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Abstract. As an effective technique to improve the rainfall
forecast, data assimilation plays an important role in meteo-
rology and hydrology. The aim of this study is to explore the
reasonable use of Doppler radar data assimilation to correct
the initial and lateral boundary conditions of the numerical
weather prediction (NWP) systems. The Weather Research
and Forecasting (WRF) model is applied to simulate three
typhoon storm events on the southeast coast of China. Radar
data from a Doppler radar station in Changle, China, are as-
similated with three-dimensional variational data assimila-
tion (3-DVar) model. Nine assimilation modes are designed
by three kinds of radar data and at three assimilation time
intervals. The rainfall simulations in a medium-scale catch-
ment, Meixi, are evaluated by three indices, including rela-
tive error (RE), critical success index (CSI), and root mean
square error (RMSE). Assimilating radial velocity at a time
interval of 1 h can significantly improve the rainfall simula-
tions, and it outperforms the other modes for all the three
storm events. Shortening the assimilation time interval can
improve the rainfall simulations in most cases, while assim-
ilating radar reflectivity always leads to worse simulations
as the time interval shortens. The rainfall simulations can
be improved by data assimilation as a whole, especially for
the heavy rainfall with strong convection. The findings pro-
vide references for improving the typhoon rainfall forecasts
at catchment scale and have great significance on typhoon
rainstorm warning.

1 Introduction

Although the resolution of numerical weather prediction
(NWP) systems is increasing with the improvement of com-
putational efficiency and abundance of observation data,
rainfall is still one of the most difficult meteorological fac-
tors to forecast (Lu et al., 2017; Avolio and Federico, 2018).
A typhoon always comes with heavy rainfall which leads to
great loss. However, due to the uncertainty of the rainfall and
the imperfect generation of NWP systems, rainfall forecast
with severe convection is unsatisfactory in medium and small
catchment scales (Tian et al., 2017a). Data assimilation plays
an important role in NWP and is always applied to correct
the initial and lateral boundary condition of NWP systems,
which can effectively improve the rainfall forecast (Mohan
et al., 2015; Liu et al., 2018).

Various kinds of observation data have been tested and
assimilated by different assimilation methods. Wan and Xu
(2011) simulated a heavy rainstorm using the Weather Re-
search and Forecasting (WRF) model with the Gridpoint Sta-
tistical Interpolation (GSI) data assimilation (DA) system
in the central Guangdong Province of southeast China. The
rainfall simulation error was reduced at 4 km grid scale by
assimilating satellite radiance data, which helped to analyze
rainfall causes accurately. Giannaros et al. (2016) evaluated a
lightning data assimilation (LTNGDA) technique over eight
rainfall events occurring in Greece. The verification scores of
the rainfall simulations were significantly improved by the
employment of the WRF-LTNGDA scheme, especially for
heavy rainfall. Zhang et al. (2013) presented a regional en-
semble data assimilation system that assimilated microwave
radiances into the WRF model for hydrological applications.
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The rainfall simulations were improved in terms of the accu-
mulated rainfall and spatial rainfall distribution in the south-
eastern United States. Yucel et al. (2015) assimilated con-
ventional meteorological data by a three-dimensional vari-
ational data assimilation (3-DVar) model into the coupled
atmospheric–hydrological system. The rainfall simulations,
as well as the runoff simulations, improve significantly in
large basins in the western Black Sea region of Turkey.

Due to their high spatiotemporal resolution, radar data are
assimilated to correct the NWP system for mesoscale and
microscale weather prediction (Milan et al., 2008; Zhao and
Jin, 2008). Wang et al. (2013) tested the four-dimensional
variational data assimilation (4-DVar) system by simulating
a midlatitude squall-line case in the US Great Plains, and the
results indicated that radar data assimilation was able to im-
prove rainfall forecasts from the WRF model at the convec-
tive scale. Liu et al. (2013) selected four storm events in a
small catchment (135.2 km2) located in southwest England
to explore the effect of data assimilation for rainfall forecasts
based on the WRF model, and assimilating radar reflectivity
by the 3-DVar model can significantly improve the forecast-
ing accuracy for the events with one-dimensional evenness
in either space or time. By using the WRF model and Ad-
vanced Regional Prediction System (ARPS) 3-Dvar, Hou et
al. (2015) improved the short-term forecast skill by up to 9 h
by assimilating radar data in southern China.

