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Abstract. After the eruption of volcanoes around the world,
monitoring of the dispersion of ash in the atmosphere is an
important task for satellite remote sensing since ash repre-
sents a threat to air traffic. In this work we present a novel
method, tailored for Eyjafjallajökull ash but applicable to
other eruptions as well, that uses thermal observations of the
SEVIRI imager aboard the geostationary Meteosat Second
Generation satellite to detect ash clouds and determine their
mass column concentration and top height during the day and
night. This approach requires the compilation of an extensive
data set of synthetic SEVIRI observations to train an artificial
neural network. This is done by means of the RTSIM tool
that combines atmospheric, surface and ash properties and
runs automatically a large number of radiative transfer cal-
culations for the entire SEVIRI disk. The resulting algorithm
is called “VADUGS” (Volcanic Ash Detection Using Geo-
stationary Satellites) and has been evaluated against inde-
pendent radiative transfer simulations. VADUGS detects ash-
contaminated pixels with a probability of detection of 0.84
and a false-alarm rate of 0.05. Ash column concentrations

are provided by VADUGS with correlations up to 0.5, a scat-
ter up to 0.6 g m−2 for concentrations smaller than 2.0 g m−2

and small overestimations in the range 5 %–50 % for mod-
erate viewing angles 35–65◦, but up to 300 % for satellite
viewing zenith angles close to 90 or 0◦. Ash top heights are
mainly underestimated, with the smallest underestimation of
−9 % for viewing zenith angles between 40 and 50◦. Abso-
lute errors are smaller than 70 % and with high correlation
coefficients of up to 0.7 for ash clouds with high mass col-
umn concentrations. A comparison with spaceborne lidar ob-
servations by CALIPSO/CALIOP confirms these results: For
six overpasses over the ash cloud from the Puyehue-Cordón
Caulle volcano in June 2011, VADUGS shows similar fea-
tures as the corresponding lidar data, with a correlation coef-
ficient of 0.49 and an overestimation of ash column concen-
tration by 55 %, although still in the range of uncertainty of
CALIOP. A comparison with another ash algorithm shows
that both retrievals provide plausible detection results, with
VADUGS being able to detect ash further away from the Ey-
jafjallajökull volcano, but sometimes missing the thick ash
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clouds close to the vent. VADUGS is run operationally at
the German Weather Service and this application is also pre-
sented.

1 Introduction

Volcanic ash is a threat to air traffic, as it can damage air-
craft engines and lead to flame-outs, see, e.g. Miller and
Casadevall (2000). The eruption of the volcano Eyjafjalla-
jökull in 2010 had a huge impact on European air traffic caus-
ing a massive cancellation of flights (see e.g. Budd et al.,
2011; Langmann et al., 2012). As a consequence, the in-
terest in tracking volcanic ash clouds in case of a similar
scenario increased. Satellite images are particularly useful
in this context because of their large field of regard and of-
ten high temporal or spatial resolution. In particular, obser-
vations of the SEVIRI radiometer aboard Meteosat Second
Generation (MSG) are very well suited due to its 12 spec-
tral channels (four solar, seven thermal and a mixed channel)
that scan the Earth from above the Equator every 15 min with
a spatial sampling distance of 3 km at nadir. Various meth-
ods to detect volcanic ash plumes in satellite images have
been developed in the past few years (Prata, 1989b; Fran-
cis et al., 2012; Mackie and Watson, 2014; Piscini et al.,
2014; Guéhenneux et al., 2015; Gouhier et al., 2020, among
others). Many of them exploit thermal observations since
they provide both daytime and nighttime coverage and be-
cause they show a particular signature of many volcanic ash
types, the “reverse” absorption feature (Wen and Rose, 1994;
Pavolonis et al., 2006). It states that the brightness temper-
ature (BT) difference BTD(λ1− λ2) between the SEVIRI
channel centred at λ1 = 10.8 µm and the SEVIRI channel
centred at λ2 = 12.0 µm has the opposite sign as the same
BTD for ice clouds, thus enabling the identification of vol-
canic ash-contaminated pixels.

Our approach focuses on the MSG/SEVIRI sensor and
aims at gaining information about volcanic ash clouds
through the application of an artificial neural network (NN).
Before an NN based on the supervised learning approach
can be used to solve this remote sensing problem, train-
ing data have to be provided for the learning phase during
which the NN learns to approximate the desired volcanic
ash properties from the given input data/satellite observa-
tions. For volcanic eruptions, there are no documented sit-
uations in which the actual three-dimensional (in space) or
four-dimensional (in space and time) mass distribution of the
volcanic aerosol is known. In situ measurements are rare,
can probe only a limited part of the ash clouds at selected
locations and at particular times, and are difficult to com-
pare with passive satellite observations. Training data have
been composed by combining satellite images with model-
s/simulations/retrievals, e.g. Gray and Bennartz (2015, the
polar orbiting MODIS reflectometer and HYSPLIT trajec-

tories), Picchiani et al. (2011, MODIS and look-up tables),
Piscini et al. (2014, MODIS and other retrievals), Zhu et al.
(2020, SEVIRI and CALIOP lidar observations). As an al-
ternative, simulated satellite data can be used. These consist
of the simulated BTs that a satellite instrument viewing the
Earth’s atmosphere would measure in given situations with
and without generic volcanic ash layers. Using these syn-
thetic observations, a suitably designed NN can be applied
to generalize the relationship between input (simulated satel-
lite observations) and output (volcanic ash properties). Af-
ter training, the NN should be able to derive the latter for
a given set of measured BTs. This principle has been uti-
lized for a retrieval of the mass column density and the cloud
top height of volcanic ash. The resulting algorithm, called
“VADUGS” (Volcanic Ash Detection Using Geostationary
Satellites), is presented in this manuscript. It was developed
in the aftermath of the impressive eruption of the Icelandic
Eyjafjallajökull volcano in 2010 according to the experience
gathered with ice clouds in Kox et al. (2014) and with par-
ticular focus on this eruption. It was developed for the inves-
tigation of the Eyjafjallajökull eruption and for the detection
of future Eyjafjallajökull-like eruptions that might have sim-
ilar impacts on air traffic over Europe to the 2010 event. It
was first presented at the 2013 EUMETSAT Conference held
in Vienna, Austria (Kox et al., 2013). Since 2015 VADUGS
has been run operationally at the German Weather Service
(Deutscher Wetterdienst, DWD, DWD2015) and from 2016
to 2019 it provided satellite observations of volcanic ash
for the EU Horizon 2020 project EUNADICS-AV (Euro-
pean Natural Airborne Disaster Information and Coordina-
tion System for Aviation, Brenot et al., 2021). VADUGS par-
ticipated in two WMO intercomparison workshops for satel-
lite products about volcanic ash in 2015 (Graf et al., 2015;
WMO2015) and 2018 and its approach has been extended to
Himawari-8 data (de Laat et al., 2020). VADUGS is also the
basis for more advanced machine-learning algorithms for the
detection of volcanic ash and the determination of its proper-
ties (Piontek et al., 2021c, b).

This article describes (a) a method to generate compre-
hensive realistic data sets of simulated thermal observations
considering both liquid and ice water clouds as well as vol-
canic ash and (b) the development and performance of an
NN trained using these synthetic data sets. In Sect. 2 the main
concepts and ideas are introduced. The tool for the com-
pilation of the simulated satellite observations is described
in Sect. 3 and the resulting data set of synthetic observa-
tions is presented in Sect. 4. Section 4.2 and 4.3 explain the
training of the NN retrieval and present some considerations
about its application together with an illustration of the re-
trieval results for the Eyjafjallajökull May eruption phase. In
Sect. 4.4 the validation against independent simulated obser-
vations and against spaceborne lidar measurements is shown,
while the implementation at DWD is sketched in Sect. 5 be-
fore conclusions are drawn in Sect. 6.
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2 Approach

The VADUGS retrieval algorithm has been developed
closely following the experience gathered with ice clouds in
Kox et al. (2014). There, ice clouds are identified in MS-
G/SEVIRI thermal observations by means of an NN that
has been trained with collocated cloud products from the
CALIOP lidar in space (Winker et al., 2009). However, as
already explained in the Introduction, this approach can-
not be directly applied to volcanic ash because volcanic
ash observations in the field of regard of MSG/SEVIRI are
limited to a few large eruptions (Eyjafjallajökull in 2010,
Puyehue-Cordón Caulle in 2011) and some smaller eruptions
(e.g. Grimsvötn 2011, Etna, Nabro 2011) for which no com-
prehensive data set is available containing both satellite ob-
servations and the corresponding ash properties that can be
used to train an NN. Thus, the approach selected for volcanic
ash makes use of the radiative transfer model libRadtran
(Emde et al., 2016; Mayer and Kylling, 2005) to compute
one-dimensional (1D) simulated satellite observations based
on a data set of consistent but variable atmospheric proper-
ties, including ash layer height, geometrical thickness and
mass concentration at different places inside the MSG/SE-
VIRI field of regard under realistic atmospheric conditions.
For the derivation of top-of-atmosphere fluxes from MSG/-
SEVIRI observations, a similar approach (Vázquez-Navarro
et al., 2013) has already proved to yield good results. Thus,
in this study we combine the NN technique from Kox et al.
(2014) with the radiative transfer approach from Vázquez-
Navarro et al. (2013).

The goal of the VADUGS retrieval algorithm is the
derivation of volcanic ash cover (VAC), volcanic ash top
height (VATH) and volcanic ash mass column concentra-
tion (VAMC).

The main advantages of using simulated satellite obser-
vations for the training of a volcanic ash retrieval are that:
(a) all atmospheric properties, including of course volcanic
and liquid/ice cloud properties are exactly known; (b) the
data set can cover the entire SEVIRI disk and all possible
combinations of meteorological clouds, volcanic ash, time of
the year/of the day and viewing geometries; (c) in principle,
various ash types might be included. The main drawback is
that radiative calculations, although realistic, might still not
encompass the full complexity of real observations.

2.1 MSG/SEVIRI

Meteosat Second Generation (MSG) is a series of four
satellites operated by EUMETSAT that became operational
in 2004 and has continued operating to date. The satellites,
MSG1 to MSG4, were renamed after launch as Meteosat-8 to
Meteosat-11, respectively. Their main instrument is the Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI). This
radiometer has 11 spectral channels from the visible to the
infrared with a spatial sampling of 3 km at the subsatellite

point and a broadband high-resolution visible (HRV) chan-
nel with a spatial sampling distance of 1 km at nadir. The
thermal channels are centred at 6.2 and 7.3 µm (strong wa-
ter vapour absorption), 8.7, 10.8 and 12.0 µm (window chan-
nels), as well as 9.7 µm (ozone absorption) and 13.4 µm (car-
bon dioxide absorption). The operational service provides
full-disk Earth data every 15 min and the rapid scan service
observes the upper part of the Earth disk with Europe and
North Africa with a repetition time of 5 min. For the develop-
ment of VADUGS, we concentrate on MSG2 (Meteosat-9),
launched in 2005, since it was the prime Meteosat satellite
from 2006 to 2013 and thus recorded the main volcanic erup-
tions mentioned earlier (Eyjafjallajökull, Grimsvötn, Puye-
hue).

