Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of drought on soil moisture trends across Brazilian biomes
Flavio Lopes Ribeiro
CORRESPONDING AUTHOR
Disaster Research Center, School of Public Policy and Administration, University of Delaware, Newark, DE, USA
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
present address: University of California, Riverside, Department of Environmental Sciences, 900 University Ave., Riverside, CA 92521, USA
present address: U.S. Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, 450 West Big Springs Rd., Riverside, CA 92507, USA
Alma Vázquez-Lule
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
Ana Paula Cunha
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, SP, Brazil
Marcelo Zeri
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos, SP, Brazil
Rodrigo Vargas
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA
Related authors
No articles found.
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025, https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary
Short summary
In Brazil, drought is of national concern and can have major consequences for agriculture. Here, we determine how to develop forecasts for drought stress on vegetation health using machine learning. Results aim to inform future developments in operational drought monitoring at the National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN) in Brazil. This information is essential for disaster preparedness and planning of future actions to support areas affected by drought.
Pilar Durante, Juan Miguel Requena-Mullor, Rodrigo Vargas, Mario Guevara, Domingo Alcaraz-Segura, and Cecilio Oyonarte
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-431, https://doi.org/10.5194/essd-2024-431, 2024
Manuscript not accepted for further review
Short summary
Short summary
Human activities have disrupted the global carbon cycle, increasing CO2 levels. Soils are the largest carbon stores on land, making it essential to understand how much carbon they hold to fight climate change. Our study improved estimates of soil carbon in peninsular Spain by integrating historical soil data and using machine-learning methods to create detailed maps of carbon content. These maps will help manage soil carbon better and support efforts to track carbon emissions globally.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
Enner Alcântara, José A. Marengo, José Mantovani, Luciana R. Londe, Rachel Lau Yu San, Edward Park, Yunung Nina Lin, Jingyu Wang, Tatiana Mendes, Ana Paula Cunha, Luana Pampuch, Marcelo Seluchi, Silvio Simões, Luz Adriana Cuartas, Demerval Goncalves, Klécia Massi, Regina Alvalá, Osvaldo Moraes, Carlos Souza Filho, Rodolfo Mendes, and Carlos Nobre
Nat. Hazards Earth Syst. Sci., 23, 1157–1175, https://doi.org/10.5194/nhess-23-1157-2023, https://doi.org/10.5194/nhess-23-1157-2023, 2023
Short summary
Short summary
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains 68 km outside the city of Rio de Janeiro. On 15 February 2022, the city of Petrópolis in Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm). This resulted in flash floods and subsequent landslides that caused 231 fatalities, the deadliest landslide disaster recorded in Petrópolis. This work shows how the disaster was triggered.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Margaret Capooci and Rodrigo Vargas
Biogeosciences, 19, 4655–4670, https://doi.org/10.5194/bg-19-4655-2022, https://doi.org/10.5194/bg-19-4655-2022, 2022
Short summary
Short summary
Tidal salt marsh soil emits greenhouse gases, as well as sulfur-based gases, which play roles in global climate but are not well studied as they are difficult to measure. Traditional methods of measuring these gases worked relatively well for carbon dioxide, but less so for methane, nitrous oxide, carbon disulfide, and dimethylsulfide. High variability of trace gases complicates the ability to accurately calculate gas budgets and new approaches are needed for monitoring protocols.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Mario Guevara, Michela Taufer, and Rodrigo Vargas
Earth Syst. Sci. Data, 13, 1711–1735, https://doi.org/10.5194/essd-13-1711-2021, https://doi.org/10.5194/essd-13-1711-2021, 2021
Short summary
Short summary
Soil moisture is key for understanding soil–plant–atmosphere interactions. We provide a machine learning approach to increase the spatial resolution of satellite-derived soil moisture information. The outcome is a dataset of gap-free global mean annual soil moisture predictions and associated uncertainty for 28 years (1991–2018) across 15 km grids. This dataset has higher agreement with in situ soil moisture and precipitation measurements. Results show a decline of global annual soil moisture.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Cited articles
Al-Kaisi, M. and Rattan, L.: Conservation Agriculture Systems to Mitigate
Climate Variability Effects on Soil Health, in: Soil Health and Intensification of Agroecosytems, edited by: Al-Kaisi, M. and Lowery, B.,
Academic Press, 79–107, https://doi.org/10.1016/B978-0-12-805317-1.00004-X, 2017.