Most studies focus on the assimilation algorithm and data
selection. However, consistent conclusions have not been ob-
tained for the option of radar reflectivity and radial velocity,
and few studies pay attention to the time interval setting of
data assimilation. Based on the WRF and 3-DVar models,
Tian et al. (2017b) found that radar reflectivity assimilation
led to better rainfall simulations than radial velocity assim-
ilation at the time interval of 6 h. Maiello et al. (2014) as-
similated both radar reflectivity and radial velocity by the
3-DVar model with a 3 h assimilation cycle to improve the
WRF high-resolution initial conditions, and the rainfall fore-
cast became more accurate for several experiments in the ur-
ban area of Rome. Bauer et al. (2015) used the WRF model in
combination with the 3-DVar scheme to estimate the rainfall
simulations, and the results showed that radar data assimila-
tion significantly improved the rainfall simulations by a 1 h
Rapid Update Cycle at the high resolution of 3 km in Ger-
many.

In reality, the operational forecasts from meteorological
departments are guidance forecasts with a large forecasting
area. It is impossible to focus on the accuracy of the rainfall
in small and medium catchment scales. Limited computing
power means that the number of restarting times for the fore-
casting system is only 2–4 times per day (Xie et al., 2016).
The forecasting accuracy descends gradually as the run time
goes on because the data assimilation is not in real time. Due
to the poor accuracy at small scales and low resolutions, the
rainfall forecasting from the meteorological department can-
not be used directly as the input for hydrological forecast-

ing in small and medium catchments (Tian et al., 2019). The
local meteorological observations are necessary to be assim-
ilated to improve the high-resolution rainfall forecast. The
NWP model may not be corrected in a timely manner at
a long time interval of data assimilation, while shortening
the time interval needs a lot of computational resources, and
the observation errors in local meteorological observations
may also be amplified with high assimilation frequency in
the NWP model.

China suffers approximately nine tropical cyclones (TCs)
each year on average (Shen et al., 2017). Most TCs develop
into typhoons which always bring huge economic losses and
a great number of casualties. Fujian is one of the most regu-
larly affected provinces on the coastline of southeast China,
and heavy rainfall caused by the interaction of typhoons and
complex terrain leads to severe flood disasters. Accurate rain-
fall forecasting is of great significance to flood control and
disaster mitigation. However, typhoon rainstorms are still
difficult to predict (Li et al., 2019). There are eight Doppler
radar stations to obtain full coverage for meteorological mon-
itoring in Fujian Province. The plentiful radar data provide
convenience and a basis for the exploration of radar data as-
similation at catchment scale.

In this study, Meixi catchment located in Fujian Province
is chosen as the study area. Due to the frequent heavy rain-
fall, flood disasters are up more than 20 times since 1949.
On 9 July 2016, heavy rainfall caused by typhoon Nepartak
led to severe flooding and attracted strong interest from the
public, academics, and government. Accurate rainfall simu-
lations have a great practical significance in the study area.
In order to explore the reasonable use of Doppler radar data
assimilation to correct the initial and lateral boundary condi-
tions of the NWP systems, the WRF model is applied to sim-
ulate three typhoon storm events affecting the Meixi catch-
ment, and the 3-DVar model is used to assimilate the radar
data to improve the typhoon rainstorm simulations. Nine as-
similation modes are designed by three kinds of radar data
(radar reflectivity, radial velocity, and radar reflectivity and
radial velocity) and at three assimilation time intervals (1,
3, and 6 h). The rainfall simulations are evaluated by three
indices, including relative error (RE), critical success index
(CSI), and root mean square error (RMSE).

