SIP-2 re-
vealed that maintenance projects are economically more ben-
eficial in the long term as the loss amount becomes smaller
after 8 years, coupled with the investment in the projects. The
proposed framework is unique as it provides a combinational
approach to mitigating economic damages caused by natural
disasters at both financial loss and project levels. This study
is its first kind and will help practitioners quantify the loss
from natural disasters, while allowing them to evaluate the
cost effectiveness of risk reduction projects through a holis-
tic approach.

1 Introduction

Over the past decades, the frequency and severity of ex-
treme weather events are rapidly increasing due to climate
changes. These events, represented by flooding, drought,
heavy rain, tropical cyclone, heat waves, or cold waves, have
often caused various damages not only in the short term, but
have also had various long-term effects, such as sea level rise
and spread of disease. The negative impact of these event has
been highlighted by the Intergovernmental Panel on Climate
Change (IPCC, 2014). Nevertheless, across the world, severe
weather events such as typhoons, heavy rains, and chang-
ing patterns of meteorological disasters have already caused
the loss of many lives and built assets. These damages are
likely to accelerate in the future (Kim et al., 2019, 2020a, b, c,
2021).

It is well known that natural disaster-triggered losses are
very closely tied with many economic losses worldwide. For
example, Western European countries such as France, Ger-
many, and Switzerland were hit by three consecutive tropical
cyclones (e.g. Anatol, Lothar, and Martin) in 1999, result-
ing in a loss of EUR 13 billion (Ulbrich et al., 1999). Ty-
phoon Haiyan, which hit the Philippines and China in 2013,
a Category 5 Super Typhoon, was the most extreme tropi-
cal cyclone recorded on land. The typhoon’s life-threatening
wind and rain were enough to smash properties. South
Asian countries adjacent to the typhoon track suffered about
USD 300 billion in damage (Kim et al., 2019). Hurricane
Katrina that hit south-eastern areas in the United States in
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2005 caused the most severe damage in the national his-
toric record as a Category 5 tropical cyclone. In detail, it
caused USD 180 billion direct and indirect damages to US
Gulf Coast cities due to substantial rain and robust winds
(Blake et al., 2011). Later, in 2017, three different strong
hurricanes named Harvey, Maria, and Irma together caused a
total amount of about USD 293 billion damage, based on the
individual damage amounts of USD 125 billion from Harvey,
USD 90 billion from Maria, and USD 77.6 billion from Irma
(USNHC, 2018).

In this sense, the quality of living in the built environment
has been threatened by natural disasters across the globe.
To reduce these threats, many of non-governmental organi-
zations and countries have investigated prevention or post-
disaster recovery strategies, considering aspects of time, bud-
get, and human capacity to mitigate natural disaster risks.
Mitigation of risks can reduce the loss by decreasing vulner-
ability or by decreasing the frequency and severity of causal
factors (Rose et al., 2007). For risk mitigation, the execution
and allocation of financial resources should be carried out
promptly and extensively, with the limited resources avail-
able. Hence, it is important to estimate strategically the cost
impact of natural disaster risks and the effect of risk reduc-
tion at the same time, specifically aiming at achieving the ul-
timate reduction and mitigation of risks through an efficient
use of the limited resources.

2 Point of departure: the need of more effective
strategic framework for natural disaster risk
mitigation

2.1 Decision support for natural disaster risk
mitigation strategies

Given the increasing frequency and severity of natural disas-
ters, the demand for sophisticated natural disaster loss fore-
casting also increases. In response to such demand, various
companies and national organizations have developed mod-
els to predict natural disaster losses. The New Multi-Hazards
and Multi-Risk Assessment Method for Europe (MATRIX)
in Europe, the Hazards U.S.-Multi Hazard (HAZUS-MH)
of the Federal Emergency Management Agency (FEMA)
in the United States, RiskScape in New Zealand, and the
Probabilistic Risk Assessment initiative in Central America
are representative models (Kim et al., 2017). Florida, USA,
has developed the Florida Public Hurricane Loss Model
(FPHLM) to predict losses due to hurricanes as it is lo-
cated on the main north-facing road of hurricanes (Kim et
al., 2020). These models are being used in different regions
to assess the loss of life and potential economic losses for
buildings and infrastructure owing to natural disasters. Since
these models were developed based on vulnerability and the
severity and frequency of natural disasters in specific areas,
they could not be applied to other areas.