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves de Moraes, J. L., and Sparovek, G.: Köppen's climate classification map for Brazil, Meteorol. Z., 22, 711–728, https://doi.org/10.1127/0941-2948/2013/0507, 2013.
Anderson, L. O., Ribeiro Neto, G., Cunha, A. P., Fonseca, M. G., Mendes de
Moura, Y., Dalagnol, R., Wagner, F. H., and Cruz de Aragão, L. E.: Vulnerability of Amazonian forests to repeated droughts, P. T. Roy. Soc. B, 373, 20170411, https://doi.org/10.1098/rstb.2017.0411, 2018.
Assine, M. L. and Soares, P. C.: Quaternary of the Pantanal, west-central Brazil, Quatern. Int., 114, 23–34, 2004.
Bossio, D.: Soil Management – A Foundational Strategy for Conservation, The
Nature Conservancy, available at:
https://global.nature.org/content/soil-management-a-foundational-strategy-for-conservation?src=social.nature.facebook.main
(last access: 22 May 2020), 2017.
Bot, A. and Benites, J.: The importance of soil organic matter: key to drought-resistant soil and sustained food production, Food and Agriculture Organization of the United Nations, Rome, 2005.
Campos, J. N.: A gestão das águas e o desenvolvimento do Estado do
Ceará: uma perspectiva histórica, Ano IV, Num. 9, T & C Amazônia, 2006.
CENAD – Centro Nacional de Gerenciamento de Desastres: Anuário Brasileiro de Desastres Naturais, Ministério da Integração Nacional and Secretaria Nacional de Proteção e Defesa Civil, Brasília, DF, 2014.
Cirilo, J. A.: Public water resources policy for the semi-arid region, Estududos Avançados. Revista USP, vol. 22, Universidade de São Paulo, São Paulo, SP, 61–82, ISSN 1806-9592, 2008.
Cunha, A. P. M. A., Alvalá, Regina C. S., Nobre, C. A., and Carvalho, M. A.: Monitoring vegetative drought dynamics in the Brazilian Semiarid Region,
Agr. Forest Meteorol., 214–215, 494–505, 2015.
Cunha, A. P. M. A., Zeri, M., Deusdará Leal, K., Costa, L., Cuartas, L. A., Marengo, J. A., Tomasella, J., Vieira, R. M., Barbosa, A. A., Cunningham, C., Cal Garcia, J. V., Broedel, E., Alvalá, R., and Ribeiro-Neto, G.: Extreme Drought Events over Brazil from 2011 to 2019, Atmosphere, 10, 642 https://doi.org/10.3390/atmos10110642, 2019a.
Cunha, A. P. M. A., dos S. Alvalá, R. C., Cuartas, L. A., Marengo, J. A., Marchezini, V., Leal, K. R. D., Tomasella, J., Saito, S. M., Zeri, M., Munoz, V. A., Ribeiro-Neto, G., Seluchi, M. E., Cunningham, C., Costa, L. C. O., Zhang, R., and Moraes, O. L. L.: Brazilian Experience on the Development of Drought monitoring and Impact Assessment Systems, United Nations Office for Disaster Risk Reduction – UNDRR, 2019, Contributing paper to Global Assessment Report on Disaster Risk Reduction – GAR 2019, Geneva, Switzerland, 2019b.
D'Souza, R., Fernandes, M. F., and Barbosa, M.: Vulnerabilidades, semi-aridez e desertificação: cenários de riscos no Cariri Paraibano, OKARA,
Geografia em debate, 2, 190–202, 2008.
Duffy, P. B., Brando, P., Asner, G. P., and Field, C. B.: Projections of
future meteorological drought and wet periods in the Amazon, P. Natl. Acad. Sci. USA, 112, 13172–13177, https://doi.org/10.1073/pnas.1421010112, 2015.
EM-DAT: The Emergency Events Database Université Catholique de Louvain (UCL) – CRED, D. Guha-Sapir, Brussels, Belgium, available at: https://www.emdat.be/ (last access: 16 March 2020), 2018.