2 Study area and case studies

The Meixi catchment lies in central-eastern Fujian Province
with a subtropical monsoon climate (Fig. 1). The drainage
area is 956 km2, and the average annual rainfall is approxi-
mately 1560 mm. There are eight rain gauges and one hydro-
logic station (Fig. 2). In order to investigate the radar data
assimilation effects on rainfall simulations, different kinds
of rainfall processes caused by different stages of the ty-
phoons are chosen in Meixi catchment. Three rainfall storms
are shown in Table 1. Saola formed on 28 July 2012 and

Nat. Hazards Earth Syst. Sci., 21, 723–742, 2021 https://doi.org/10.5194/nhess-21-723-2021



J. Tian et al.: Typhoon rainstorm simulations with radar data assimilation on the southeast coast of China 725

Figure 1. The location of the Meixi catchment and three nested
domains.

landed at Fuding, Fujian, by 3 August. Then Saola weakened
into a tropical storm at Jiangxi. With the movement of Saola,
Meixi catchment was not directly affected, and the accumu-
lated 24 h rainfall was only 84 mm. Hagibis landed at Shan-
tou, Guangdong, on 15 June 2014 and then moved toward the
north at a fast-moving speed. Fortunately, Hagibis weakened
into a tropical depression quickly while moving to northeast-
ern Fujian on 17 June. Event II occurred after the typhoon
passed Meixi catchment, and the accumulated 24 h rainfall
was only 66 mm. Nepartak reached Fujian on 9 July 2016
and strengthened at Putian. Then Nepartak moved towards
the northwest at a fast-moving speed, and event III occurred
when Nepartak was close to Meixi catchment. During the
period, Nepartak reached its peak intensity. The 24 h ac-
cumulated rainfall was 242 mm, which led to a high peak
flow of 4710 m3 s−1 in Meixi catchment. The most destruc-
tive flood caused water and power outages in 11 villages
and towns. Official figures stand at 74 dead and 15 missing
from the flood, which also caused a direct economic loss of
CNY 5.234 billion. Accurate rainfall forecasts appeared to be
particularly important for Meixi catchment.

3 Model description and numerical experiments

3.1 Model description

3.1.1 WRF model and configurations

As the latest-generation mesoscale NWP system, the WRF
model in version 4.0 is used to simulate the three typhoon
storm events. Three nested domains (Dom 1, Dom 2, and

Dom 3) with two-way nesting are designed and centered over
Meixi catchment. The grid spacings are set at 4, 12, and
36 km for the three nested domains from inside to outside
(Chen et al., 2017). The grid numbers for the nested domain
sizes are 100× 100 for Dom 1, 210× 210 for Dom 2, and
300×300 for Dom 3 (Fig. 1). Meixi catchment is completely
covered by the innermost domain. All domains are comprised
of 40 vertical pressure levels with the top level set at 50 hPa
(Maiello et al., 2014). The NCEP Final (FNL) Operational
Global Analysis data with 1◦× 1◦ grids are used to drive
the WRF model and provide the initial and lateral bound-
ary conditions. The time step is set to be 1 h for the WRF
model output. The spin-up period of 12 h is applied to ob-
tain a more accurate rainfall simulation. The option of phys-
ical parameterizations has a significant effect on the rainfall
simulations, especially for microphysics, planetary boundary
layer (PBL), radiation, land surface model (LSM), and cumu-
lus physics (Otieno et al., 2019). According to the previous
studies on physics options selection, WRF Single-Moment
6 (WSM 6) for microphysics, Yonsei University (YSU) for
PBL, the Rapid Radiative Transfer Model for application
to GCMs (RRTMG) for longwave and shortwave radiation,
Noah for LSM, and Kain–Fritsch (KF) for cumulus physics
are adopted in this study (Srivastava et al., 2015; Hazra et al.,
2017; Cai et al., 2018; Tian et al., 2021).