Companies specializing in natural disaster risk modelling
have also developed different models, including EQECAT,
Applied Insurance Research (AIR), and RMS (Risk Man-
agement Solution) (Kunreuther et al., 2004; Sanders, 2002).
These models are widely used by insurers and reinsurers
around the world to assess the risk of economic loss from nat-
ural disasters (e.g. windstorms, earthquakes, floods, winter
storms, and tornadoes). However, these models have annual
fees that are expensive for small and medium-sized users. In
addition, these models are only available for a limited num-
ber of major countries (Europe, USA, Japan, China, etc.).
Furthermore, it is difficult to reflect a user’s portfolio, cap-
ital, business preference, and so on to optimize the models
(Kim et al., 2019).

To reflect characteristics and vulnerabilities of each coun-
try associated with various situations of users, it is crucial
to evaluate the loss through a country-specific model. In or-
der to develop a loss evaluation model, the development of
an in-house model using a deep learning algorithm can be
a solution. Recently, fourth revolution technology (e.g. un-
manned transportation, big data, artificial intelligence, IoT
(Internet of things), robots, etc.) has been applied to various
fields and its effectiveness has been recognized (Gledson and
Greenwood, 2017; IPA, 2017). To effectively and efficiently
analyse the complexity of various sensor-driven Big Data, the
demand for deep learning applications has increased dramati-
cally. Given the increasing demand, many research efforts on
applying deep learning techniques for risk assessment have
been made recently (Al Najar et al., 2021; Khosravi et al.,
2020; Kim et al., 2021; Moishin et al., 2021; Shane Craw-
ford et al., 2020; Rasjava et al., 2020; Yi et al., 2020; Zhang et
al., 2022). In particular, for improved natural disaster risk as-
sessment and mitigation, neural networks have been widely
used for deep learning in various ways (Khosravi et al., 2020;
Moishin et al., 2021; Shane Crawford et al., 2020; Yi et al.,
2020). Some researchers have developed deep learning mod-
els to predict flood events (Khosravi et al., 2020; Moishin
et al., 2021). Khosravi et al. (2020) developed a flood sus-
ceptibility map using convolutional neural networks (CNN).
More specifically, models for 769 historical flood locations in
Iran were trained and tested based on amounts of soil mois-
ture, slopes, curvatures, altitudes, rainfall, geology, land use
and vegetation, and distances from roads and rivers. In addi-
tion, a hybrid deep learning algorithm integrating the merits
of CNN and long short-term memory (LSTM) networks was
built to manage flood risks by predicting future flood events,
by training and testing daily rainfall data obtained from 11
sites in Fiji between 1990 and 2019 (Moishin et al., 2021).

Other studies focused on post-disaster detection caused
by landslides or tornados, which uses remote sensed data
collected from satellites for deep learning (Al Najar et al.,
2021; Shane Crawford et al., 2020; Yi et al., 2020). Shane
Crawford et al. (2020) adopted CNN to classify damages of
15 945 buildings affected by the 2011 Tuscaloosa tornado in
Alabama. To this end, the authors used satellite-driven im-
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ages of trees as a damage classification indicator to estimate
wind speeds. In addition, satellite images were added into
the CNN-driven deep learning process to detect earthquake-
induced landslides in China (Yi et al., 2020). More recently,
Al Najar et al. (2021) estimated accurately ocean depths sim-
ulating remote-sensed images using a deep learning tech-
nique, which overcomes drawbacks of traditional bathymetry
measurement activities to track the physical evolution of
coastal areas against any potential natural disasters or ex-
treme storm events. Previous studies consistently reveal that
deep learning techniques can overcome shortcomings of ex-
isting methods and thus to provide more accurate and reli-
able decision-support models for risk assessment and risk-
informed mitigation strategies.

In addition to applications of deep learning for location
detection or event prediction, as stated earlier, it is impor-
tant to quantify negative economic impacts caused by natu-
ral disasters. Given the importance of economic damage as-
pects, Kim et al. (2021) applied a deep learning technique
as a cost-effective and risk-informed facilities management
solution. In detail, the authors generalized maintenance and
repair costs of educational facilities in Canada, using deep
neural networks that learn sets of maintenance and repair
records, asset values, natural hazards such as tornados, light-
ening, hails, floods, and storms. In this sense, this study pro-
posed a deep learning modelling framework to predict finan-
cial losses caused by natural disasters.

2.2 Investment strategies for natural disaster risk
mitigation

Mitigating risk with efficient investment and operation of re-
sources is a challenging task because risk reduction must
be made in a timely manner, with the limited financial re-
sources. To address these issues, cost–benefit analysis has
been widely adopted (Rose et al., 2007). For instance, ef-
ficient use of public resources is indicated when total esti-
mated profits of a risk mitigation activity surpass the entire
cost or are parallel to earnings of both private and public in-
vestment.