2.2 VADUGS: an artificial neural network

An artificial NN (Rumelhart et al., 1986) consists of a set of
neurons that exchange information with each other with the
goal of deriving a set of output variables given a set of known
input quantities. The technical implementation of the NN in
this study follows very closely Kox et al. (2014), since the
NN developed there proved to be highly effective in detecting
ice clouds and in determining their properties.

The neurons in the NN are structured in three layers:
(a) the input layer, (b) one hidden layer, and (c) the out-
put layer. Correspondingly, neurons in these layers are called
“input neurons”, “hidden neurons” and “output neurons”. In-
put neurons transport the information used for the detection
of ash and the determination of its properties into the NN,
i.e. each observation and ancillary data are assigned a sin-
gle neuron. Output neurons contain the information about
the desired ash properties, while the hidden neurons collect,
combine and process data forwarded by the input neurons
and fire the results to the output neurons, where the output
quantities are produced. The number of hidden neurons is
selected in analogy to the ice cloud retrieval COCS (Kox
et al., 2014) that proved to yield accurate results for the re-
mote sensing of ice clouds with the same spaceborne sen-
sor MSG2/SEVIRI and with 10 input and two output vari-
ables. As in Kox et al. (2014), 600 neurons for the hidden
layer have been adopted as a trade-off between accuracy and
CPU time consumption. Similarly, VADUGS uses 17 input
variables (see Sect. 4.2) and two output variables, VAMC
and VATH. A feed-forward NN is implemented where all
connections between neurons are in the forward direction
(from input layer to output layer through the hidden layer),
while connections within a layer or backward connections
are forbidden. A numeric tunable weight is assigned to each
neuron connection. Every neuron processes the output from
all neurons in the preceding layer weighted with the corre-
sponding connection weights through a non-linear activation
function, the logistic function in our case. Thus, the NN can
learn patterns and approximate functions in a sort of multi-
dimensional non-linear fitting by means of a limited number
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of neurons. Training the NN determines the value of all the
connection weights through the backpropagation technique.
The input variables are fed into the NN, which computes a
vector of output variables using its current weights. The total
squared difference error between the estimated output and
the corresponding vector of expected output is propagated
backwards through the NN to update each weight using gra-
dient descent in order to minimize the total error. The training
stops when no reduction in the sum of the quadratic devia-
tions is observed.

With this technique an exhaustive set of training examples
containing both input and output variables must be available.

3 Simulated satellite observations

In this section the details of the radiative transfer calculations
are explained.

3.1 Radiative transfer calculations

Accurate and realistic 1D simulations of the satellite obser-
vations with realistic and representative atmospheric condi-
tions are crucial for the successful training of the NN and
especially for its successful application to real data.

3.1.1 Scene selection

The MSG/SEVIRI grid consists of more than 13 million
pixels, including space. In order to homogeneously cover
the full Earth disk with a moderate amount of simulations
and in view of the coarser spatial resolution of the atmo-
spheric data from the European Centre for Medium-Range
Weather Forecasts (ECMWF, see Sect. 3.1.2), the original
satellite grid was reduced by a factor of 100 by selecting ev-
ery 10th pixel in x and y direction. This results in a grid
with 102 799 points that are homogeneously distributed over
the SEVIRI disk. Therefore, these locations are not homo-
geneously distributed in the latitude–longitude space and the
data density in the latitude–longitude space close to the sub-
satellite point is thus highest and decreases towards the edge
of the Earth disk. Locations in this reduced geographical grid
are selected randomly, ensuring that all positions are consid-
ered. Atmospheric and surface properties are then collected
according to their geographic locations.

3.1.2 Atmospheric profiles of gases and clouds

ECMWF IFS (Integrated Forecast System) analysis data are
used for the majority of the quantities, i.e. surface pres-
sure, geopotential, land–sea mask, skin temperature, tem-
perature, specific humidity, ozone mass mixing ratio, cloud
cover, cloud liquid water content (LWC), and cloud ice wa-
ter content (IWC). This enables the compilation of realistic
atmospheric profiles at the given locations of the simulation
(Sect. 3.1.1). Data are defined on a latitude–longitude grid

covering the entire globe. Vertical variability from the sur-
face up to the model top is considered with the full set of
model levels. IFS data are available at different spatial and
temporal resolutions depending on the user needs and model
version; the data characteristics selected for VADUGS are il-
lustrated in Sect. 4.2 for the present application.

The 1D vertical atmosphere structure is set up by calcu-
lating pressure, temperature, height, humidity and ozone for
each atmospheric layer from ECMWF data for the selected
simulation location and time. The barometric formula is ap-
plied to compute the respective height range. Water vapour
and ozone stem from ECMWF.

Atmospheric gas absorption properties are computed
through the low-resolution band models developed for the
LOWTRAN 7 atmospheric transmission code (Pierluissi and
Peng, 1985) that uses an exponential sum fit with a resolution
of 20 cm−1. We implemented 15 spectral grid points for each
MSG2/SEVIRI thermal channel (Sect. 2.1) under consider-
ation of the corresponding spectral response function. The
code was adopted from SBDART (Ricchiazzi and Gautier,
1998).

Cloud vertical profiles of liquid and ice water content are
obtained from IFS and effective radii necessary for the ra-
diative transfer model (Sect. 3.1.6) are parameterized. Based
on these values, optical properties are then assigned to every
cloud. This method is described in detail in Appendix A.

3.1.3 Atmospheric profiles of volcanic ash

Volcanic clouds as well as other airborne aerosols show vari-
ations in size, shape and composition (see e.g. Langmann,
2013) as a consequence of differing origin conditions and
transport processes such as gravitational settling, wash-out,
etc. In this study, volcanic ash is represented by a homoge-
neous layer with random values for its vertical position in
the atmosphere, vertical extent, and homogeneous mass vol-
ume concentration. The assumption of airborne aerosol oc-
curring in the form of one layer is common practice, see Lee
et al. (e.g. 2014), although multiple layers are not uncommon
in observations (e.g. Marenco et al., 2011; Schumann et al.,
2011).

Top height is at most 18 km above the surface, vertical ex-
tent is limited to 2.5 km and volcanic ash bottom height is
computed as top minus extent.

The refractive indices m of volcanic ash for Eyjafjalla-
jökull are as described in Appendix B. Please note that this
enables the retrieval to be tailored to this eruption; however,
the validation in Sect. 4.4.4 shows that VADUGS provides
VAMC with a similar accuracy also for the Puyehue-Cordón
Caulle eruption in 2011, thus indicating that its applicabil-
ity could be extended to other volcanoes. Nevertheless, the
usage of refractive indices for Eyjafjallajökull represents a
principle limitation of VADUGS, which has been addressed
by its successor (see Sect. 6).
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3.1.4 Surface properties

The relevant surface property needed for realistic radiative
transfer simulations in the infrared spectral range is the
surface emissivity. According to the time selected for the
ECMWF profiles (Sect. 3.1.2), the suitable monthly data
from the surface emissivity data set are selected to ensure
consistency. For land pixels it is obtained from Seemann et al.
(2008) for the year 2010, where monthly surface emissiv-
ity maps are available globally at 10 wavelengths located
at 3.6, 4.3, 5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, and 14.3 µm
with 0.05◦ spatial resolution in latitude and longitude. The
radiative transfer model interpolates linearly in between. For
water pixels, a spectral and time constant value of 0.986 is
used, corresponding, e.g. to the sea surface emissivity mea-
sured in Niclòs et al. (2005) for wind speeds of 5–10 m s−1

in the spectral range 8–14 µm encompassing all relevant SE-
VIRI channels for a viewing zenith angle of 25◦. The fact that
monthly means are used for radiative transfer simulations on
particular days at selected times of the day does not affect the
quality of the resulting data set since it does not spoil the aim
of producing realistic satellite observations.

3.1.5 Viewing geometry

The only relevant viewing geometry parameter in 1D thermal
radiative transfer is the viewing zenith angle of the satellite
(the position of the Sun is not relevant). Although we select
fixed locations on the SEVIRI grid (Sect. 3.1.1), radiative
transfer simulations are always run for a set of 41 cosines of
the viewing zenith angles from 0.2 (corresponding to ∼ 78◦

viewing zenith angle) to 1.0 (nadir). This is done for three
reasons: (a) we do not want the NN to learn fixed relation-
ships between latitude and viewing zenith angle (for this rea-
son latitude is also not an input variable of VADUGS, see
Sect. 4.2); (b) the NN is given the chance to extract informa-
tion about the transmissivity of the ash clouds as a function
of viewing zenith angle from the input data; and (c) the re-
sulting data set of simulated BTs will be filtered (Sect. 4.2) to
keep only those that show a clear ash signal, which strongly
reduces the number of ash-loaded pixels available for train-
ing. This is meant to compensate for the fact that this ap-
proach might also lead to a more difficult learning procedure
since not all meteorological conditions are observed for all
viewing angles.

3.1.6 Radiative transfer model

The software package libRadtran (Emde et al., 2016; Mayer
and Kylling, 2005) is used to realistically simulate satellite
radiances and to compute results of satellite measurements
in the form of BTs. All radiative transfer simulations make
use of a C version of the 1D solver DISORT (Stamnes et al.,
1988; Buras et al., 2011) with 16 streams. Input data relevant
to the radiative transfer model in the thermal range have been

described in the previous sections: satellite zenith angle, sur-
face properties such as temperature and surface emissivity,
vertical profiles of temperature and gas concentrations, wa-
ter and ice cloud properties such as height, water content,
and particle effective radius, as well as aerosol layer prop-
erties such as height, aerosol optical properties, and mass
concentration. Gas absorption is considered through LOW-
TRAN (see Sect. 3.1.2).