3.1.2 The 3-DVar data assimilation and observation
operator

The fundamental aim of the 3-DVar data assimilation is to
produce an optimal estimate of the true atmospheric state by
the iterative solution of a prescribed cost function (Ide et al.,
1997):

J (x)=
1
2

(
x− xb

)T
B−1

(
x− xb

)
(1)

+
1
2

(
y− y0

)T
R−1

(
y− y0

)
,

where x is the vector of the analysis, xb is the vector of first
guess or background, y is the vector of the model-derived
observation that is transformed from x by the observation
operator H, i.e., y =H(x), and y0 is the vector of the obser-
vation. B is the background error covariance matrix, and R is
the observational and representative error covariance matrix.
Equation (1) shows that the 3-DVar is based on a multivari-
ate incremental formulation. Velocity potential, total water
mixing ratio, unbalanced pressure, and stream function are
all preconditioned control variables. Radial velocity has al-
ready been derived into component winds that are the same
as the analysis variables; hence, radial velocity can be assim-
ilated directly by Eq. (1). However, radar reflectivity assim-
ilation needs an additional forward operator that associates
the model hydrometeors with the radar reflectivity. Due to
the wide applicability, the matrix of CV3 is adopted in this
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Figure 2. Radar scan area and Meixi basin.

Table 1. Three storm events occurring in Meixi catchment.

Event ID Typhoon Storm start time (UTC+ 8) Storm end time (UTC+ 8) 24 h accumulated
rainfall (mm)

I Saola 3 August 2012 00:00 4 August 2012 00:00 84
II Hagibis 17 June 2014 21:00 18 June 2014 21:00 66
III Nepartak 8 July 2016 18:00 9 July 2016 18:00 242

study to simplify the data assimilation procedure (Meng and
Zhang, 2008).

The observation operator H in Eq. (1) links the model vari-
ables to the observation variables. For radar reflectivity, the
observation operator is shown as follows (Sun and Crook,
1997):

Z = 43.1+ 17.5log(ρqr) , (2)

where Z is the radar reflectivity (in dBZ), ρ is the density of
air (in kgm−3), and qr is rainwater mixing ratio (in gkg−1).
Equation (2) is derived by assuming a Marshall–Palmer rain-
drop size distribution and that the ice phases have no effect
on reflectivity.

For radial velocity, the model-derived radial velocity Vr
can be calculated as follows (Tian et al., 2017b):

Vr = u
x− xi

ri
+ v

y− yi

ri
+ (w− vt)

z− zi

ri
, (3)

where u, v, and w are the three-dimensional wind field, x,
y, and z represent the location of the observation point, and

xi , yi , and zi represent the location of the radar station; ri
is the distance between the location of a data point and the
radar station, and vt is the hydrometeor fall speed or terminal
velocity. According to Sun and Crook (1998), vt can be given
by

vt = 5.40a(ρqr)
0.125, (4)

a =

(
p0

p̄

)0.4

, (5)

where a is the correction factor, p̄ is the base-state pressure,
and p0 is the pressure at the ground.

3.2 Numerical experiments

3.2.1 Assimilation modes

An S-band Doppler weather radar located at Changle can
completely cover Meixi catchment. The observation radius
of Changle radar reaches 250 km, and the distance between
Meixi catchment and the radar station is less than 100 km
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Table 2. Physical parameterizations used in the WRF model.

Physical parameterization Scheme

Microphysics WRF Single-Moment 6 (WSM 6)
Planetary boundary layer (PBL) Yonsei University (YSU)
Longwave and shortwave radiation Rapid Radiative Transfer Model for application to GCMs (RRTMG)
Land surface model (LSM) Noah
Cumulus Kain–Fritsch (KF)

Table 3. Radar data assimilation modes designed with data types
and time intervals.

