Articles | Volume 22, issue 3 
            
                
                    
            
            
            https://doi.org/10.5194/nhess-22-1029-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1029-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
VADUGS: a neural network for the remote sensing of volcanic ash with MSG/SEVIRI trained with synthetic thermal satellite observations simulated with a radiative transfer model
                                            Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
                                        
                                    Dennis Piontek
                                            Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
                                        
                                    Stephan Kox
                                            Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
                                        
                                    
                                            now at: Telespazio Germany GmbH, Darmstadt, Germany
                                        
                                    Marius Schmidl
                                            Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
                                        
                                    
                                            now at: MTU Aero Engines AG, Munich, Germany
                                        
                                    Bernhard Mayer
                                            Ludwig-Maximilians Universität, Meteorologisches Institut,
Munich, Germany
                                        
                                    
                                            Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
                                        
                                    Richard Müller
                                            Deutscher Wetterdienst, Offenbach, Germany
                                        
                                    Margarita Vázquez-Navarro
                                            Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
                                        
                                    
                                            now at: European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Darmstadt, Germany
                                        
                                    Daniel M. Peters
                                            Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
                                        
                                    
                                            now at: RAL Space, STFC Rutherford Appleton Laboratory, Harwell, UK
                                        
                                    Roy G. Grainger
                                            COMET, Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
                                        
                                    Josef Gasteiger
                                            Ludwig-Maximilians Universität, Meteorologisches Institut,
Munich, Germany
                                        
                                    
                                            now at: Faculty of Physics, University of Vienna, Vienna, Austria
                                        
                                    Jayanta Kar
                                            Science System and Applications, Inc., Hampton, VA, USA
                                        
                                    
                                            Science Directorate, NASA Langley Research Center, Hampton, VA, USA
                                        
                                    Viewed
                        
                            Total article views: 3,229 (including HTML, PDF, and XML)
                        
                            
                                
                                
                            
                                
                                
                            
                        
                        
                            Cumulative views and downloads 
                                         (calculated since 27 Sep 2021)
                        
                        
                            
                                
                            
                    
        
                    
                    | HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 2,260 | 882 | 87 | 3,229 | 103 | 122 | 
- HTML: 2,260
 - PDF: 882
 - XML: 87
 - Total: 3,229
 - BibTeX: 103
 - EndNote: 122
 
                        
                            Total article views: 2,189 (including HTML, PDF, and XML)
                        
                            
                                
                                
                            
                                
                                
                            
                        
                        
                            Cumulative views and downloads 
                                         (calculated since 30 Mar 2022)
                        
                        
                            
                                
                            
                    
                    
                    | HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 1,592 | 533 | 64 | 2,189 | 79 | 107 | 
- HTML: 1,592
 - PDF: 533
 - XML: 64
 - Total: 2,189
 - BibTeX: 79
 - EndNote: 107
 
                        
                            Total article views: 1,040 (including HTML, PDF, and XML)
                        
                            
                                
                                
                            
                                
                                
                            
                        
                        
                            Cumulative views and downloads 
                                         (calculated since 27 Sep 2021)
                        
                        
                            
                                
                            
                    
        
                
            | HTML | XML | Total | BibTeX | EndNote | |
|---|---|---|---|---|---|
| 668 | 349 | 23 | 1,040 | 24 | 15 | 
- HTML: 668
 - PDF: 349
 - XML: 23
 - Total: 1,040
 - BibTeX: 24
 - EndNote: 15
 
Viewed (geographical distribution)
                                Total article views: 3,229 (including HTML, PDF, and XML)
                                
                                Thereof 3,119 with geography defined
                                    and 110 with unknown origin. 
                            
        
                            
                                Total article views: 2,189 (including HTML, PDF, and XML)
                                
                                Thereof 2,129 with geography defined
                                    and 60 with unknown origin. 
                            
        
                            
                                Total article views: 1,040 (including HTML, PDF, and XML)
                                
                                Thereof 990 with geography defined
                                    and 50 with unknown origin. 
                            
                    | Country | # | Views | % | 
|---|
| Country | # | Views | % | 
|---|
| Country | # | Views | % | 
|---|
| Total: | 0 | 
| HTML: | 0 | 
| PDF: | 0 | 
| XML: | 0 | 
- 1
 
1
                            | Total: | 0 | 
| HTML: | 0 | 
| PDF: | 0 | 
| XML: | 0 | 
- 1
 
1
                            | Total: | 0 | 
| HTML: | 0 | 
| PDF: | 0 | 
| XML: | 0 | 
- 1
 
1
                            Cited
11 citations as recorded by crossref.
- Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers D. Piontek et al. 10.3390/rs15051247
 - How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties J. Mayer et al. 10.5194/amt-17-5161-2024
 - Monitoring Volcanic Plumes and Clouds Using Remote Sensing: A Systematic Review R. Mota et al. 10.3390/rs16101789
 - Retrieval of Volcanic Sulfate Aerosols Optical Parameters from AHI Radiometer Data A. Filei et al. 10.1007/s00376-024-3105-2
 - Neural networks-based ‘first-response’ detection of volcano-tectonic seismic events in poorly monitored active volcanoes: the case of Pico de Orizaba (Citlaltépetl), Mexico U. Que-Salinas et al. 10.1016/j.jsames.2025.105756
 - Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic Z. Wang et al. 10.5194/acp-23-1941-2023
 - EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds H. Brenot et al. 10.5194/nhess-21-3367-2021
 - The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation D. Piontek et al. 10.3390/rs13163128
 - Remote sensing of solar surface radiation – a reflection of concepts, applications and input data based on experience with the effective cloud albedo R. Müller & U. Pfeifroth 10.5194/amt-15-1537-2022
 - An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions M. Plu et al. 10.5194/nhess-21-2973-2021
 - The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 1. Development D. Piontek et al. 10.3390/rs13163112
 
6 citations as recorded by crossref.
- Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers D. Piontek et al. 10.3390/rs15051247
 - How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties J. Mayer et al. 10.5194/amt-17-5161-2024
 - Monitoring Volcanic Plumes and Clouds Using Remote Sensing: A Systematic Review R. Mota et al. 10.3390/rs16101789
 - Retrieval of Volcanic Sulfate Aerosols Optical Parameters from AHI Radiometer Data A. Filei et al. 10.1007/s00376-024-3105-2
 - Neural networks-based ‘first-response’ detection of volcano-tectonic seismic events in poorly monitored active volcanoes: the case of Pico de Orizaba (Citlaltépetl), Mexico U. Que-Salinas et al. 10.1016/j.jsames.2025.105756
 - Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic Z. Wang et al. 10.5194/acp-23-1941-2023
 
5 citations as recorded by crossref.
- EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds H. Brenot et al. 10.5194/nhess-21-3367-2021
 - The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation D. Piontek et al. 10.3390/rs13163128
 - Remote sensing of solar surface radiation – a reflection of concepts, applications and input data based on experience with the effective cloud albedo R. Müller & U. Pfeifroth 10.5194/amt-15-1537-2022
 - An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions M. Plu et al. 10.5194/nhess-21-2973-2021
 - The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 1. Development D. Piontek et al. 10.3390/rs13163112
 
Latest update: 03 Nov 2025
Short summary
                    The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
                    The monitoring of ash dispersion in the atmosphere is an important task for satellite remote...
                    
                Altmetrics
                
                Final-revised paper
            
            
                    Preprint