3.1.7 RTSIM

To manage and automate the generation of data sets, the pro-
gramme RTSIM was developed. RTSIM is coded in Python 3
and based on a corresponding module providing classes and
functions as an interface to the underlying database and the
radiative transfer model. After start-up, all input data are ac-
cessed via its data management class. All environment pa-
rameters are prepared as input, and suitable configuration
commands are passed to the radiative transfer model. RTSIM
supports independent processing modules, which can be used
simultaneously, as well as communication through client ap-
plications during runtime. The integrity of defined functions
is checked by calling a module-based self-test, which in turn
performs several unit tests. RTSIM has been designed to run
radiative transfer calculations in parallel. It combines multi-
threading with asynchronous handling of subprocesses in a
scalable manner with respect to CPython’s Global Interpreter
Lock (GIL). For long-running subprocesses and a suitable
number of available CPU cores, this can lead to a signifi-
cant decrease in computation time. RAM drives are used to
decrease I/O delays and thus decrease runtime. Results of ra-
diative transfer simulations are stored in the output data set,
together with all the information needed to determine the en-
vironment state including all aforementioned quantities for
surface and atmosphere.

First, RTSIM randomly selects a day for the input atmo-
spheric parameters (Sect. 3.1.2) and a SEVIRI grid point
from the corresponding input file (Sect. 3.1.1). Its geographic
coordinates are mapped by a nearest-neighbour algorithm
to the ECMWF grid such that skin temperature, gas and
cloud profiles can be extracted (Sect. 3.1.2). Optical prop-
erties are then assigned to the cloud layers (Sect. 3.1.6). Sur-
face properties for the pixel location are extracted from the
suitable emissivity file (Sect. 3.1.4) and a volcanic ash layer
(Sect. 3.1.3) is added to the atmosphere. Finally, the entire
set of 41 satellite zenith angles described in Sect. 3.1.5 is as-
signed to the simulation.

The radiative transfer solver is called two times (with and
without ash profile) when the atmosphere (Sect. 3.1.2) does
not contain clouds. When the atmosphere contains cloud lay-
ers, the radiative transfer solver is called four times (with
and without ash profile for the atmosphere with and without
clouds). If ice clouds are present, ice crystal habit is selected
randomly but is the same for the two calculations with clouds
(with and without ash). Every call to the radiative transfer
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solver produces seven thermal SEVIRI observations for the
41 viewing geometries.

4 The VADUGS retrieval algorithm

This section describes the training data set used for the
VADUGS implementation and the NN and its training.

4.1 The training data set

The training data set is compiled using the RTSIM tool
(Sect. 3.1.7). To optimally cover different seasonal condi-
tions, we select day 15, 12:00 UTC for 12 months from
February 2010 to January 2011. This period of time encom-
passes the Eyjafjallajökull eruption, for which the algorithm
was initially created, and consists of data from one single
ECMWF IFS model version (cycle CY36R1, started end of
January 2010). Spatial resolution amounts to 0.25◦ in lati-
tude and longitude, while the vertical grid of atmospheric
model levels encompasses 91 layers (ECMWF, 2010). Al-
though only one time of the day is used, different local times
can also be covered due to the fact that many viewing zenith
angles are simulated for every atmospheric column. Further-
more, VADUGS only relies on thermal observations such
that the position of the Sun above the horizon is not relevant.
Nevertheless, nighttime variability of, e.g. surface properties
such as temperature cannot be accounted for (this has been
improved for the VADUGS successor).

Volcanic ash layers are selected in the following way. In
10 279 900 simulations, ash mass volume concentration is a
random number between 0.001 and 10 g m−3, while an ad-
ditional 1 200 000 simulations with mass volume concentra-
tion between 0.001 and 20 g m−3, 1 200 000 simulations with
mass volume concentration between 0.05 and 2.15 g m−3

and 600 000 simulations with mass volume concentration
between 0.001 and 1000 g m−3 are performed to stress on
one hand medium-range concentrations and on the other
hand also high concentration peaks. This makes a total of
13 279 900 atmospheric ash profiles used for the radiative
transfer simulations.

Although the entire simulation data set provides a realistic
and extensive basis for the training of an NN, three additional
constraints are implemented to make sure that a clear rela-
tionship between input and output data is provided to the NN.
Thus, the results of the simulations are filtered according to
the following criteria:

BTD(10.8–12.0)≥ 0K (1)
BTD(8.7–10.8)≥ 0 K (2)
BTD(8.7–12.0)≥−5K. (3)

If one of these conditions is fulfilled, the corresponding
VAMC and VATH are set to zero. The first one aims at
identifying only pixels that are distinct from ice clouds,

whose typical signature in split window channels is a neg-
ative BTD(10.8–12.0) (e.g. Inoue, 1985), while the sec-
ond and third condition exclude all low-level liquid water
clouds (BTD(8.7–10.8)≥ 0 K is typical for the ice phase,
e.g. Baum et al., 2000). The training data set eventually
contains 40 057 800 samples, 965 268 have non-zero VAMC
and VATH, with a VAMC range from 0.12 mg m−2 to
2.446 kg m−2 and VATH from 22.2 m to 17.9 km. The his-
togram of VAMC, of VATH and their combined histograms
are given in Fig. 1. It shows that VAMC centres on values
lower than 5 g m−2 and VATH extends to 14 km in the major-
ity of the cases. Moreover, one can distinguish between weak
eruptions (VATH up to 5 km) and stronger eruptions with ash
up to 14 km. Although the data set before the filtering covers
all combinations of VAMC and VATH, the filtered data set is
reduced in this respect such that VAMC> 6–7 g m−2 are not
found at VATH greater than 7 km at most. This represents
a limitation especially close to the vent of the volcano, but
as seen in the validation against CALIOP (Sect. 4.4.4) the
values of VAMC found there are well below these values of
6–7 g m−2. Thus, we think that in most situations this does
not represent a strong limitation for VADUGS.

The resulting BT differences, such as BTD(8.7–12.0) and
BTD(10.8–12.0) in Fig. 2, for VAMC> 0 g m−2 show the
expected behaviour, with negative values down to −25 K
and a dependency on VAMC for VAMC smaller than ap-
proximately 5–6 g m−2. For higher VAMC, the BTD varia-
tions are much smaller, thus pointing to the physical limits of
the passive thermal observations that reach saturation in this
VAMC range. The dependency of BT at 10.8 µm on VAMC
is shown in the lowest panel in Fig. 2: BT(10.8) varies from
very low values close to 200 K up to 320 K, thus indicating
that opaque ash layers are present at different heights. Large
VAMC of> 5 g m−2 correspond to BTs between 260 and
280 K, thus corresponding to medium height levels up to ap-
proximately 5 km (see Fig. 1).

4.2 Training the neural network

The simulated observations presented in the previous section
are used as input for the training of an NN. As input vari-
ables for the NN, the BTs from all seven thermal SEVIRI
channels are selected together with a set of BT differences:
BTD(8.7–9.7), BTD(8.7–10.8), BTD(8.7–12.0), BTD(8.7–
13.4), BTD(9.7–12.0), BTD(9.7–13.4) and BTD(6.2–7.3).
The BTDs containing window channels alone (8.7, 10.8 and
12.0 µm channels) are meant to yield the physics of thin lay-
ers in the atmosphere. Of course, other BTDs, e.g. the most
widely used BTD(10.8–12), can be implicitly obtained by
the NN through a combination of the available ones.

BTDs with the CO2 channel (centred at 13.4 µm) are sup-
posed to transport direct information about ash layer height,
since the vertical weighting function of this channel has a
broad peak in the troposphere (and for this reason is used
for CO2 slicing, see e.g. Menzel et al., 1983). Finally, BTDs
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Figure 1. Histogram of ash concentrations and top height in the
input data set used for the calculation of the training data set.

with the ozone channel (centred at 9.7 µm) carry informa-
tion about the ozone yearly cycle and its geographic distribu-
tion. Due to large possible variations in stratospheric ozone
columns during the course of the year and to the consider-
able variability in surface temperatures, especially at high
latitudes, this channel must be handled with care in order to
prevent misdetections, as was for instance the case in Ewald
et al. (2013) with respect to cirrus cloud detection. Although

Figure 2. Histogram of (a) BTD(8.7–12.0), (b) BTD(10.8–12.0)
and (c) BT(10.8) for ash-contaminated simulations as a function of
VAMC.

the NN is able to deduce relationships between input vari-
ables during training, the provision of BT differences is sup-
posed to facilitate and speed up the learning process since
these quantities explicitly contain the physics of the prob-
lem. However, the usage of an NN prevents us from defin-
ing a priori thresholds to the BTDs such as, e.g. in Yu et al.
(2002) and Francis et al. (2012). Furthermore, skin temper-
ature (from ECMWF, Sect. 3.1.2) together with a land/sea
flag is selected as input in order to describe surface emission
properties. Surface emissivity is neglected here since its vari-
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ability is thought to be of secondary importance compared
to surface temperature and because it is difficult to obtain
daily/hourly values of this quantity, especially for a possi-
ble near real-time application. Finally, viewing zenith angle
helps considering the slant path of radiation through the at-
mosphere. This makes a total of 17 input variables.

Output variables are, as already mentioned, VAMC and
VATH (two output variables), the topology of the VADUGS
NN and the backpropagation procedure that were presented
in Sect. 2.2. The final training data set described previously
is randomly mixed and fed into the NN.

4.3 Applying the neural network

For the application of the NN, BTs from all thermal chan-
nels are needed according to the previous section, but also a
land/sea flag, that we consider fixed in time, and a viewing
zenith angle map, which can also be considered as fixed if the
spacecraft is located above 0◦ E over the Equator and fluc-
tuations around this point are neglected. Nevertheless, skin
temperature must still be provided. This quantity is extracted
from ECMWF analysis data for the training (Sect. 3.1.2), but
in principle it can be obtained from other sources as well. A
short discussion about this aspect is given in Sect. 5.