Modes Time intervals
of data assim-
ilation

Assimilated radar
data

1 6 h Radar reflectivity

2 6 h Radial velocity

3 6 h Radar reflectivity
and radial velocity

4 3 h Radar reflectivity

5 3 h Radial velocity

6 3 h Radar reflectivity
and radial velocity

7 1 h Radar reflectivity

8 1 h Radial velocity

9 1 h Radar reflectivity
and radial velocity

(Fig. 2), which makes the quality of radar data credible. The
assimilated data – radar reflectivity and radial velocity – can
be obtained once every 6 min continuously. All the radar data
with quality control are provided by the newest generation
weather radar network of China (CINRAD/SC). The obser-
vation error standard deviations of radar reflectivity and ra-
dial velocity are set 2 dBZ and 1 ms−1 in the 3-DVar model,
respectively (Caya et al., 2005). The radar data assimilation
modes are designed by three kinds of radar data (radar re-
flectivity, radial velocity, and radar reflectivity and radial ve-
locity) and at three assimilation time intervals (1, 3, and 6 h).
The rainfall simulation without data assimilation is used as
the control mode. Nine modes are shown in Table 3.

3.2.2 WRF cycling runs for data assimilation

In order to obtain the whole process of the rainfall simula-
tions, the running time is set at 3, 42, and 36 h for storm
events I, II, and III, respectively. As shown in Fig 3, the cy-
cling runs are set according to the time interval of data as-
similation, and run 1 can be regarded as the WRF run with-

out data assimilation. The dashed line segment represents the
model spin-up. The first guess generated by run 1 is applied
to drive run 2. As time progresses, the first guess file gener-
ated in the previous run is used to provide the initial condi-
tions for the following run. For storm event I, data assimila-
tion starts on 3 August 2012 at 00:00 (all times are UTC+8)
and occurs at intervals of 6, 3, and 1 h. The start time of data
assimilation is 18:00 on 17 June 2014, and the end time is
00:00 on 18 June 2014 for storm event II. Data assimilation
takes place on 8 July at 18:00 and ends on 9 July at 18:00 at
intervals of 6, 3, and 1 h for storm event III.

4 Rainfall evaluation statistics

In this study, the observation of areal rainfall in Meixi catch-
ment is averaged by the eight stations with the Thiessen poly-
gon method (Sivapalan and Blöschl, 1998), while the simu-
lation of areal rainfall is averaged from all grids of the WRF
model inside the Meixi catchment. The relative error (RE) is
used to evaluate the total rainfall amount simulation:

RE=
P ′−P

P
× 100%, (6)

where P ′ is the simulation of 24 h accumulated areal rainfall,
and P is the observation of 24 h accumulated areal rainfall.

The spatiotemporal patterns of the rainfall simulations are
evaluated by the critical success index (CSI) and modified
root mean square error (m-RMSE), which is defined as the
ratio of root mean square error (RMSE) to the mean values
of the corresponding observations (Liu et al., 2012; Prakash
et al., 2014; Agnihotri and Dimri, 2015):

CSI=
1
N

N∑
i=1

NAi
NAi +NBi +NCi

, (7)

m-RMSE=

√
1
M

M∑
j=1

(
P ′j −Pj

)2

1
M

M∑
j=1

Pj

. (8)

The CSI is calculated based on the rain or no rain contin-
gency table (Dai et al., 2019). Table 4 shows that rainfall<
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Figure 3. The time bars of the assimilation cycling runs for (a) storm event I, (b) storm event II, and (c) storm event III.

Table 4. Rain/no rain contingency table for the WRF simulation
against observation.