Disaster risk mitigation represents mitigating social, en-
vironmental, and economic damage caused by natural dis-
asters. Since economic losses due to natural disasters are
hard to minimize or avoid separately, there is an increas-
ing public demand for risk reduction investment to reduce
these economic losses (Bouwer et al., 2007; Shreve and Kel-
man, 2014). Since resources for risk mitigation investment
are restricted, it is critical to estimate economic costs and
benefits in order to determine the effectiveness and appro-
priateness of the investment. For instance, the Federal Emer-
gency Management Agency of the United States has reported
that the average cost–benefit ratio is 4 for risk mitigation
investment (e.g. structural defence measures against floods
and typhoons, building renovations in preparation for earth-
quakes, etc.) after reviewing 4000 natural disaster risk re-

duction programmes in the United States (Kunreuther and
Michel-Kerjan, 2012; Rose et al., 2007). In addition, studies
in developing countries have shown a high cost–benefit ratio
in a study of 21 investment activities such as re-establishment
of schools and forestry in preparation for tsunamis (Bouwer
et al., 2014).

Despite high potential benefits of investment in risk re-
duction, it is still restricted for residents living in areas at
risk of natural disasters (Bouwer et al., 2014). According to
Hochrainer-Stigler et al. (2010), since natural disaster risk re-
duction measures are focused on short-term outcomes, only
about 10 % of residents in areas vulnerable to natural disas-
ters receive natural disaster risk reduction measures in the
United States. In the case of a natural disaster risk reduc-
tion project, a large initial investment is required, which re-
duces the expected profit if performance indicators need to
be met in a short period of time. As a result, policy mak-
ers and politicians are reluctant to make bold investments in
natural disaster risk reduction. They prefer to provide eco-
nomic support after disasters (Cavallo et al., 2013). This phe-
nomenon is also reflected in the budget distribution of disas-
ter management funds of donations and development agen-
cies. Most (98 %) of the budget is allocated to reconstruc-
tion or relief. Only the remaining budget (2 %) is allocated
to risk reduction (Mechler, 2005). As such, while the need
for pre-disaster risk reduction through proactive disaster in-
vestment is widely recognized, the economic impact of nat-
ural disaster risk reduction is often not fully considered in
decision-making. Moreover, although cost-benefit analysis is
the main decision-making tool commonly used in investment
and financial evaluations by public sectors, natural disaster
risk is not sufficiently applied in the cost-benefit analysis
(Hochrainer-Stigler et al., 2010). Natural disasters in pub-
lic sectors’ investment projects were often overlooked or not
evaluated based on the cost-to-benefit comparison (Kreimer
et al., 2003). In turn, this study explored natural disaster risk
reduction projects and analysed the cost effectiveness of the
projects adopting a cost–benefit analysis method.

3 Research objectives and methods

Given trends for more frequent and severe natural disaster
events, developing effective natural disaster risk mitigation
strategies is crucial to reduce negative economic impacts on
built assets, with the limited budget for rehabilitation. To ad-
dress this need, this study aims to develop a strategic frame-
work for natural disaster risk mitigation, highlighting two
different strategic implementation processes (SIPs), as de-
picted in Fig. 1.

More specifically, SIP-1 is intended to improve the pre-
dictability of a natural disaster-triggered financial loss model.
To this end, SIP-1 develops a deep neural network (DNN)
model that learns insurance loss amounts to generalize loss
ratios, associated with major indicators including rainfall,
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Figure 1. Research framework.

wind, and ground acceleration. To demonstrate SIP-1, this
study collected reliable storm and flood damage insurance
data and natural disaster risk indicators, created a predictive
model using deep learning, and validated the improved pre-
dictability of the model, through the following steps:

1. To collect data on loss caused by natural disasters, this
study collected data on claim payouts for storm and
flood damage insurance from the Korea Insurance De-
velopment Institute (KIDI) over the past 11 years be-
tween 2009 and 2019.

2. This study obtained natural disaster risk indicators
based on the collected data.

3. A model of deep learning algorithm was developed us-
ing Python 3.7, Keras, and Scikit-Learn libraries. The
model was trained, tested, and validated using the col-
lected data.

4. A multiple regression model was independently devel-
oped using IBM Statistical Package for the Social Sci-
ences (SPSS) version 23 for model validation.

5. The root mean squared error and mean absolute error
values of the deep learning algorithm model and the
multiple regression analysis model were estimated and
paralleled, respectively.