Guevara, M. and Vargas, R.: Downscaling satellite soil moisture using
geomorphometry and machine learning, PloS One, 14, e0219639, https://doi.org/10.1371/journal.pone.0219639, 2019.
Guevara, M., Olmedo, G. F., Stell, E., Yigini, Y., Aguilar Duarte, Y., Arellano Hernández, C., Arévalo, G. E., Arroyo-Cruz, C. E., Bolivar, A., Bunning, S., Bustamante Cañas, N., Cruz-Gaistardo, C. O., Davila, F., Dell Acqua, M., Encina, A., Figueredo Tacona, H., Fontes, F., Hernández Herrera, J. A., Ibelles Navarro, A. R., Loayza, V., Manueles, A. M., Mendoza Jara, F., Olivera, C., Osorio Hermosilla, R., Pereira, G., Prieto, P., Ramos, I. A., Rey Brina, J. C., Rivera, R., Rodríguez-Rodríguez, J., Roopnarine, R., Rosales Ibarra, A., Rosales Riveiro, K. A., Schulz, G. A., Spence, A., Vasques, G. M., Vargas, R. R., and Vargas, R.: No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America, SOIL, 4, 173–193, https://doi.org/10.5194/soil-4-173-2018, 2018.
Guevara, M., Ribeiro, F., Vázquez-Lule, A., Cunha, A., Zeri, M., and Vargas, R.: Code for The Impact of Drought on Soil Moisture Trends across Brazilian Biomes (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.4587957, 2021.
Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., and Heuvelink, G. B. M.: Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network, Comput. Geosci., 35, 1711–1721, https://doi.org/10.1016/j.cageo.2008.10.011, 2009.
IBGE – Instituto Brasileiro de Geografia e Estatística: Mapa de Biomas
e de Vegetação, available at:
https://ww2.ibge.gov.br/home/presidencia/noticias/21052004biomashtml.shtm
(last access: 20 August 2018), 2004.
IBGE – Instituto Brasileiro de Geografia e Estatística: Pesquisas,
available at: https://cidades.ibge.gov.br/pesquisas (last access: 3 February 2020), 2017.
IBGE – Instituto Brasileiro de Geografia e Estatística: Biomas e sistema costeiro-marinho do Brasil, Rio de Janeiro, 2019.
INPE – National Institute of Spatial Research: INPE Nordeste mapeia
desmatamento da Caatinga, available at:
http://www.inpe.br/noticias/noticia.php?Cod_Noticia=3895, last access: 17 April 2018.
Ioris, A. A. R., Irigaray, C. T., and Girard, P.: Institutional responses to
climate change: opportunities and barriers for adaptation in the Pantanal and the Upper Paraguay River Basin, Climatic Change, 127, 139–151,
https://doi.org/10.1007/s10584-014-1134-z, 2014.
Kolker, E.: In praise of open research measures, Nature, 498, 170, https://doi.org/10.1038/498170b, 2013.
Kouadio, Y. K., Servain, J., Machado, L. A. T., and Lentini, C. A. D.: Heavy
rainfall episodes in the eastern northeast brazil linked to large-scale
ocean-atmosphere conditions in the tropical atlantic, Adv. Meteorol., 2012, 369567, https://doi.org/10.1155/2012/369567, 2012.
Kuppel, S., Houspanossian, J., Nosetto, M. D., and Jobbágy, E. G.: What does it take to flood the Pampas?: Lessons from a decade of strong hydrological fluctuations: Floods and the water cycle in the Pampas, Water Resour. Res., 51, 2937–2950, https://doi.org/10.1002/2015WR016966, 2015.
Leal, I. R., Da Silva, J. M. C., Tabarelli, M., and Lacher, T. E.: Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil, Conserv. Biol., 19, 701–706, https://doi.org/10.1111/j.1523-1739.2005.00703.x, 2005.
Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M.,
Houser, C., and Nelson, F. E.: Soil moisture: A central and unifying theme
in physical geography, Prog. Phys. Geogr,, 35, 65–86,
https://doi.org/10.1177/0309133310386514, 2011.
Li, X. and Xiao, J.: A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data, Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517, 2019.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W.,
van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave
satellite-based retrievals. Hydrol. Earth Syst. Sci., 15, 425–436,
https://doi.org/10.5194/hess-15-425-2011, 2011.