The output quantities are VAMC and VATH. The detec-
tion of ash contaminated pixels must be performed through
VAMC and is discussed in detail in the next section. Here we
show a sequence of false colour RGB pictures with VAMC
overlays from 13 May 2010 04:00 UTC to 17 May 2010
16:00 UTC in 12 h steps (Fig. 3) during the third phase of the
Eyjafjallajökull eruption (Langmann et al., 2012). The false
colour RGBs are based on the SEVIRI2 solar channels cen-
tred at 0.6, 0.8 µm and the inverted thermal 10.8 µm channel.
During nighttime, only temperature information is available
such that blue shades are obtained, during daytime colours
mimic true colour images. In all panels, black areas corre-
spond to ice clouds as detected by the COCS algorithm (Kox
et al., 2014): Here, no assertion about the presence of ash
can be made. Red colours indicate VAMC from 0 to 3 g m−2

(see scale at the bottom), pixels with VAMC values lower
than 0.05 g m−2 are treated as ash free. The region selected
comprises Iceland in the north-west corner, Great Britain in
the centre, Scandinavia in the north-east part and France–
Germany–Denmark over central Europe. The VADUGS re-
trieval clearly shows the ash emitted by the Eyjafjallajökull
volcano in the south of Iceland and how the ash cloud is
transported by winds first towards the east (13 May 2010
04:00 UTC), then towards south-east. Through the use of
thermal observations, ash information can be derived with
the same accuracy during both day and night. The cloud
reaches Great Britain on 14 May 2010 and is observable
there for many hours, while the winds close to the vol-
cano change and blow ash to the west along high latitudes.
From 16 May 2010 the ash is carried again towards Great
Britain, with some small patches reaching the continent. On

17 May 2010 16:00 UTC a relatively large ash cloud is lo-
cated above the North Sea, where it was probed by both the
UK FAAM aircraft (Marenco et al., 2011) and the German
DLR Falcon (Schumann et al., 2011). In general, dark red
colours are typical for the ash plume close to the vent indi-
cating high ash concentrations, while the red colours become
fainter further away from the volcano, as expected through
sedimentation and/or interactions with water clouds. From
time to time, single ash-contaminated pixels are found: In
many cases, through the visual evaluation of the full 15 min
temporal evolution of the ash, they can be ascribed to thin di-
luted ash cloud patches, in some cases they seem to be false
alarms. Thus, the algorithm is able to detect the Eyjafjalla-
jökull ash cloud for which it has been developed in a very
plausible way.

4.4 Validation

Two approaches are selected for validation of the NN. First,
the NN performance is evaluated against simulated observa-
tions to assess how well the retrieval has learned the rela-
tionships between input and output variables contained in the
training data set. The second approach consists in the evalua-
tion of the NN against CALIOP observations of volcanic ash
to assess the quality of the retrieval in real situations. The
metrics used for this are presented in Appendix C.

4.4.1 Simulated validation data set

A second data set is simulated along the lines of the train-
ing data set (Sect. 4.1). Since most of the input data samples
are concentrated to VAMC≤ 5 g m−2 and VATH≤ 14 km,
these limits are used for the compilation of the validation
data set. Of course, the same ash optical properties are used
and the ash layer extent reaches 2.5 km. Again, various mass
concentration regimes are selected to compose the ash pro-
files: 0 mg m−3, 0.001 to 0.1 mg m−3, 0.1 to 0.2 mg m−3,
0.15 to 0.25 mg m−3, 0.2 to 0.3 mg m−3, 0.3 to 1 mg m−3,
1 to 2 mg m−3, 1.5 to 2.5 mg m−3, 2 to 3 mg m−3 and 3 to
10 mg m−3. For each ash profile, samples with and without
volcanic ash/meteorological clouds are simulated in various
height ranges (tops between 0.5 and 14 km), thus producing
the gaps observed in Fig. 4. After application of the filter im-
plemented in Sect. 4.1 with Eq. (1), the data set comprises
3 526 397 samples with 100 083 ash loaded samples (those
plotted in Fig. 4). Most points accumulate to concentrations
below 1 g m−2 and only few samples at higher concentra-
tions.

4.4.2 Ash detection

The detection of volcanic ash clouds is performed by apply-
ing a threshold to the mass load retrieval.

Figure 5 shows the POD against the FAR for different
thresholds (indicated by the colour bar). Considering all
retrieval outputs with VAMC> 0 g m−2 results in a POD
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Figure 3. False colour RGB images with VAMC as white–red cloud on top (0–3 g m−2) for the Eyjafjallajökull eruption in May 2010. Here,
SEVIRI2 observations are shown between 13 May 2010 04:00 UTC and 17 May 2010 16:00 UTC in 12 h steps.
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Figure 4. Two-dimensional histogram of ash layer properties used
as input for the calculation of the simulated validation data set.

Figure 5. Probability of detection (POD) against false-alarm
rate (FAR) depending on the mass load threshold applied. The
square marks the position corresponding to the threshold 0.1 g m−2.

of 0.96 and an FAR of 0.36. Increasing the threshold value
decreases both the POD and FAR. At first, the FAR de-
creases faster than the POD, and close to a threshold value of
0.1 g m−2 the POD starts to decrease faster as well. Thus, in
the application of the VADUGS retrieval the threshold value
of 0.1 g m−2 is selected as a trade-off between high POD
and low FAR: Here, averaged over the entire validation data
set, the POD amounts to 0.92 and the FAR to 0.08. For the
threshold of 0.05 g m−2 used in Sects. 4.3 and 4.4.4, the POD
amounts to 0.95 and the FAR to 0.17.

Although the POD and FAR values for a threshold of
0.1 g m−2 are very good, it should be noted that the validation
data set is not well balanced with respect to ash-loaded and
ash-free samples, since the latter make up a very large frac-
tion of the data. In addition, many ash-free samples also show
BTD(10.8–12.0) values close to 0 K. While negative BTDs

Figure 6. Probability of detection (POD) as a function of mass load
after the application of Eq. 4 and of a threshold of 0.1 g m−2 to the
retrieved VAMC.

are thought to stem mainly from ash clouds, some of them
also contain meteorological clouds. Thus, to further simplify
the task of the NN, we introduce an additional a priori filter:

BTD(10.8–12.0) >−0.6K. (4)

Pixels satisfying this empirical condition are set to
VAMC= 0 g m−2 and VATH is undefined. This condition
applies to 2 789 235 samples of the validation data set,
2 777 879 of them being already ash free and 11 356 ash
loaded, with ash column concentrations ranging from 0 to
5 g m−2. This ensures that 81.1 % of the ash-free samples
are already correctly classified before the application of
VADUGS, at the cost of 11.3 % of the ash-loaded samples
being missed. With the help of this additional filtering, the
overall POD sinks to 0.84 but the FAR also sinks to 0.05.
Even if the gain in FAR (FAR measures how large fractions
of the ash-free points are falsely classified as being ash, see
Appendix C) is low, this can result in many pixels being mis-
classified as ash, which would artificially enlarge the area
covered by ash that should be avoided by air traffic and is thus
preferred to a larger POD. This filtering is always applied in
the rest of the manuscript, and in all other applications as for
instance at DWD (Sect. 5).

Finally, considering the POD as a function of true VAMC
in Fig. 6 shows that VADUGS, even if the concentration
threshold of 0.1 g m−2 is applied, is able to detect 60–70 %
of the ash samples with true VAMC≤ 0.1 g m−2. POD in-
creases with VAMC and for VAMC= 0.5 g m−2 it already
reaches its maximum around 90 %. On the other hand, a POD
of 100 % is never reached, even for large VAMC, both be-
cause these cases might resemble thick (ash/meteorological)
clouds or because they might be affected by the presence of
water/ice clouds.
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Table 1. Statistical evaluation of VAMC from VADUGS against
simulated observations (representing the truth).

Viewing True VAMC N Pearson MAPE MPE RMSE
angle upper bound % % g m−2

subset g m−2

All 0.5 50 424 0.20 258 +241 0.38
All 2.0 76 461 0.26 188 +148 0.50
All 5.0 84 285 0.17 178 +127 0.91

#1 0.5 24 867 0.25 322 +314 0.49
#1 2.0 33 463 0.29 252 +231 0.52
#1 5.0 36 117 0.20 239 +209 0.78

#2 0.5 12 420 0.33 205 +182 0.23
#2 2.0 17 735 0.36 160 +117 0.39
#2 5.0 18 929 0.23 155 +105 0.80

#3 0.5 5140 0.40 82 +51 0.15
#3 2.0 9730 0.39 71 +5 0.50
#3 5.0 10 602 0.27 72 −2 0.87

#4 0.5 3780 0.18 178 +149 0.20
#4 2.0 7781 0.33 118 +46 0.58
#4 5.0 9140 0.23 113 +27 1.17

#5 0.5 4217 0.11 323 +306 0.30
#5 2.0 7752 0.28 203 +146 0.57
#5 5.0 9497 0.20 180 +104 1.27

4.4.3 Validation of ash concentration and height
against simulated observations

For the validation of VAMC and VATH we consider only
ash-laden samples as a function of µ= cosϑ , the cosine
of the satellite viewing zenith angle. Six subsets are de-
fined, with all samples included in subset #0, samples with
0< µ≤ 0.2 (90◦ > ϑ ≥ 78.5◦) in subset #1, 0.2< µ≤ 0.4
(78.5◦ϑ ≥ 66.4◦) in subset #2, 0.4< µ≤ 0.6 (66.4◦ > ϑ ≥
53.1◦) in subset #3, 0.6< µ≤ 0.8 (53.1◦ϑ ≥ 36.9◦) in sub-
set #4 and 0.8< µ≤ 1.0 (36.9◦ > ϑ ≥ 0◦) in subset #5. Re-
sults of this validation are summarized in Table 1 for three
subgroups: where true VAMC is (a) smaller than 0.5 g m−2

(only thin ash layers) or (b) smaller than 2.0 g m−2 (thin
and thick ash layers) or (c) smaller than 5.0 g m−2 (all sim-
ulated ash layers). The values for the last subgroup repre-
sent the full validation data set, which is first discussed in
the next lines. Apart from the fact that the subsets contain
different numbers of samples, as indicated by N , it is obvi-
ous that VADUGS results scatter considerably. The correla-
tion between VADUGS and the simulated truth is not strong,
with Pearson coefficients below 0.3. The best correlation is
achieved for subset #3 (0.4< µ≤ 0.6, 66.4◦ > ϑ ≥ 53.1◦),
with also the lowest MAPE and MPE of 72 % and −2 % re-
spectively. For subset #4 (0.6< µ≤ 0.8, 53.1◦ > ϑ ≥ 36.9◦)
MAPE and MPE are slightly larger (113 % and 27 % re-
spectively). For very high viewing zenith angles (subset #1),
deviations are very large (both MAPE and MPE> 200 %),
while small viewing zenith angles produce a MAPE of
180 % and MPE of 104 %. Thus, VADUGS works best for
moderate viewing zenith angles but always struggles with

Table 2. Statistical evaluation of VATH from VADUGS against sim-
ulated observations (representing the truth).