Compared to SIP-1, SIP-2 underlines the risk mitiga-
tion strategy at the project level, by proposing a method-
ological implementation process for quantifying the cost-
effectiveness of natural disaster risk reduction by adopt-
ing a cost–benefit analysis method that quantifies the cost-
effectiveness of disaster prevention project. To demonstrate
SIP-2, a case study of disaster risk reservoir maintenance
projects completed in South Korea was adopted, through the
following steps:

1. Among natural disaster risk reduction projects carried
out by the South Korean government, information on
disaster risk reservoir maintenance projects completed
in 2009–2019 was collected.

2. The loss rate of storm and flood insurance in the region
where the flood damage occurred after the completion
of the maintenance project was investigated through
KIDI.

3. The amount of precipitation before and after the disaster
risk reservoir maintenance project was investigated.

4. Cost–benefit analysis was conducted to determine the
economic feasibility of the maintenance project.

4 SIP-1: improving the predictability of natural
disaster-induced financial loss values using deep
learning

SIP-1 aims to explore deep learning-driven modelling pro-
cesses and develop an optimal learning model that can im-
prove the predictability of natural disaster-triggered financial
losses. To demonstrate SIP-1, the loss amounts of storm and
flood insurance were learned, and the corresponding loss ra-
tios were generalized associated with the selected risk indica-
tors by the property type. To scientifically validate the robust-
ness of the learning model, the prediction results were com-
pared with a conventional parametric model underpinned by
multiple regression analysis.

4.1 Data collection

A total of 458 storm and flood damage insurance claims for
11 years from 2009 to 2019 was collected from KIDI’s data
sets. KIDI was established in 1983. It is a professional insur-
ance service organization that develops insurance products,
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calculates insurance rates, and protects the rights of policy-
holders. It also collects and manages various statistical data
such as insurance information and losses of each insurance
company (Choi and Han, 2017). Storm and flood damage in-
surance, which reflects the loss amount, is an insurance that
compensates for property damage caused by natural disasters
(e.g. typhoons, floods, heavy rains, tsunamis, strong winds,
storms, heavy snow, earthquakes, and so on). It has been im-
plemented since 2006 under the initiative of state and local
governments (Kwon and Oh, 2018). The insurance payout
amount is determined by objective analysis of certified loss
assessment service according to standardized procedures for
each insurance company. Its reliability is high (Kim et al.,
2020). The collected data information includes the total loss
amounts, the total net premiums, building types, and location
profiles, which are publicly available. The prediction model
was trained, tested, and validated using losses and natural
disaster risk indicators.

The cost of loss due to natural disasters was divided by
the total net premiums to calculate the ratio and then log-
transformed; the distribution of the data is shown in Fig. 2.
In addition, natural disaster risk indicators affecting insur-
ance loss due to natural disasters were collected. For natural
disaster risk indicators, building type, wind speed, total rain-
fall, and peak ground acceleration were selected as variables
from past literature studies (Kim et al., 2017, 2019, 2020a, b,
2021). Figures 3, 4, 5, and 6 show the distributions of the
selected indicators. A description of variables is presented
in Table 1. Building types were set as dummy variables that
consist of residential buildings and greenhouses. Wind speed
and the maximum value of rainfalls were collected from the
Korea Meteorological Administration (KMA). Peak ground
accelerations were collected from the National Oceanic and
Atmospheric Administration (NOAA). Accordingly, Table 2
summarizes the descriptive statistics of variables.

4.2 Modelling deep neural networks

A deep learning algorithm is a neural network with many lay-
ers and various structures in general. Its use in research and
industry for prediction and recognition has spread rapidly,
proving its effectiveness (Kim et al., 2021). Deep learning
algorithms are also widely used for regression analysis and
type classification as a machine learning technique (Ajayi
et al., 2019). Deep learning models have the same train-
ing framework as other types of neural networks. However,
they can train large data sets more effectively with multiple
hidden layers (Bae et al., 2021). Deep learning algorithms
can be divided into deep neural networks (DNNs), genera-
tive adversarial networks (GANs), recurrent neural networks
(RNNs), convolutional neural networks (CNNs), and auto
encoders (AEs), according to their structure and processing
method (Kim et al., 2021). In particular, DNN is used for cat-
aloguing and prediction in various engineering and academic
fields (Krizhevsky et al., 2012; Toya and Skidmore, 2007).

Moreover, DNNs can be applied to train and model complex
nonlinear relationships due to their multi-layered structures.
Thus, in this study, a DNN model was accepted considering
nonlinearity of collected loss data.