Llamas, R. M., Guevara, M., Rorabaugh, D., Taufer, M., and Vargas, R.: Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture Based on
Geostatistical Techniques and Multiple Regression, Remote Sens., 12,
665, https://doi.org/10.3390/rs12040665, 2020.
Magalhães, A.: Life and drought in Brazil. Drought in Brazil – Proactive
Management and Policy, in: Drought and Water Crisis., Wilhite, D., CRC Press, Boca Raton, FL, 1–19, 2016.
Marengo, J., Tomasella, J., Alves, L., Soares, W., and Rodriguez, D.: The
drought of 2010 in the context of historical droughts in the Amazon region,
Geophys. Res. Lett., 38, L12703, https://doi.org/10.1029/2011GL047436, 2010.
Marengo, J., Alves, L., Alvala, R., Cunha, A., Brito, S., and Moraes, O.:
Climatic characteristics of the 2010–2016 drought in the semiarid Northeast
Brazil region, Anais da Academia Brasileira de Ciências (Annals of the
Brazilian Academy of Sciences), 90, 1973–1985, https://doi.org/10.1590/0001-3765201720170206, 2017.
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and
Entekhabi, D.: The global distribution and dynamics of surface soil moisture, Nat. Geosci., 10, 100–104, https://doi.org/10.1038/ngeo2868, 2017.
Medeiros, R. M.: Análise Hidroclimático do Município de Cabaceiras, PB, Revista Brasileira de Geografia Física, 17, 1174–1190, 2012.
Ministry of National Integration of Brazil: Reconhecimentos Realizados e
Reconhecimentos Vigentes, available at:
http://www.mi.gov.br/web/guest/reconhecimentos-realizados, last access: 24 March 2018.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Moraes, C., Pereira, G., an dCardozo, F.: Avaliação precipitação e sua influência sobre as áreas inundadas no
Pantanal, in: Anais XVI Simpósio Brasileiro de Sensoriamento Remoto – SBSR, INPE, Foz do Iguaçu, PR, Brasil, 2013.
Nascimento, S. and Alves, J.: Ecoclimatologia do Cariri Paraibano, Revista
Geográfica Acadêmica, 3, 28–41, 2008.
National Secretary of Civil Defense and Protection of Brazil: Relatório
de Gestão: Exercício 2016, Ministério da Integração
Nacional, Brasília, DF, Brazil, 2017.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., and Phillips, R. P.: The increasing importance of atmospheric
demand for ecosystem water and carbon fluxes, Nat. Clim. Change, 6, 1023–1027, https://doi.org/10.1038/nclimate3114, 2016.
NWS – National Weather Service: Drought: Public Fact Sheet, National Oceanic
and Atmospheric Administration, available at: https://www.esrl.noaa.gov/gmd/obop/mlo/educationcenter/students/brochures and diagrams/noaa publications/Drought Fact Sheet.pdf
(last access: 12 December 2019), 2006.
Overbeck, G. E., Vélez-Martin, E., Scarano, F. R., Lewinsohn, T. M., Fonseca, C. R., Meyer, S. T., and Pillar, V. D.: Conservation in Brazil needs to include non-forest ecosystems, Divers. Distrib., 21, 1455–1460,
https://doi.org/10.1111/ddi.12380, 2015.
Reuter, H. I. and Hengl, T.: Global Soil Information Facilities-Component
Worldgrids.org, in: EGU General Assembly Conference Abstracts, available at:
https://www.researchgate.net/publication/233540147_Global_Soil_Information_Facilities-Component_Worldgrids_org (last access: 9 September 2018), 2012.
Roesch, L. F., Vieira, F., Pereira, V., Schünemann, A. L., Teixeira, I.,
Senna, A. J., and Stefenon, V. M.: The Brazilian Pampa: A Fragile Biome,
Diversity, 1, 182–198, https://doi.org/10.3390/d1020182, 2009.
Rossato, L., Marengo, J. A., de Angelis, C. F., Pires, L. B. M., and Mendiondo, E. M.: Impact of soil moisture over Palmer Drought Severity Index and its future projections in Brazil, Revista Brasileira de Recursos Hídricos (Brazilian Journal of Water Resources), 22, 1–16, https://doi.org/10.1590/2318-0331.0117160045, 2017.