Viewing True VATH N Pearson MAPE MPE RMSE
angle upper bound % % km
subset km

All 8.0 32 149 0.36 58 −24 3.43
All 12.0 74 780 0.40 54 −33 5.04
All 14.0 84 285 0.38 54 −34 5.49

#1 8.0 11 305 0.52 50 −35 3.00
#1 12.0 31 334 0.55 45 −31 4.34
#1 14.0 36 117 0.54 44 −31 4.73

#2 8.0 7448 0.38 60 −42 3.45
#2 12.0 17 029 0.40 58 −48 5.39
#2 14.0 18 929 0.36 59 −49 5.91

#3 8.0 4077 0.31 59 −25 3.69
#3 12.0 9501 0.24 61 −41 5.76
#3 14.0 10 602 0.21 62 −44 6.27

#4 8.0 4372 0.33 59 −9 3.64
#4 12.0 8285 0.24 62 −27 5.54
#4 14.0 9140 0.21 62 −31 6.05

#5 8.0 4947 0.28 70 +17 3.86
#5 12.0 8631 0.24 65 −6 5.29
#5 14.0 9497 0.20 65 −11 5.79

the determination of the correct VAMC, usually leading
to an overestimation. Considering the first two subgroups
(VAMC< 0.5 g m−2 and VAMC< 2.0 g m−2), we see that
for thin ash (VAMC< 0.5 g m−2) uncertainties (MAPE,
MPE) are largest, indicating that the determination of VAMC
for thin ash layers is most difficult. In general, MAPE and
MPE for VAMC< 2.0 g m−2 and VAMC< 5.0 g m−2 are
comparable, with slightly better results for the latter. How-
ever, RMSE are (much) lower (between 0.39 and 0.58 g m−2)
and the correlation coefficients are higher (up to 0.39) for
VAMC< 2.0 g m−2, meaning that the most reliable results
are for ash columns larger than 0.5 g m−2 and smaller than
2.0 g m−2. Again, subsets #3 and #4 are the ones with
the lowest MAPE and MPE not only for the full data
set but also for the other two VAMC subgroups. In sub-
set #3 in particular, MPE is very close to zero (+5 % for
VAMC< 2.0 g m−2).

For VATH, validation results are collected in Table 2
where the dependency of the VADUGS errors on true VATH
for three intervals – true VATH< 8, 12 and 14 km – is de-
scribed. Again, we start the discussion with the last sub-
group (VATH< 14 km) that contains the full validation data
set. The general features correspond to those for VAMC. In
particular, the large scatter of VADUGS values is evident,
although correlation coefficients are higher for VATH (up
to 0.54) than for VAMC. Similarly, MAPE and MPE values
are lower than for VAMC: Considering all validation data,
MAPE amounts to 54 % with an underestimation (MPE)
by −34 %. Although in general VATH is underestimated by
VADUGS (negative MPE), this effect is weakest (−11 %) for
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Table 3. Statistical evaluation of VATH from VADUGS against
simulated observations (representing the truth) for VA with true
VATH≤ 12 km.

Viewing True VAMC N Pearson MAPE MPE RMSE
angle lower bound % % km
subset g m−2

All 0.3 46 673 0.39 50 −22 4.78
All 0.9 19 138 0.38 53 −11 4.82
All 2.0 7150 0.39 51 −14 4.33

#1 0.3 16 863 0.58 39 −22 3.85
#1 0.9 5864 0.60 41 −30 4.03
#1 2.0 2241 0.72 48 −44 4.46

#2 0.3 10 384 0.42 50 −33 4.78
#2 0.9 3203 0.49 49 −20 4.19
#2 2.0 1128 0.64 46 −40 3.81

#3 0.3 7048 0.24 57 −30 5.46
#3 0.9 2966 0.34 57 −6 5.08
#3 2.0 834 0.26 46 −7 4.05

#4 0.3 6267 0.23 60 −19 5.55
#4 0.9 3463 0.30 61 0 5.43
#4 2.0 1293 0.34 52 +10 4.25

#5 0.3 6111 0.26 64 +1 5.38
#5 0.9 3642 0.30 65 +15 5.63
#5 2.0 1654 0.35 59 +23 4.69

small viewing zenith angles (subset #5) but connected to a
relatively high MAPE of 65 %. The smallest MAPE is for
subset #1 (44 %), i.e. for large viewing zenith angles, where
RMSE is also smallest (4.73 km) yet high. For subsets #2–#4,
absolute error and underestimation are high (approximately
60 % and −40 %, respectively), with RMSE around 6 km,
i.e. VADUGS provides a moderate sensitivity to VATH in
these situations.

Comparing the three VATH intervals in Tab. 2 with each
other, one can see that, apart from the dependency on the
viewing zenith angle, the MAPE and MPE for all three
VATH intervals are very similar for subsets #1 and #2. How-
ever, for subsets #2 to #5, in all three intervals, under-
estimation of VATH through VADUGS becomes less pro-
nounced with decreasing viewing zenith angle, i.e. when go-
ing from subset #2 to #5, with the lowest underestimations
for low ash clouds (VATH< 8 km). In subgroup #2, MPE for
VATH< 8 km amounts to −42 %, to −25 % for subset #3,
−9 % for subset #4 and +17 % for subset #5. In the three
subsets #3–#5, the correlation is highest for the low VATH
regime (Pearson coefficients between 0.28 and 0.33). Never-
theless, MAPE is always close to 60 % and reaches 70 % for
subset #5.

Since thin ash clouds are difficult to detect and the deter-
mination of their properties is complex, we investigate the
accuracy of VATH when VAMC is larger than 0.3, 0.9 and
2.0 g m−2 and VATH is below 12 km in Table 3. In almost all
cases, Pearson correlation coefficients increase with increas-
ing VAMC threshold, i.e. it is easier for VADUGS to assess
VATH when the ash cloud is thick. For VAMC> 2.0 g m−2,

correlation coefficients larger than 0.7 can be achieved.
At the same time, MAPE lies between 46 % and 59 %
and MPE between −44 % and +23 % for the clouds with
VAMC> 2.0 g m−2. Furthermore, VATH is underestimated
in subsets #1–#3 but overestimated in subset #4 and #5. How-
ever, for all viewing angle subsets and all VATH subgroups,
MAPE is always relatively high between 40 % and 65 %.

Generally, VADUGS struggles with the determination of
the correct mass load and top height when applying it to ob-
servations filtered according to Eq. (1). However, with a more
stringent filtering that identifies simulated ash-contaminated
observations within the validation data set fulfilling

BTD(10.8–12.0) <−1K (5)
BTD(8.7–10.8) <−1K (6)
BTD(8.7–12.0) <−6K (7)

(that is meant to isolate cases where the ash signal is stronger
in the simulated observations) and considering the find-
ings above, VADUGS performs significantly better. Figure 7
shows scatter plots between true and retrieved VAMC for
true VAMC in the range 0.0–2.0 g m−2 (see Table 1) for
this reduced validation data set. Pearson coefficients are
clearly higher than with the previous filtering, with values up
to 0.51, but overestimation remains and leads to high MAPE
and MPE, with subset #3 again having the smallest errors
(MAPE= 72 %, MPE= 25 %). However, RMSE is in almost
all cases smaller than in the general evaluation.

Figure 8 shows scatter plots for the cloud top height re-
trieval when VAMC> 0.3 g m−2. Generally, VADUGS again
underestimates top height, but to a smaller degree than with
the previous filtering. At the same time, correlation coeffi-
cients reach 0.74 and RMSE is usually smaller. The best re-
sults are obtained for subset #1, i.e. for the smallest cosine
viewing zenith angles.

4.4.4 Validation of ash concentration and height
against CALIOP observations

To validate VADUGS under real conditions, CALIPSO
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Ob-
servation, Winker et al., 2009) version 4.10 level 2 aerosol
products including data on stratospheric ash layers (Kim
et al., 2018) are used. They are obtained from CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization) re-
trievals. The final spatial resolution after processing is 5 km
horizontally and 60 m vertically. Samples are discarded if the
extinction quality control flag (qc) is neither 1 (indicating
that the lidar ratio is directly retrieved from the data) nor 0
(initial lidar ratio leads to stable extinction retrievals). For the
remaining samples, the optical depth at 532 nm due to vol-
canic ash is derived from the extinction profile using only the
samples classified as ash. For samples with qc= 0, a correc-
tion is made to deal with the difference between the default
lidar ratio of ash (44 sr) used in version 4.10 and that obtained
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Figure 7. (a)–(f) True against retrieved mass column concentration for the reduced simulated validation data set as a function of satellite
viewing angle (subsets #1–#5). The solid black line shows the identity; for each data set the corresponding number of samples (N), the
Pearson correlation coefficient, the root mean squared error (RMSE), the mean absolute percentage error (MAPE) and the mean percentage
error (MPE) are given.

Figure 8. (a)–(f) True against retrieved cloud top height for the reduced simulated validation data set as a function of satellite viewing angle
(subsets #1–#5). The solid black line shows the identity; for each data set the corresponding number of samples (N), the Pearson correlation
coefficient, the root mean squared error (RMSE), the mean absolute percentage error (MAPE) and the mean percentage error (MPE) are
given.
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Figure 9. VAMC and VATH of a Puyehue-Cordón Caulle volcanic
ash cloud around 16 June 2011 17:30 UTC as retrieved by CALIOP
(blue) and VADUGS (red); the upper uncertainty of the CALIOP-
retrieved VAMC is shown in light-blue.

Table 4. CALIOP measurements used for the statistical evaluation;
all CALIPSO flyovers took place in June 2011.

Time/UTC lat./◦ N long./◦ E Samples

15 June, 18:30–18:40 −59.6 to −40.4 −57.5 to −66.0 300
16 June, 15:51–16:05 −48.8 to −39.3 −24.4 to −27.7 162
16 June, 17:29–17:43 −60.9 to −44.6 −42.7 to −50.7 187
17 June, 03:00–03:13 −40.6 to −62.0 −27.7 to −37.8 251
17 June, 14:55–15:10 −44.4 to −37.3 −12.1 to −14.4 82
18 June, 02:04–02:18 −35.4 to −64.4 −12.2 to −25.9 199

Selected subset 1081
(VAMC> 0.05 g m−2 for CALIOP/VADUGS)

from the direct (qc= 1) retrievals (58 sr). The mass loading
is estimated from the optical depth using a mass extinction
coefficient of 0.69 m2g m−1 (Gasteiger et al., 2011; Winker
et al., 2012), whereas the highest ash layer determines the
ash cloud height.

For the comparison, the Puyehue-Cordón Caulle erup-
tion in 2011 is considered: Six daytime and nighttime orbits
of CALIPSO over ash clouds in the southern Atlantic be-
tween 15 and 18 June 2011 are collected (Table 4). VAMC
ranges between 0 and 1.7 g m−2 and VATH between 10 and
15 km. Figure 9 shows an example with the CALIPSO data
(blue) plotted alongside the corresponding VADUGS re-
trievals (red); VAMC from CALIPSO has an uncertainty of a
factor of ∼ 2 (light blue). Note that this reference data set is
rather limited in the number of samples as well as in the vari-
ability of the observations, which are only of a single erup-
tion, only above sea, can be assumed to have relatively sim-
ilar atmospheric conditions, and with ash layers only above
and around the tropopause. Nevertheless, this eruption repre-
sents a good test bed for VADUGS that has been developed
for Eyjafjallajökull.