Simulation/observation Rain No rain
(< 0.1 mmh−1)

Rain NA (hit) NB (false alarm)
No rain (< 0.1 mmh−1) NC (failure) –

0.1 mmh−1 as the threshold is regarded as no rain. In order
to evaluate the simulation of spatial rainfall distribution by
CSI, NAi , NBi , and NCi at each time step i (i = 1 h) are cal-
culated by comparing the rainfall observation with the sim-
ulation extracted at eight rain gauge locations, and then the
values of NAi , NBi , and NCi at all time steps are averaged to
produce the final verification results. Therefore, N refers to
the total time steps (N = 24). For temporal dimension evalu-
ation, NAi , NBi , and NCi are first calculated using the time
series data of simulations and observations at each rain gauge
i (i = 1), then the averaged index values of all rain gauges are
regarded as the final verification results. Thus instead of the
simulation time steps, N represents the total number of the
rainfall gauges (N = 8) for temporal dimension evaluation.
The perfect score of CSI is 1.

The m-RMSE is calculated using Eq. (8). For spatial di-
mension evaluation, P ′j and Pj refer to the simulation and
observation of 24 h accumulated rainfall at rain gauge j , re-

spectively.M is the total number of rain gauges (M = 8). For
temporal dimension evaluation, P ′j and Pj are the simulation
and observation of areal rainfall at each time j , respectively.
M represents the total amount of time (M = 24). The perfect
score of RMSE is 0.

5 Results

5.1 Accumulated rainfall simulations of the nine data
assimilation modes

Nine data assimilation modes for three storm events are eval-
uated by RE for 24 h accumulated areal rainfall. The average
values of the RE (ARE) of the three storm events for each
mode are also calculated. As shown in Table 5, data assimi-
lation modes make the rainfall simulations worse according
to the REs of event I. Only mode 8 has the closest rainfall
simulation to the observation in the nine data assimilation
modes, and the RE is below 1 %. For event II, all data assim-
ilation modes can improve the accumulated rainfall simula-
tions, while for event III, most modes make the accumulated
rainfall simulations better except for modes 2 and 3. Mode
8, i.e., assimilating radial velocity at a time interval of 1 h,
always has the lowest RE and performs the best. The im-
provement of the rainfall simulations is the most obvious for
event III, and the rainfall magnitude is quite close to the ob-
servation, which has important significance in torrential rain-
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fall forecasts and catastrophic flood forecasts in medium and
small basins.

5.1.1 Evaluation of assimilating effects for the different
kinds of radar data

The assimilating effects for three kinds of radar data are
compared at different assimilating time intervals. Based on
the REs of modes 1, 2, and 3, assimilating radar reflectivity
always leads to better simulations than assimilating the
other two kinds of radar data at a time interval of 6 h.
The worst mode for event I is assimilating both radar
reflectivity and radial velocity, while for events II and III,
it is assimilating radial velocity. According to the REs of
modes 4, 5, and 6, assimilating radial velocity becomes
the best choice at a time interval of 3 h for the three storm
events. Assimilating radar reflectivity has the worst per-
formance in the three modes for events II and III, whereas
assimilating radar reflectivity and radial velocity together
has the worst performance for event I. When the time
interval of data assimilation becomes 1 h, the ranking of
assimilation modes for accumulated rainfall simulations is
assimilating radial velocity> assimilating radar reflectivity
and radial velocity> assimilating radar reflectivity.

5.1.2 Evaluation of assimilation effects for the different
assimilation time intervals

The influences of assimilating time intervals on rainfall sim-
ulations are analyzed in this section. Comparing the REs of
modes 1, 4, and 7, shortening the time interval of radar reflec-
tivity assimilation has no obvious improvement for rainfall
simulations and even makes the rainfall simulations worse.
For assimilating radial velocity, all the rainfall simulations of
the three storm events become more accurate, and the assim-
ilation effects are significantly improved as the time interval
shortens from 6 to 1 h. The REs of the three storm events
are all lower than 8 % for the radial velocity assimilation at
a time interval of 1 h. According to modes 3, 6, and 9, short-
ening the assimilation time interval can improve the rainfall
simulations in most cases for assimilating radar reflectivity
and radial velocity at the same time, while only the RE of
mode 6 is higher than the RE of mode 3.