The learning performance of the model was appraised by
measuring the values of root mean squared error (RMSE) and
mean absolute error (MAE). RMSE and MAE are represen-
tative indicators of the size of the error by comparing the
predicted result of an artificial neural network with the ac-
tual value (Daniell et al., 2011). RMSE is a value that mea-
sures the average error magnitude. MAE is a value obtained
by converting the difference between the actual value and the
predicted value into an absolute value and averaging it. Both
indicators can be used to indicate that the prediction error
decreases as the error value gets smaller (e.g. closer to zero).

The collected loss data were pre-processed using a z-score
normalization method to adjust the unit and quantity of the
data. The pre-processed completed input data were divided
into a training set, a verification set, and a test set of data. The
training set of data were used for learning of the DNN algo-
rithm. The verification set of data were used to judge whether
training was optimal and the test set of data were used to ver-
ify whether the developed model was finally trained for the
purpose. In this study, considering the amount of data, 70 %
of the total data were set as training set of data and 30 %
were used as a test set of data. Then 30 % of training data
were utilized as verification data.

The DNN model selected the optimal combination through
a trial-and-error method since the DNN model could update
the weights of neural network nodes with a backpropaga-
tion algorithm. Since various combinations were possible de-
pending on the input variable and the output variable, it was
necessary to find the optimal combination through the trial-
and-error method. For such an optimal combination, it is nec-
essary to define the network structure scenario for setting the
number of layers and nodes and defining hyper parameters,
such as optimizers, activation functions, and dropouts (Cav-
allo et al., 2013). This study adopted a network structure sce-
nario with three hidden layers considering data characteris-
tics. Dropout is a regularization penalty to avoid overfitting.
It was set to reduce prediction errors caused by overfitting.
In this study, making an allowance for the amount of training
data, dropout was set to 0 and 0.2 and simulated. The ReLu
(rectified linear unit) function was utilized as the activation
function, a method of adjusting the weight of each node for
optimal learning. The ReLu function allows the input value
to change when the input value is greater than 0 or less than 0.
It was established to resolve the problem of gradient loss of
the existing sigmoid function (Krizhevsky et al., 2012). The
Adaptive Moment Estimation (Adam) method was accepted
as the optimizer (Krizhevsky et al., 2012). An optimizer is
used for speed and stability of learning. The Adam Method
is a widely assumed algorithm since its development in 2015
(Kingma and Ba, 2015). The batch was defined as 5 as a data
group designation for efficient learning and the number of
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Table 1. Description of variables.

Variable Explanation

Loss ratio Total loss divided by the total net premium (amount unit: KRW)
Building type Buildings covered by storm and flood insurance (categorical variable – residential building: 1; greenhouse: 2)
Wind speed 10 min average maximum wind speed (m s−1)
Rainfall Maximum precipitation per day (mm d−1)
Peak ground acceleration Value of peak ground acceleration (PGA) (g)

Table 2. Descriptive statistics of variables by the building type (i.e. residential building and greenhouse).

Variable (unit) Sample size Minimum Maximum Mean Std. deviation

Loss ratio (log-transformed value) 458 −5.12 3.17 −0.66 1.01
Wind speed (m s−1) 458 20.80 39.20 29.21 3.17
Rainfall (mm d−1) 458 172.00 801.20 319.02 68.57
Peak ground acceleration (g) 458 0.10 1.60 1.10 0.25

Table 3. Training results.

Network structure scenario Dropout (0) Dropout (0.2)

MAE RMSE MAE RMSE

5–5–5 0.521 0.484 0.521 0.484
10–10–10 0.498 0.468 0.524 0.484
15–15–15 0.521 0.484 0.523 0.487
20–20–20 0.522 0.484 0.521 0.484
25–25–25 0.476 0.461 0.521 0.484
30–30–30 0.521 0.484 0.521 0.484
35–35–35 0.521 0.484 0.522 0.484
40–40–40 0.521 0.484 0.521 0.484
50–50–50 0.521 0.484 0.522 0.484

epochs was designated as 1000 for the number of learning
(Bae and Yoo, 2018; Ryu et al., 2018).

4.3 Exploring DNNs and developing the DNN model

Table 3 shows MAE and RMSE values according to the net-
work structure and dropout. Among outcomes, the model
with the minimum MAE and RMSE was adopted as the fi-
nal structure. As the number of hidden layer nodes increased,
the MAE and RMSE values fluctuated slightly. However, the
number of hidden layer nodes was minimized at 25–25–25.
When the dropout was 0, MAE and RMSE values were com-
monly less than when the dropout was 0.2. When the number
of hidden layer nodes was 25–25–25 and the dropout was 0.0,
both MAE and RMSE had minimum values. Consequently,
in the final structure, the number of nodes was 25–25–25 and
the dropout was 0. Table 4 and Fig. 7 demonstrate the net-
work structure and hyper parameter configuration of the op-
timization model.