Santos, M. G., Oliveira, M. T., Figueiredo, K. V., Falcão, H. M., Arruda, E. C. P., Almeida-Cortez, J., Sampaio, E., Ometto, J., Menezes, R., Oliveira, A., Pompelli, M., and Antonino, A. C. D.: Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?, Theor. Exp. Plant Phys., 26, 83–99, https://doi.org/10.1007/s40626-014-0008-0, 2014.
Santos, S. and Silva, L. G.: Mapeamento por imagens de sensoriamento remoto
evidencia o bioma Pampa brasileiro sob ameaça, Boletim de Geografia, 29, 49–57, https://doi.org/10.4025/bolgeogr.v29i2.12366, 2012.
SECOM – The Secretariat for Social Communication of the Presidency of Brazil: Biodiversity in Brazil, Secretariat for Social Communication of the
Presidency of the Federative Republic of Brazil, in: United Nations Conference on Biological Diversity (COP11), Hyderabad, India, 2012.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379, https://doi.org/10.2307/2285891, 1968.
Sheffield, J. and Wood, E. F.: Global Trends and Variability in Soil Moisture
and Drought Characteristics, 1950–2000, from Observation-Driven Simulations
of the Terrestrial Hydrologic Cycle, J. Climate, 21, 432–458, 2008.
Siegel, A. F.: Robust Regression Using Repeated Medians, Biometrika, 69,
242, https://doi.org/10.2307/2335877, 1982.
Smith, K.: Hydrological Hazards. Environmental Hazards – Assessing Risk and
Reducing Disaster, Routledge, New York, NY, 337–370, 2013.
Theil, H.: A Rank-Invariant Method of Linear and Polynomial Regression
Analysis, in: Henri Theil's Contributions to Economics and Econometrics, vol. 23, edited by: Raj, B. and Koert, J., Springer Netherlands, Dordrecht, 345–381, https://doi.org/10.1007/978-94-011-2546-8_20, 1992.
The Nature Conservancy: The Atlantic Forest harbors a range of biological
diversity similar to that of the Amazon, The Nature Conservancy, available at:
https://www.nature.org/ourinitiatives/regions/latinamerica/brazil/placesweprotect/atlantic-forest.xml
(last access: 22 February 2020), 2015.
Tomasella, J., Vieira, R., Barbosa, A., Rodriguez, D., Santana, M., and Sestini, M.: Desertification trends in the Northeast of Brazil over the period 2000–2016, Int. J. Appl. Earth Obs. Geoinf., 73, 197–206, 2018.
Travassos, I. S. and De Souza, B. I.: Os negócios da lenha: indústria, desmatamento e desertificação no Cariri paraibano, GEOUSP: Espaço e Tempo (Online), 18, 329, https://doi.org/10.11606/issn.2179-0892.geousp.2014.84536, 2014.
Vargas, R.: How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest, Environ. Res. Lett., 7, 035704, https://doi.org/10.1038/498170b, 2012.
Vargas, R., Sánchez-Cañete, P., Serrano-Ortiz, P., Curiel Yuste, J.,
Domingo, F., López-Ballesteros, A., and Oyonarte, C.: Hot-moments of soil CO2 efflux in a water-limited grassland, Soil Syst., 2, 47, https://doi.org/10.3390/soilsystems2030047, 2018.
Villarreal, S., Vargas, R., Yepez, E. A., Acosta, J. S., Castro, A.,
Escoto-Rodriguez, M., Lopez, E., Martínez-Osuna, J., Rodriguez, J. C.,
Smith, S. V., and Vivoni, E. R.: Contrasting precipitation seasonality influences evapotranspiration dynamics in water-limited shrublands, J. Geophys. Res.-Biogeo., 121, 494–508, 2016.
Zeri, M., S. Alvalá, R., Carneiro, R., Cunha-Zeri, G., Costa, J.,
Rossato Spatafora, L., Urbano, D., Vall-Llossera, M., and Marengo, J.: Tools for Communicating Agricultural Drought over the Brazilian Semiarid Using the Soil Moisture Index, Water, 10, 1421, https://doi.org/10.3390/w10101421, 2018.
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
The main objective of this paper was to analyze differences in soil moisture responses to...
Altmetrics
Final-revised paper
Preprint