Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1325-2022
https://doi.org/10.5194/nhess-22-1325-2022
Research article
 | 
12 Apr 2022
Research article |  | 12 Apr 2022

Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme

Yves Tramblay and Pere Quintana Seguí

Viewed

Total article views: 2,834 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,964 790 80 2,834 74 93
  • HTML: 1,964
  • PDF: 790
  • XML: 80
  • Total: 2,834
  • BibTeX: 74
  • EndNote: 93
Views and downloads (calculated since 23 Dec 2021)
Cumulative views and downloads (calculated since 23 Dec 2021)

Viewed (geographical distribution)

Total article views: 2,834 (including HTML, PDF, and XML) Thereof 2,696 with geography defined and 138 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 08 Aug 2025
Download
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Share
Altmetrics
Final-revised paper
Preprint