4.4 The robustness validation of the final DNN model

An MRA (multiple regression analysis) model was added
for systematic validation of the final DNN model. MAE
and RMSE values of these two models were compared. The
MRA method is widely adopted as an essential method for
numerical prediction models (Kim et al., 2021). Table 5 dis-
plays validation results of these models. Results of the DNN
model showed MAE of 0.531 and RMSE of 0.480 with the
verification set of data. For the test set of data, results showed
MAE of 0.452 and RMSE of 0.435. There was no significant
difference in MAE or RMSE between results with the test set
of data and those with the verification set of data since the
overfitting problem of the final model could be overlooked.
In addition, the MRA model showed an MAE of 0.533 and
a RMSE of 0.484. Equating outcomes of the DNN model
and the MRA model, it was found that the DNN model had
meaningfully minor prediction error rates of 15.2 % MAE
and 10.12 % RMSE than the MRA model.

5 SIP-2: quantifying the cost-effectiveness of natural
disaster risk reduction projects using cost–benefit
analysis

Management of a disaster risk reservoir is a part of the dis-
aster prevention project. According to the Special Act on the
Disaster Risk Reduction Project and Relocation Measures,
the purpose of disaster prevention measures necessary for
improving the disaster risk area is for fundamental prevention
and permanent recovery of disasters. The disaster preven-
tion project was started in 1998 when the Disaster Response
Division of the Ministry of Government Administration and
Home Affairs (South Korea) discovered disaster-prone facil-
ities and areas with risk of human casualties and provided
government funds for the maintenance of natural disaster risk
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Figure 2. Distribution of the insurance loss ratio record.

Figure 3. Distributions of the indicators to learn the loss ratios of wind speed (m s−1).

areas for systematic management and prompt resolution of
disaster risk factors (Lee, 2017). Disaster prevention projects
include natural disaster risk improvement districts, disaster
risk reservoirs, steep slope collapse risk areas, small rivers,
and rainwater storage facilities (Kim et al., 2019). Given the
significance of disaster prevention projects, SIP-2 examines
economic effects through cost–benefit analysis of natural dis-
aster risk reduction projects to reduce losses from natural
disasters. To demonstrate SIP-2, a cost–benefit analysis was
conducted for the natural disaster reduction project by com-

paring losses from storm and flood insurance before and after
the disaster risk reservoir maintenance project.

5.1 Data collection and investigation of historical
record

Among natural disaster risk reduction projects carried out
by the South Korean government, the data set of disaster
risk reservoir maintenance projects completed in 2009–2019
was extracted from the Public Data Portal (data.go.kr) man-
aged by the South Korean government to collect and provide
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Figure 4. Distributions of the indicators to learn the loss ratios of rainfall (mm d−1).

Figure 5. Distributions of the indicators to learn the loss ratios of peak ground acceleration (g).

public data created or acquired by public institutions in one
place. The system was established in 2011 to provide public
data in the form of file data, visualization, and open API (ap-
plication programming interface) (Closs et al., 2014). During
the study period of 2009–2019, 474 reservoirs were desig-
nated as disaster risk reservoirs and 290 maintenance projects
were initiated. Among them, a total of 12 areas were flooded
before and after the completion of the disaster risk reservoir

maintenance project. Table 6 shows the loss rate and max-
imum precipitation at the time of flooding before and after
completion of the maintenance projects in these 12 areas.
Data about the loss amounts from storm and flood insurance
were obtained from KIDI. Precipitation data were collected
from KMA and the maximum daily precipitation at the time
of the flooding was used. Insured loss was expressed as a rate
of the incurred loss divided by the accrued premium. The loss
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Figure 6. Distributions of the indicators to learn the loss ratios of building type (1: residential (left), 2: greenhouse (right) in the table).

Table 4. Network structure and hyper parameter formation of the final model.

Category Configuration Feature

Network structure Number of hidden layers 3
Node 25–25–25

Hyper-parameter Dropout 0.0
Activation function ReLu (rectified linear unit)
Optimizer Adam (adaptive moment estimation)
Epoch 1000
Batch size 5

Table 5. Results with the validation set and test set of data.

Validation set Test set

MAE RMSE MAE RMSE

DNN 0.531 0.480 0.452 0.435
MRA – – 0.533 0.484
DNN/MRA (%) −15.20 −10.12

rate before the maintenance project was 34.32 % on average,
while that after the maintenance project was completed was
5.9 % on average, showing a sharp decrease of 82.8 % on av-
erage.