The CALIOP retrievals are compared with VADUGS re-
sults for the temporally closest SEVIRI2 image. A parallax
correction is applied to the latter such that the top of the ash
layer is observed.

Figure 10. CALIOP and VADUGS retrievals of VAMC; the black
line represents the identity.

The example in Fig. 9 shows that the VAMC retrieval is
generally in agreement considering the uncertainty of the
CALIOP data; a tendency of VADUGS towards overestima-
tions is evident, as discussed in the previous section. The
cloud top derived by VADUGS is lower than the reference
values when the ash layer is thin. A reasonable VATH re-
trieval is performed at one of the thicker parts of the observed
ash cloud (at a latitude around −48◦ N). This behaviour ba-
sically confirms the analysis in the previous section based on
simulated satellite observations.

Only samples with VAMC retrieval larger than 0.05 g m−2

using both CALIOP and VADUGS are considered (i.e. the
threshold on 0.1 g m−2 used before is lowered in order to in-
crease the number of ash-contaminated pixels). The scatter
plot in Fig. 10 compares the VAMC of the two retrievals.
The measurement points are located around the identity, also
expressed by a Pearson coefficient of 0.49, which is compa-
rable to the correlation coefficients obtained in the analysis in
the previous section. However, once again VADUGS tends to
overestimate VAMC as can be seen from the positive MPE of
55 %. Generally, the MAPE is 90 %. Note that MAPE, MPE
and Pearson coefficient are close to the values in Table 1 for
subset #3 with an upper VAMC threshold of 0.5 g m−2.

The histogram in Fig. 11 shows the VATH distribution
retrieved from CALIOP and VADUGS. The CALIOP mea-
surements peak at around 12 to 13 km. The distribution of
VADUGS-retrieved VATH peaks at 0 km and has a flank
reaching 19 km, with a notable minor peak at about 9–12 km.
Overall, 86 % of the retrieved VATHs are < 8 km, and only
14 % are larger. This underlines the results of the example
(Fig. 9) that VADUGS is able to retrieve the correct VATH
for thick ash clouds, but generally underestimates it. How-
ever, one has also to consider here the fact that VATH de-
termination above or close to the tropopause is particularly
challenging due to the fact that the atmospheric tempera-
ture profile can be constant or increase with height, while
below the tropopause, for which VADUGS has been mainly
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Figure 11. CALIOP and VADUGS retrievals of VATH; the vertical
line separates the linear lower part from the logarithmic upper part.

trained, temperature decreases with height. Note that the gen-
eral overestimation of VAMC is again related to (or perhaps
induced by) the underestimation of VATH.

4.4.5 Comparison with a non-machine-learning-based
volcanic ash retrieval

VADUGS is a machine-learning-based algorithm for the de-
tection of volcanic ash and the derivation of its properties.
Initially, volcanic ash detection was based on BT tests using
fixed thresholds for all meteorological conditions. The use of
NNs is intended to provide more flexibility in the application
of the volcanic ash retrieval such that it is expected to easily
adapt to the given atmospheric conditions (low-level clouds,
water vapour, land/sea . . . ). The goal of this section is to pro-
vide a qualitative comparison of VADUGS with a “standard”
retrieval of volcanic ash to check this hypothesis. Among the
retrievals available in the literature, we selected the 3-bands
method (Guéhenneux et al., 2015) as it represents a strong
improvement with respect to the 2-bands method first im-
plemented by Prata (1989a, b) and because it is made avail-
able to the public through the web via the HOTVOLC real-
time monitoring service (Gouhier et al., 2016) developed
and managed by the Observatoire de Physique du Globe de
Clermont-Ferrand (OPGC). Furthermore, it is easy to imple-
ment and has been shown to provide the main features of vol-
canic ash clouds although its improved version, the 5-bands
method (Gouhier et al., 2020), provides both an improved
POD and reduced FAR.

For the comparison we have selected four different scenes
from the second phase of the Eyjafjallajökull eruption. The
first scene is taken from Guéhenneux et al. (2015) (their
Fig. 12), where on 10 May 2010 00:00 UTC volcanic ash
is seen to drift from the vent of the volcano towards the
west. In Fig. 12 the 3-bands result for this time nicely shows
in particular ash freshly emitted by the volcano and blown
by the wind towards the south as well as other ash spots
that are heading towards Greenland. One can see that the 3-
bands method seems to produce some scattered results in-
side ice clouds. While some of them are close to Iceland and
might represent real ash-contaminated pixels, others (like
those west of France) are probably false alarms. With the
use of an ice mask, these pixels can easily be removed and

do not represent a problem. The corresponding result from
VADUGS (top right panel with the label 201005100000)
misses the ash close to the vent and spots only few pixels
west of Ireland. Instead, VADUGS observes more ash pix-
els further west close to −30◦ E +50◦ N, where 3-bands also
observes an ash cloud. But VADUGS also retrieves more
ash-contaminated pixels along the Greenland coast, an ad-
ditional ash cloud around −20◦ E +55◦ N and scattered ash
pixels between 50 and 60◦ N. Although it is not possible to
assess which pixels are correctly classified as ash by the two
retrievals without additional information, the temporal evo-
lution of the ash distribution (not shown) indicates that the
presence of ash in all these regions further away from the
volcano is plausible and follows the general circulation pat-
terns during the previous days.

The second day we selected is 13 May 2010, for which
we present two slots 04:00 and 16:00 UTC (second and third
row in Fig. 12), as in Fig. 3. In the early morning of 13 May
(second row in Fig. 12), ash emitted from Eyjafjallajökull is
blown towards the east until the Faroe Islands, where the ash
cloud is then diverted to the north. Again, apart from some
“noise” corresponding to ice clouds, the 3-bands method de-
tects very nicely the ash plume between the volcano and the
Faroe Islands, and also an ash cloud north of these. By com-
parison, VADUGS detects only a very small stripe of ash
close to the vent, but then retrieves larger ash clouds close to
the Faroe Islands and north of them. All these detections, for
both 3-bands and VADUGS, are plausible and correspond to
“smoke-like” structures in the RGB. In the afternoon (third
row in Fig. 12), ash extends again from the volcano to the
Faroe Islands, but it is first blown in south-east direction
(down to 60◦ N) and to the north-east. Over the Faroe Is-
lands, ash is driven to the north and then back to the west.
This time, it is the 3-bands method that partly misses the ash
plume close to the vent, while VADUGS observes an almost
completely connected area of ash-contaminated pixels from
Iceland to the Faroe Islands, and a larger ash region north of
the Faroe Islands.

Finally, in the last row of Fig. 12, we show the ash distri-
bution over Europe on 17 May 2010 at 16:00 UTC. In this
case, the 3-bands method does not provide almost any ash
pixels while VADUGS observes large regions of ash over the
North Atlantic between approx.−10 and+5◦ E and+58 and
+68◦ N. The presence of ash here is plausible according to,
e.g. model simulations (see e.g. Fig. 10f in Plu et al., 2021).
Furthermore, VADUGS retrieves two ash clouds over the
North Sea, where on that day they were probed both by the
UK FAAM aircraft (Marenco et al., 2011) and the DLR Fal-
con aircraft (Schumann et al., 2011).

In summary, both retrievals provide valuable results for the
monitoring of volcanic ash, each one with its own strengths
and deficiencies. While the 3-bands method seems to be able
to detect ash clouds very close to the vent, where ash optical
thickness is particularly high, in general VADUGS detects
more ash further away from the volcano where optical thick-
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Figure 12. 3-bands and VADUGS retrievals of volcanic ash cover for four scenes of the Eyjafjallajökull eruption. The left column shows
3-bands volcanic ash masks in orange on top of a false colour RGB image, the right column shows VADUGS results. Black areas indicate
the presence of ice clouds as obtained from COCS (see Sect. 4.3); however, ash detections inside ice clouds are not masked out as in Fig. 3
but shown on top.

ness is assumed to be lower. However, exceptions exist – for
instance the ash detected by the 3-bands method over the At-
lantic south of Greenland on 10 May 2010 at 00:00 UTC or
the ash directly observed leaving the volcano by VADUGS
on 13 May 2010 at 16:00 UTC – and show that ash detection

by passive sensors is a great challenge. In this sense, every
ash cloud retrieval represents an additional piece of informa-
tion that could and should be used in the context of early
warning systems for aviation (e.g., Brenot et al., 2021).
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5 Implementation at DWD

VADUGS has been implemented at DWD and runs opera-
tionally 24/7. As in the example in Fig. 3, the ice cloud algo-
rithm COCS (Kox et al., 2014) is first implemented to iden-
tify ice cloud pixels that may shade the ash from the satel-
lite’s view. This algorithm is currently being replaced by its
successor (Strandgren et al., 2017). VADUGS and COCS are
driven by a shell script, handling the input and output data
and the call of the algorithms. The retrieval results are raster-
ized and saved as cf conform netcdf. The data transfer rate to
the cockpits of aeroplanes is limited. Thus, the raster data are
polygonized in order to keep the essential information but to
reduce the size of the data to be transferred to the cockpit.
The VADUGS results can be also visualized at the meteoro-
logical workplace of DWD and are therefore available for
the forecasters at the central prediction centre and the re-
gional aviation weather advice centres of DWD. ecFlow is
used for the operational 24/7 call and monitoring of the job.
ecFlow is a workflow package which has been developed to
run a large number of programmes in a controlled environ-
ment, providing restart and monitoring capabilities (via web
page or email). It is used at DWD to run all operational suites
on the high-performance computer. ecFlow is developed and
maintained by ECMWF.