5.2 Spatiotemporal distribution of rainfall simulations
based on the nine data assimilation modes

The spatiotemporal patterns of the rainfall have a significant
effect on flood peak and peak time in medium and small
catchments. The indices of CSI and RMSE are also applied
to compare the nine radar data assimilation modes. The av-
erage CSI values and the average RMSE values for the three
storm events are also calculated for different modes.

5.2.1 Evaluation in the spatial dimension

Table 6 indicates that although mode 8 with the highest CSI
and lowest RMSE is the best choice in the nine data assimi-
lation modes, rainfall simulations with data assimilation are
always worse than without data assimilation for event I. Fig-
ure 4 shows that the observed rainfall center is located in the
east of Meixi catchment, and it rains more in the upstream
side than the downstream side. However, the spatial distri-
bution of the accumulated 24 h rainfall with no data assim-
ilation is even. Modes 1 and 2 simulate the rainfall on the
east side of Meixi catchment accurately, while the simulated
rainfall on the west side is much smaller than the observation.
The rainfall simulations of modes 3, 4, 5, and 6 are all even in
spatial dimension and lower than the observation. The sim-
ulation of mode 7 shows that the rainfall in the downstream
side is less than the upstream side, whereas the different dis-
tribution in a east–west direction is not obvious, and the sim-
ulated rainfall is smaller than the observation. For mode 9,
the spatial distribution of rainfall is also inconsistent with the
observation. Only the simulation of mode 8 is close to the
observed rainfall.

All RMSEs of the simulations with radar data assimilation
are lower than without data assimilation, and only the CSI of
mode 8 is higher than the simulation without data assimila-
tion for event II. According to the rainfall distribution shown
in Fig. 5, the falling areas of simulated rainfall without data
assimilation are totally wrong. The observed rainfall center is
located in the middle of the upstream and downstream catch-
ment. However, the rainfall centers of modes 1, 4, and 7 are
all located in the middle and lower region. The rainfall center
is in the middle reaches for mode 2, while it is in the western
catchment for mode 3. For modes 5 and 6, the spatial distri-
butions of rainfall are also inconsistent with the observation.
The simulated rainfall in the middle of the upstream catch-
ment is close to the observation for modes 8 and 9 but in the
downstream catchment is poor. Although the spatial rainfall
distributions have deviations, nine modes get better than the
simulations without data assimilation as a whole.

Based on Table 6, not all data assimilation modes help im-
prove the rainfall simulations for event III. Modes 4, 5, and 9
have just a little improvement on rainfall simulations in spa-
tial distribution, and only the simulation of mode 8 is close
to the observation. The simulations of modes 1, 2, 3, 4, and
5 are much lower than the observation in the whole catch-
ment. Most observed rainfall falls in the east of the catch-
ment, while the simulated rainfall concentrates in the west
for modes 6 and 9 and in the downstream catchment for mode
7.

Based on the CSIs and RMSEs of modes 1, 2, and
3, assimilating radar reflectivity performs better than
assimilating the other two kinds of radar data at a time
interval of 6 h. Assimilating radar reflectivity and radial
velocity at the same time always leads to the worst simu-
lations. Comparing the two indices of modes 4, 5, and 6,
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Table 5. Accumulated rainfall simulation values (mm) and RE values (%) of the nine data assimilation modes for three storm events.