5.2 Cost–benefit analysis and results of natural disaster
risk reduction projects

As seen in Table 6, when data of precipitation as the main
cause of flooding accidents during flood damage were com-
pared, the average precipitation was 331 mm d−1 before the
maintenance project and 215 mm d−1 after the maintenance
project. It could be seen that the amount of precipitation was
decreased by 35 % when flood damage occurred after the
maintenance project. The sharp decrease in the loss rate after
the maintenance project could be due to not only the effect
of maintenance project, but also decreased rainfalls. In turn,
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Figure 7. Final model of deep neural networks.

Table 6. Comparison of loss rate and precipitation before and after maintenance projects in flooded regions in South Korea.

No Region Loss rate Precipitation (mm d−1)

Before (%) After (%) Before After

1 Yongin City 47.40 20.60 425 188
2 Nonsan City 30.10 0.80 334 306
3 Wanju-gun 40.70 3.40 364 142
4 Gangjin-gun 76.30 0.40 235 166
5 Sejong City 7.30 4.90 257 223
6 Muan-gun 25.80 2.00 285 192
7 Hampyeong-gun 23.80 10.30 301 230
8 Gyeongju City 33.10 1.20 488 280
9 Changwon City 10.60 10.70 300 266
10 Namhae City 22.10 8.50 324 231
11 Naju City 53.90 5.10 330 106
12 Goheung-gun 40.70 3.00 325 249

Average (%) 34.32 5.9 331 215

Before-to-after comparison (%) 82.8 35.0

it is difficult to conclude that the decreased loss rate is due to
the effect of reducing storm and flood damage caused by the
maintenance project.

To analyse the cost effectiveness of the maintenance
projects in flood regions, a cost–benefit analysis method
using an equal-payment-series present-worth factor was
adopted. The present-worth factor, assuming an annual loss
rate i, is a coefficient used to find the present value corre-
sponding to annual equivalent loss A for the next n years.
Equation (1) presents a widely used concept in economic
analysis (Park and Sharp, 2021):

P =
A[(1+ i)n− 1)]

i(1+ i)n
, (1)

where P is present value, A is annual loss amount, i is loss
rate, and n is year.

The initial cost of each maintenance project was collected
through The Public Data Portal and the average cost of the
maintenance project was calculated. For the loss rate, the
average loss rate of the loss area was used. For the annual
loss amount, the average annual loss for the study period
(2009–2019) was used as seen in Table 7. However, it was
assumed that no additional costs incurred due to the main-
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Figure 8. Comparison of losses before and after the maintenance projects.

Table 7. Summary of inputs.

Input Before After

Initial cost – 22.088∗

Loss rate 0.343 0.059
Annual loss amount 0.371∗ 0.006∗

∗ Billion KRW

tenance project. Figure 8 shows calculation results before
and after the maintenance projects, which reveals that the
loss amount becomes smaller after 8 years due to investment
through the maintenance projects.

6 Discussion

Within the proposed strategic framework, SIP-1 developed
an improved model for predicting economic losses due to
natural disasters using the DNN algorithm. For model de-
velopment, insurance companies’ storm and flood damage
insurance loss records were used to collect economic losses
caused by actual natural disasters. After developing a DNN
model and training it with collected data, the final network
model was selected by comparing with other DNN alterna-
tives. To scientifically validate the improved predictability,
the performance (i.e. actual-to-predicted comparison using
MAE and RMSE methods) of the developed DNN model was
compared with a parametric model underpinned by MRA.
The results revealed that the DNN model was 15.2 % less in
the MAE and 10.12 % less in the RMSE, compared to the
MRA model. These results confirm that deep learning can
produce more accurate and reliable prediction results of nat-