VADUGS has been trained with surface temperature from
the IFS model operated by ECMWF (Sect. 3.1.2). How-
ever, for the 24/7 operation at DWD, surface temperatures
from the DWD weather model ICON (ICOsahedral Non-
hydrostatic, Zängl et al., 2015) are used. Every model has
its own spatial bias characteristics, depending beside other
factors on the surface type. The operational verification at
DWD indicates that differences in the surface temperature
could be in the order of 1–2 K. Thus, a sensitivity study was
performed in order to estimate the effect of uncertainties in
surface temperature on the ash concentration and top height
derived from VADUGS when surface temperatures increased
by+1 or+2 K. Observations on 10 May 2010 during the Ey-
jafjallajökull eruption in the triangle enclosed by the Faroe
Islands in the south, the Shetland Islands in the west and the
northernmost tip of Great Britain were reprocessed for this
purpose (Fig. 13, top). This day was characterized by a thick
ash plume over the North Atlantic Ocean moving from the
north-west to the south-east with small concentrations over
the land surfaces. The differences in VAMC between the nor-
mal run and the run with surface temperatures increased by
+1 and +2 K are about 0.015 g m−2 (< 1 %) and 0.03 g m−2

(< 3 %) for a +1 and +2 K increase in surface temperature
(Fig. 13, centre and bottom). Considering the retrieval uncer-
tainty (Sect. 4.4.3 and 4.4.4), these values are small. Thus,
using ICON data should not pose a significant problem to
the ash plume retrieval. However, close to the ash plume
there are several isolated pixel clusters with differences up
to 0.15 g m−2. The increase in surface temperature leads to a
detection (or misdetection) of ash for pixels where the col-

Figure 13. (a) VAMC output over the ocean south-east of Iceland
in the triangle enclosed by the Faroe Islands in the south, the Shet-
land Islands in the west and the northernmost tip of Great Britain
for 17 May 2010 01:00 UTC from the operational DWD processing
chain. (b) Difference in VAMC between the normal run and the run
with surface temperatures increased by +1 K. (c) Same as in (b),
but with a skin temperature increase by +2 K.

umn concentration was close to but still below the detection
limit of 0.1 g m−2 (Sect. 4.4.2). The top height shows no such
effect (not shown): Differences in top height are not dramatic
(< 1 km) but still significant in the ash plume region. In sum-
mary, these findings indicate that using ICON instead of IFS
as skin temperature source for VADUGS could slightly af-
fect the results. Thus, even if it is preferred to use the same
NWP model for the 24/7 operation as used for the training of
the NN, the usage of ICON skin temperatures does not seem
to modify the shape and VAMC or VATH values in a way
that can significantly modify its meaning for aviation-related
services.
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6 Conclusions

In the aftermath of the Eyjafjallajökull eruption in 2010
the VADUGS algorithm for the remote sensing of volcanic
ash from thermal MSG/SEVIRI observations (Kox et al.,
2013) was developed at the Deutsches Zentrum für Luft-
und Raumfahrt (DLR, German Aerospace Centre) using a
machine-learning approach based on a corresponding algo-
rithm for ice cloud remote sensing (Kox et al., 2014). This
paper illustrates the VADUGS development and assesses the
performance of the current version that is run operationally
at the Deutscher Wetterdienst (DWD, German Weather Ser-
vice) since 2015.

Unlike other spaceborne ash retrievals, VADUGS is based
on an NN trained with simulated thermal satellite observa-
tions. In this approach the true ash properties (ash mass col-
umn concentration and ash cloud top height) to be retrieved
by the algorithm are known exactly and the geographic and
temporal distribution of the ash observations can be selected
arbitrarily to enable application of the method to the entire
MSG disk at each time of the day and of the night, and during
each month of the year. For the creation of the training data
set, the tool RTSIM is implemented to automatically com-
bine different surface and atmospheric quantities based on
historical numerical weather model results and other data sets
as inputs for the radiative transfer simulation code libRad-
tran. The latter then produces realistic thermal observations
for various meteorological conditions with or without liquid
and ice water clouds. RTSIM can be easily used and adapted
to produce new additional training data sets in the future.

Ash detection is performed by setting a thresh-
old to the retrieved mass column concentration: Pixels
with BTD(10.8–12.0)≤−0.6 K (pre-filtering) and retrieved
VAMC> 0.1 g m−2 are assumed to be ash contaminated.
This results in a POD of 0.84 and an FAR of 0.05. Fur-
thermore, VADUGS can detect 60–70 % of all ash-loaded
samples with true VAMC smaller than 0.1 g m−2. How-
ever, VAMC from VADUGS scatters considerably and er-
rors (MAPE) between approximately 80 % and 300 % are
observed. Furthermore, the best results are obtained for mod-
erate viewing zenith angles, corresponding to volcanic ash
clouds in mid-latitudes. For VATH, a large scatter (3–5 km)
is produced as well, although MAPE is always smaller than
70 % and MPE is even smaller (−10 % to−20 % for viewing
zenith angles smaller than approximately 50◦). Usually, low
ash clouds with true VATH< 8 km are retrieved with higher
correlations and smaller underestimations of −9 % for view-
ing zenith angles between approximately 40 and 50◦. How-
ever, when VAMC is large (> 2.0 g m−2), correlation usually
increases for all clouds, thus enabling a better distinction be-
tween low and high ash clouds. This emerges also from the
comparison with the spaceborne CALIOP lidar evaluated for
the Puyehue-Cordón Caulle eruption in 2011. Here a reason-
able correlation (0.49), MAPE (90 %), MPE (+55 %) and
RMSE (0.41 g m−2) show that VADUGS is able to distin-

guish between thinner and thicker ash pixels although cloud
top height is usually strongly underestimated. These results
highlight the fact that the outcome of VADUGS depends on
various factors and its accuracy can vary considerably. This
can be observed also in the comparison with the standard
3-bands retrieval in Sect. 4.4.5, where both retrievals show
different detection capabilities that are difficult to explain
and have their origin in the complexity of the scenes ob-
served. Furthermore, an additional comparison with airborne
measurements by the FAAM (Facility for Airborne Atmo-
spheric Measurements, United Kingdom) and DLR aircraft
in the context of the evaluation of the improved version of
VADUGS (see below) shows that in those cases on those
particular days VAMC is underestimated by VADUGS (see
Piontek et al., 2021a, , their Fig. 13). Other retrievals, like
the one in Prata and Prata (2012), can show different perfor-
mance on similar data (overestimation, see Table 1 in their
paper, with respect to FAAM measurements on the same day
but at later times as in Piontek et al. (2021a)). These find-
ings point to the fact that remote sensing of volcanic ash is
a serious challenge. Every retrieval has its own strengths and
deficiencies and provides an additional piece of information
on the way to a more reliable and efficient mitigation of avi-
ation hazards.

In general, the application of an ice cloud retrieval as in,
e.g. Kox et al. (2014) or Strandgren et al. (2017) is recom-
mended in order to identify pixels where volcanic ash cannot
be observed due to the presence of high clouds.

The principles of VADUGS can be applied for the cre-
ation of retrievals for other sensors with corresponding ther-
mal channels, e.g. de Laat et al. (2020) adapted VADUGS to
Himawari. Similar channels can also be found on the imager
aboard GOES-R (Schmit et al., 2005), Fengyun-4A (Yang
et al., 2016) or the upcoming Meteosat Third Generation
spacecraft (e.g. Durand et al., 2015).

VADUGS is developed specifically for the Eyjafjalla-
jökull 2010 eruption. This motivates the use of correspond-
ing volcanic ash properties; specifically, only the refractive
index of Eyjafjallajökull ash is applied. However, satellite re-
trievals are sensitive to the refractive index (Wen and Rose,
1994; Western et al., 2015; Ishimoto et al., 2022), which can
vary significantly between different volcanos (Reed et al.,
2018; Deguine et al., 2020). Just recently, methods to de-
rive volcanic ash refractive indices of different ash types have
been presented (Prata et al., 2019; Piontek et al., 2021c).
Furthermore, ash microphysics (shape and size) also affects
scattered and emitted radiation and can vary from one vol-
canic eruption to the other and also as a function of the dis-
tance from the source. Using the data set by Piontek et al.
(2021c) constitutes a major improvement of the successor to
VADUGS (Piontek et al., 2021b, a). The resulting retrieval
also alleviates or eliminates other shortcomings of VADUGS
mentioned in this paper, thus encompassing, for instance a
larger temporal variability of atmospheric profiles and using
more realistic radiative transfer simulations.
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The operational application of VADUGS at DWD can thus
provide airlines and other users with a useful spaceborne vol-
canic ash product that can be used to monitor volcanic ash
evolution.

Appendix A: Atmospheric profiles of clouds

In IFS, a cloud-overlap algorithm computes the relative po-
sition of clouds across model levels and considers both
cloud cover and cloud water content to realistically repre-
sent clouds on the spatial scale of the model (ca. 32 km
for a spatial resolution of 0.25◦ in latitude and longitude).
The maximum-random overlap assumption (Morcrette and
Fouquart, 1986) used by ECMWF, particularly relevant for
shortwave but also for longwave radiation, states that adja-
cent layers overlap maximally, while cloud layers separated
by cloud-free layers overlap randomly. This procedure has
to be translated into a 1D cloud structure (variability only in
the vertical direction) since the 1D radiative transfer model
can only handle cloud layers that are completely cloudy and
because the spatial resolution of the satellite pixels (3 km at
nadir, see Sect. 2.1) is a factor of 10 smaller than the model
resolution. To this end, the layer-dependent cloud fraction
is used to set up a random cloud structure consisting of 0
or more cloud layers, so that for each atmosphere layer a
cloud fraction value of 0 or 1 is given. Adjacent cloudy layers
are grouped and it is assumed that the cloud fractions over-
lap as much as possible in each group. The status of each
layer is determined by the random position for an intersec-
tion through the corresponding group: All layers of the group
are completely cloudy, if their cloud cover fraction exceeds
the intersection position. Figure A1 shows an example for
the determination of cloud layers. Two adjacent layers with
cloud fractions of 37.5 % and 50 % make up the first cloud
group. If the value of the intersection chosen at random is
25 %, marked with a bold vertical line, then both layers have
a higher cloud cover value and therefore are cloudy, indicated
by the bold layer number to the left. For the second group,
with layers 5–8, three layers are cloudy for an intersection
value of 50 %, while layer 10, being the only one in the third
group, has a value of 18.75 % below an intersection value of
75 %.

Cloud effective radii for each cloud layer are computed us-
ing two different parameterizations, one for water clouds and
one for ice clouds. The water cloud parameterization applied
is described by Bugliaro et al. (2011):

reff,L,i =
3

√
0.75cL,i

NkπρH2O,i
(A1)

k =

{
0.8 for water
0.67 for land. (A2)

Figure A1. Scheme illustrating determination of cloud layers.
Shaded boxes with solid borders show cloud layers with cloud cover
percentages given by their horizontal extent. Adjacent cloud layers
are combined to groups outlined by broken borders. For each group
a bold vertical line marks the intersection position used for layer de-
termination. Atmosphere layer numbers in bold indicate intersected
cloud layers, which generate a cloudy layer during the set-up.

