Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-723-2021
https://doi.org/10.5194/nhess-21-723-2021
Research article
 | 
23 Feb 2021
Research article |  | 23 Feb 2021

Typhoon rainstorm simulations with radar data assimilation on the southeast coast of China

Jiyang Tian, Ronghua Liu, Liuqian Ding, Liang Guo, and Bingyu Zhang

Related authors

A coupled atmospheric–hydrologic modeling system with variable grid sizes for rainfall–runoff simulation in semi-humid and semi-arid watersheds: how does the coupling scale affects the results?
Jiyang Tian, Jia Liu, Yang Wang, Wei Wang, Chuanzhe Li, and Chunqi Hu
Hydrol. Earth Syst. Sci., 24, 3933–3949, https://doi.org/10.5194/hess-24-3933-2020,https://doi.org/10.5194/hess-24-3933-2020, 2020
Short summary
Evaluation of Doppler radar and GTS data assimilation for NWP rainfall prediction of an extreme summer storm in northern China: from the hydrological perspective
Jia Liu, Jiyang Tian, Denghua Yan, Chuanzhe Li, Fuliang Yu, and Feifei Shen
Hydrol. Earth Syst. Sci., 22, 4329–4348, https://doi.org/10.5194/hess-22-4329-2018,https://doi.org/10.5194/hess-22-4329-2018, 2018
Short summary
Numerical rainfall simulation with different spatial and temporal evenness by using a WRF multiphysics ensemble
Jiyang Tian, Jia Liu, Denghua Yan, Chuanzhe Li, and Fuliang Yu
Nat. Hazards Earth Syst. Sci., 17, 563–579, https://doi.org/10.5194/nhess-17-563-2017,https://doi.org/10.5194/nhess-17-563-2017, 2017
Short summary

Related subject area

Hydrological Hazards
The 2018–2023 drought in Berlin: impacts and analysis of the perspective of water resources management
Ina Pohle, Sarah Zeilfelder, Johannes Birner, and Benjamin Creutzfeldt
Nat. Hazards Earth Syst. Sci., 25, 1293–1313, https://doi.org/10.5194/nhess-25-1293-2025,https://doi.org/10.5194/nhess-25-1293-2025, 2025
Short summary
Recent large-inland-lake outbursts on the Tibetan Plateau: processes, causes, and mechanisms
Fenglin Xu, Yong Liu, Guoqing Zhang, Ping Zhao, R. Iestyn Woolway, Yani Zhu, Jianting Ju, Tao Zhou, Xue Wang, and Wenfeng Chen
Nat. Hazards Earth Syst. Sci., 25, 1187–1206, https://doi.org/10.5194/nhess-25-1187-2025,https://doi.org/10.5194/nhess-25-1187-2025, 2025
Short summary
Modelling urban stormwater drainage overflows for assessing flood hazards: application to the urban area of Dakar (Senegal)
Laurent Pascal Malang Diémé, Christophe Bouvier, Ansoumana Bodian, and Alpha Sidibé
Nat. Hazards Earth Syst. Sci., 25, 1095–1112, https://doi.org/10.5194/nhess-25-1095-2025,https://doi.org/10.5194/nhess-25-1095-2025, 2025
Short summary
Dynamics and impacts of monsoon-induced geological hazards: a 2022 flood study along the Swat River in Pakistan
Nazir Ahmed Bazai, Mehtab Alam, Peng Cui, Wang Hao, Adil Poshad Khan, Muhammad Waseem, Yao Shunyu, Muhammad Ramzan, Li Wanhong, and Tashfain Ahmed
Nat. Hazards Earth Syst. Sci., 25, 1071–1093, https://doi.org/10.5194/nhess-25-1071-2025,https://doi.org/10.5194/nhess-25-1071-2025, 2025
Short summary
Monte Carlo-based sensitivity analysis of the RIM2D hydrodynamic model for the 2021 flood event in western Germany
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci., 25, 975–990, https://doi.org/10.5194/nhess-25-975-2025,https://doi.org/10.5194/nhess-25-975-2025, 2025
Short summary

Cited articles

Agnihotri, G. and Dimri, A. P.: Simulation study of heavy rainfall episodes over the southern Indian peninsula, Meteorol. Appl., 22, 223–235, https://doi.org/10.1002/met.1446, 2015. 
Avolio, E. and Federico, S.: WRF simulations for a heavy rainfall event in southern Italy: Verification and sensitivity tests, Atmos. Res., 209, 14–35, https://doi.org/10.1016/j.atmosres.2018.03.009, 2018. 
Bauer, H. S., Schwitalla, T., Wulfmeyer V., Bakhshaii, A., Ehret, U., Neuper, M., and Caumont, O: Quantitative precipitation estimation based on high-resolution numerical weather prediction and data assimilation with WRF – a performance test, Tellus A., 67, 25047, https://doi.org/10.3402/tellusa.v67.25047, 2015. 
Cai, Y., Lu, X., Chen, G., and Yang, S: Diurnal cycles of Mei-yu rainfall simulated over eastern China: Sensitivity to cumulus convective parameterization, Atmos. Res., 213, 236–251, https://doi.org/10.1016/j.atmosres.2018.06.003, 2018. 
Caya, A., Sun, J., and Snyder, C.: A comparison between the 4DVAR and the Ensemble Kalman Filter techniques for radar data assimilation, Mon. Weather Rev., 133, 3081–3094, https://doi.org/10.1175/MWR3021.1, 2005. 
Download
Short summary
A typhoon always comes with heavy rainfall which leads to great loss. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the numerical weather prediction (NWP) systems for typhoon rainstorm forecasts at catchment scale. The results show that assimilating radial velocity at a time interval of 1 h can significantly improve the rainfall simulations and outperform the other assimilation modes.
Share
Altmetrics
Final-revised paper
Preprint