ural disaster-induced economic loss values associated with
non-linear characteristics of risk indicators. It is notewor-
thy that the proposed implementation process is applicable
to various natural disaster-triggered loss predictions, as the
amount and its fluctuation of losses are diversely dependent
on various types and strengths of natural disasters. In this
sense, the proposed SIP-1 will help natural disaster risk man-
agers predict the financial loss cost of natural disasters or de-
velop an optimally customized prediction model by adopting
deep learning. It can also be used as a reference when devel-
oping risk reduction investment plans or financial guidelines
in public and private sectors. For example, by applying this
implementation process, it would be possible to estimate re-
liably the negative impact of natural disaster events on exist-
ing financial management practices and thus make decisions
proactively on the most feasible risk reduction investment
plan that can strengthen natural disaster risk management and
reduce the amount of risk, ultimately reducing the economic
loss caused by natural disasters. Based on well-developed fi-
nancial guidelines, it would be possible to avoid any trans-
fers of unexpected financial losses from insurance coverage
or special purchases suitable for expected losses. Despite the
merit of SIP-1, there still remain some limitations. First, ow-
ing to the limited data availability, it was problematic to ac-
cumulate different data sets. Additional research in the future
is needed to parallel and prove loss records in other coun-
tries or regions. In addition, further research is required to
increase the amount of available data and upgrade the model
through the introduction of additional variables to more pre-
cisely predict losses from natural disasters using deep learn-
ing algorithms.

Compared to SIP-1, SIP-2 proposed a new methodology
that can quantify the cost effectiveness of natural disaster
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risk reduction projects through the cost–benefit analysis. To
demonstrate SIP-2, among natural disaster risk reduction
projects were implemented in South Korea, specific informa-
tion of the disaster risk reservoir maintenance projects where
flood damage occurred before and after completion was col-
lected. Then, to identify benefits and costs, corresponding
loss rates and daily precipitation amounts were investigated
and compared at the project level. Lastly, the cost effective-
ness of the projects was analysed using a cost–benefit analy-
sis method. As the result of cost–benefit analysis, in the short
term, the loss after the maintenance project was greater than
that before the maintenance project. However, this was re-
versed from 8 years after the maintenance project and the
loss amount before the maintenance project was larger than
that after the maintenance project. Although it is difficult to
expect profits from the maintenance project in the short term,
it can be seen that the maintenance project is economically
beneficial in the long term (8 years or more). SIP-2 would be
useful for making sounder decisions on natural disaster man-
agement policy and natural disaster risk reduction project in-
vestment plans. Evaluating the effectiveness of risk reduction
through SIP-2 will lead to drastic investment, which will ulti-
mately reduce the amount of natural disaster risks. However,
it should be noted that the study period shown in the SIP-2
case study was relatively short, while the location of project
samples was limited to South Korea. In addition, it was as-
sumed that the inflation rate is identical during the study pe-
riod. In turn, it is necessary to conduct additional analyses
considering various locations venerable to natural disasters
in other countries and more realistic financial loss values us-
ing a net present value concept.

7 Conclusions

Due to increasing threats to the lives of the general pub-
lic and built assets from natural disasters, a variety of risk
mitigation activities are being carried out extensively. Given
the continuous trend toward natural disaster risk mitigation,
the significance of relevant economic analyses has been un-
derlined, against the limited public budget and its economic
feasibility. To overcome this difficulty, this study proposed
a strategic framework for natural disaster risk mitigation,
highlighting two different SIPs. SIP-1 introduced more pow-
erful method that can improve the predictability of natural
disaster-triggered financial loss values using deep learning,
while SIP-2 highlighted the risk mitigation strategy at the
project level, adopting a cost–benefit analysis method. In
SIP-1, a DNN model for natural disaster loss prediction was
developed, and the improved predictability was validated by
comparing with MRA. The developed model learned and
generalized the loss amount of natural disaster risk indica-
tor facilities (building type, wind speed, total rainfall, and
peak ground acceleration) and wind and flood insurance. By
evaluating learning performances of 18 different DNN al-

ternatives using RMSE and MAE values as representative
evaluation indicators of deep learning algorithms, 25–25–
25 hidden layers with dropouts of 0.0 structure was selected
as the optimal learning model. The robustness of the devel-
oped model was technically validated by comparing RMSE
and MAE values of a conventional parametric model using
a multiple regression analysis. Validation results confirmed
that the non-parametric DNN model was powerful for pre-
dicting non-linear characteristics of losses caused by natural
disasters. In SIP-2, The cost-benefit analysis was conducted
on the disaster risk reservoir maintenance project that oc-
curred before and after the completion of the flood damage.
As the result, it was difficult to expect profits from the main-
tenance business in the short term. However, in the long term
(more than 8 years), it was found that the maintenance busi-
ness was economically profitable. The proposed framework
is unique as it provides a combinational approach to miti-
gating cost risk impacts of natural disasters at both financial
loss and project levels. The main findings of this study could
be used as a guideline for decision-making on natural disas-
ter management policies and investment in natural disaster
risk reduction projects. This study is its first kind and sup-
ports the current knowledge framework. This study will help
practitioners quantify the loss from various natural disasters,
while allowing them to evaluate the cost-effectiveness of risk
reduction projects through a holistic approach.
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