For layer i, reff,L,i is the effective radius, cL,i the liquid wa-
ter content, N = 150×106 the droplet density, and ρH2O,i =

1000 kg m−3 the water density at 4 ◦C.
Effective radii for ice cloud layers are determined by

the parameterization from Wyser (1998); McFarquhar et al.
(2003):

1T =

{
273K− Ti for Ti < 273K
0K else (A3)

b =−2+ 10−3
(
1TK−1

) 3
2 log

(
20cI,i kg−1 m3

)
(A4)

reff,I,i =
4

√
3+ 4

(
377.4+ 203,3b+ 37.91b2

+ 2.3696b3
)

µm. (A5)

Ti is the temperature and cI,i the ice water content. Typo-
graphical errors in the formulas of both publications were
corrected.

To avoid the implementation of perfect clouds, noise is in-
troduced by the multiplication of the effective radii with uni-
form random values between 0.9 and 1.1.

To determine the optical properties of water clouds, the
parameterization by Hu and Stamnes (1993) is applied, with
effective radius limit values of 2.5 and 60 µm. Optical proper-
ties of ice clouds are calculated using the parameterization of
Yang et al. (2000); Key et al. (2002), extended by B. Mayer
to cover the infrared spectral range (see Emde et al., 2016),
for five ice particle habits (solid column, hollow column, ag-
gregate, rosette-6, plate) encompassing the range of 2.85–
108.10 µm. Ice crystal shapes are selected randomly.
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Appendix B: Refractive index and optical properties of
volcanic ash

The Earth Observation and Data group at the University
of Oxford, and the STFC Rutherford Appleton Labora-
tory (RAL) Molecular Spectroscopy Facility (MSF), devel-
oped a set of analytical and experimental techniques to derive
the refractive index from transmission spectra of laboratory
aerosols. The method has been developed over many years; it
has been applied to mimic polar stratospheric clouds (Bass,
2003), sea salt aerosols (Irshard et al., 2009), Saharan dust
(Peters et al., 2007) and later by Reed et al. (2017, 2018)
to volcanic ash. The Aerosol Refractive Index Archive con-
taining these spectral refractive indices and other literature
values can be found at http://eodg.atm.ox.ac.uk/ARIA/index.
html (last access: 28 March 2022). A short description of this
method used to generate the Eyjafjallajökull refractive index
used in this paper follows, and more details can be found in
the references. The fresh Eyjafjallajökull sample used was
collected from the ground by Dr. Evgenia Ilysinkaya in Ice-
land on 17 April 2010 at 18:20 LT (local time) downwind
and ∼ 6 km from the source. The sample is very fine as the
eruption was phreatomagmatic at the time, and should be a
good analogue to the long-range transported ash at around
this time (see also details of the aerosol cell given in the next
section).

A brief overview of the main experimental components is
given in Fig. B1. The ash sample is first dried to remove any
excess water and transferred for dispersal in a flow of ni-
trogen buffer gas. The aerosol is then injected into the 75 L
aerosol cell, and multi-pass optics are used to measure the
optical transmission in the range 526–30 000 cm−1 with a
Bruker FTS and detector with a 1.9 cm−1 resolution. A de-
scription of the aerosol cell can be found in McPheat et al.
(2001), while the dispersal method that lofted the aerosol in
the cell (particularly efficient for aerosol sizes smaller than
1 µm) is described in Reed et al. (2017). Aerosol size distri-
butions are measured via different methods, an optical parti-
cle counter (radii 0.15–10 µm) and a scanning mobility par-
ticle sizer (radii 0.005–0.44 µm). For a detailed experimental
description of the experiment, see Reed et al. (2017).

Gas absorption features in the infrared spectra are mini-
mized by using a nitrogen buffer gas but some residual car-
bon dioxide and water lines still remain. These lines are
removed by a line-by-line gas retrieval of the transmission
spectra using the Reference Forward Model (RFM Dudhia,
2017), leaving the aerosol transmission signal.

In this experiment the forward model represents the
aerosol cell transmission T (λ):

T (λ)= exp(−β(λ)x), (B1)

where β(λ) is the volume extinction coefficient, x the path
length through the test cell at the wavelength λ. The extinc-
tion cross-section σext can be calculated, if we assume a par-

ticle scattering model and know the particle size distribution,
from

β(λ)=

∞∫
0

σext(r,m(λ),λ)n(r)dr, (B2)

where r is the particle radius, m(λ) the complex refractive
index and n(r)dr the number of particles per unit volume
between radii r and r + dr . A damped harmonic oscillator
model is used to represent the complex refractive indexm(λ).
Information from the sizing instruments constrains the size
distribution used in the model. The complex refractive in-
dex in Fig. B2, where the real and imaginary part, mr and
mi, respectively, of the refractive indices are shown on top
of the spectral response functions of MSG2/SEVIRI2, was
retrieved from this model using the Levenberg–Marquardt
method. Full details of the analysis method can be found in
Thomas et al. (2005).

The refractive indices of volcanic ash presented here are
a preliminary version of the data used in Ball et al. (2015)
and Reed et al. (2017, 2018) for Eyjafjallajökull ash. They
assume the Mie theory. Latter results in the Rayleigh regime
use the continuous distribution of ellipsoids (CDEs) to ac-
count for non-spherical effects. These provided a better fit to
the measurements but were not available at the time of this
work. It should be noted that while CDE may provide bet-
ter results, there are differences between the refractive index
values in current publications which have arisen from differ-
ences in ash sample, analysis technique and noise. In fact,
mr from Reed et al. (2018) reaches below 1 as in the data
set used here, but the minimum mr equals 1 for the measure-
ment in Deguine et al. (2020). The maximum of mr remains
smaller than 2 for Reed et al. (2018) but is as high as approx-
imately 2.4 in Deguine et al. (2020), similarly to those used
here. With respect to mi, the peak in Fig. B2 is lower than
in the data given by Reed et al. (2018) and Deguine et al.
(2020).

Considering the spectral response functions of
MSG2/SEVIRI2, Fig. B2 shows the expected “reverse”
absorption feature (Wen and Rose, 1994; Pavolonis et al.,
2006) mentioned in the Introduction: Higher values of mi
in the 10.8 µm channel with respect to the 12.0 µm channel
indicate stronger absorption and thus smaller BTs in the first
spectral interval than in the second one. It is also noteworthy
that absorption is higher at 8.7 µm than at 12.0 µm and that
the maximum absorption takes place very close to the peak
of the ozone channel centred at 9.7 µm.

Optical properties are computed with an early version of
MOPSMAP (Gasteiger and Wiegner, 2018) based on the T-
matrix code of Mishchenko and Travis (1998) and the im-
proved geometric optics method (IGOM) code by Yang et al.
(2007). Since volcanic ash is usually aspherical (e.g. Riley
et al., 2003), we assume prolate spheroids with a distribution
of aspect ratios from 1.2 to 5 with a median value around 2.1.
Furthermore, two logarithmic normal size distributions are
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Figure B1. Simplified schematic of the experiment.

Figure B2. Real and imaginary part of the refractive index m of
Eyjafjallajökull ash ((a) and (b)) and spectral response functions of
MSG2/SEVIRI2 (c).

assumed with a standard deviation of 2. The distributions ex-
tend from 0.08 to 12.1 µm and their mode radii equal 0.4 and
2 µm, respectively. The size distribution range is thus in good
agreement with the literature (e.g. Chuan et al., 1981; Hobbs
et al., 1981; Prata, 1989a; Turnbull et al., 2012). Mass den-
sity amounts to 2600 kg m−3 (e.g. Wilson et al., 2012). Since
the IGOM code does not support refractive indices smaller
than 1, the real part mr < 1 of the refractive index had to be
limited in the spectral range between approximately 8 and
10µm to the supported range. In order to estimate the im-
pact of this assumption on the computed extinction coeffi-
cients, two calculations, one with cut and one without, are
performed for spherical particles. The result in Fig. B3 shows
that only in the spectral range between 8 and 9.2 µm do dif-
ferences exist. Thus, only the 8.7 µm channel is affected and
in this sensor band the inaccuracy of the mass extinction co-
efficient amounts to 1 % at most.

Appendix C: Validation metrics

The probability of detection (POD) and the false-alarm
rate (FAR) are used as validation metrics to assess the accu-
racy of the detection performance of VADUGS, i.e. of VAC,
while the mean percentage error (MPE) and mean absolute
percentage error (MAPE) are used to measure the accuracy
of VATH and VAMC. These metrics are used in the valida-
tion section (Sect. 4.4).

The POD measures how efficiently VADUGS detects vol-
canic ash. It is given by

POD=
NTP

NTP+NFN
, (C1)

where the number of true positives, NTP, are all points
correctly classified as ash, and the number of false nega-
tives,NFN, all missed ash clouds (see Table C1). The denom-
inator,NTP+NFN, is thus the total number of points with ash
clouds. The FAR measures how large fractions of the ash-
free points are falsely classified as being ash by VADUGS. It
is given by
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Figure B3. Mass extinction coefficients for spherical particles with the original refractive index m from Fig. B2 (orange line) and with the
same refractive index mr cut at 1 in the spectral region between 8 and 10 µm (blue line). The black line is the ratio between the orange and
blue line and has been multiplied by 0.1, meaning that a value of 0.1 corresponds to exactly the same values in the two situations.

Table C1. Contingency table for the ash detection from VADUGS.

Truth

Ash No ash

VADUGS
Ash NTP NFP
No ash NFN NTN

FAR=
NFP

NFP+NTN
, (C2)

where the number of false positives, NFP, are all points
falsely classified as ash, i.e. the false alarms, and the number
of true negatives, NTN, all points correctly identified as ash
free. The denominator, NFP+NTN, is thus the total number
of points with no ash clouds. The corresponding simulation
data (Sect. 3.1.7) are used as a reference when calculating
the POD and FAR. Table C1 clarifies the quantities used to
calculate the POD and FAR.

The MPE and MAPE are used to measure the accuracy of
the retrieved ash quantities retrieval with respect to the truth.
The MPE is given by

MPE=
100%
N

N∑
i=1

Ei − Ti

Ti
, (C3)

where T is the truth (Sect. 3.1.7, simulated observations),
E the estimated value by VADUGS and N the number of
simulations used. The MPE gives information on the direc-
tion of the deviations, i.e. whether VADUGS tends to over-

estimate or underestimate the values with respect to the sim-
ulated truth. The MAPE is given by

MAPE=
100%
N

N∑
i=1
|
Ei − Ti

Ti
|, (C4)

and gives information on the average magnitude of the errors
relative to the expected truth values. A value of 0.0 % means
no deviation from the truth and a perfect correlation.

Finally, the standard deviation (RMSE) of VADUGS with
respect to the simulated truth is given by

RMSE=

√√√√ 1
N

N∑
i=1

(Ei − Ti)
2. (C5)

Data availability. Please contact the authors for the data used in
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