Modes
Event I Event II Event III

ARE (%)
Rainfall RE Rainfall RE Rainfall RE

simulation (%) simulation (%) simulation (%)
(mm) (mm) (mm)

No radar 85.16 0.88 43.16 34.32 64.20 73.47 36.22
data assimilation

1 61.74 26.86 70.37 7.09 66.79 72.40 35.45

2 60.97 27.77 80.88 23.09 58.59 75.79 42.22

3 35.44 58.02 70.85 7.83 61.11 74.75 46.87

4 41.49 50.86 79.69 21.29 71.75 70.35 47.50

5 66.16 21.63 72.19 9.86 101.23 58.17 29.89

6 37.10 56.05 77.49 17.94 151.64 37.34 37.11

7 61.12 27.60 80.64 22.72 104.28 56.91 35.74

8 83.65 0.91 70.67 7.55 227.96 5.80 4.75

9 82.50 2.28 71.31 8.53 188.01 22.31 11.04

Table 6. CSIs and RMSEs for the spatial distribution of rainfall simulations based on the nine data assimilation modes.

Modes
Event I Event II Event III Average values for

the three events

CSI RMSE CSI RMSE CSI RMSE CSI RMSE

No radar 0.7368 0.1535 0.4479 0.5635 0.6146 0.7482 0.5998 0.4884
data assimilation

1 0.7614 0.4524 0.3587 0.4070 0.6154 0.7841 0.5785 0.5478

2 0.6925 0.4967 0.2829 0.4771 0.6154 0.7844 0.5303 0.5861

3 0.6865 0.6907 0.3346 0.4618 0.6154 0.8147 0.5455 0.6557

4 0.7436 0.6261 0.3561 0.4359 0.6154 0.7905 0.5717 0.6175

5 0.7358 0.5341 0.3195 0.4170 0.6096 0.7123 0.5550 0.5545

6 0.7143 0.6614 0.2212 0.4783 0.5909 0.6285 0.5088 0.5894

7 0.5337 0.4275 0.3949 0.4896 0.5938 0.8004 0.5075 0.5725

8 0.7395 0.1505 0.4504 0.3589 0.6287 0.1643 0.6062 0.2246

9 0.7368 0.4211 0.3168 0.3152 0.6146 0.4519 0.5561 0.3961

assimilating radar reflectivity at a time interval of 3 h can
obtain the highest CSI for the three storm events, while
assimilating radial velocity has a better performance than
the other two modes based on RMSE for events I and II.
For the time interval of 1 h, the ranking of assimilation
modes for the spatial distribution of rainfall simulations is
assimilating radial velocity> assimilating radar reflectivity
and radial velocity> assimilating radar reflectivity.

Comparing the two indices of modes 1, 4, and 7, rainfall
simulations become even worse as the time interval of radar
reflectivity assimilation shortens. For the three modes of as-
similating radial velocity, most simulations become more ac-
curate, and the assimilation effects are significantly improved
as the time interval shortens from 6 to 1 h. The same conclu-
sion can be obtained for assimilating radar reflectivity and
radial velocity at the same time, while the improvement is
not as obvious as assimilating radial velocity.
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Figure 4. Spatial distribution of the simulated 24 h rainfall accumulations with nine data assimilation modes for event I.

Figure 5. Spatial distribution of the simulated 24 h rainfall accumulations with nine data assimilation modes for event II.

5.2.2 Evaluation in the temporal dimension

As shown in Table 7, similar results can be found that most
data assimilation modes cannot help the simulations of the
WRF model get better for event I. Only mode 8 is out-
standing with the highest CSI and lowest RMSE. Figure 7
shows that the rainfall is concentrated at 10:00–16:00 for the

observation. However, the main rainfall processes occur at
03:00–05:00 for modes 3, 4, and 6, 03:00–05:00 and 14:00–
15:00 for mode 1, 03:00–05:00 and 17:00–19:00 for mode 2,
03:00–05:00 and 09:00–10:00 for mode 7, and 03:00–05:00
and 20:00–24:00 for mode 9. The rainfall processes of modes
5 and 8 are similar with the observation, while the rainfall
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Figure 6. Spatial distribution of the simulated 24 h rainfall accumulations with nine data assimilation modes for event III.

Table 7. CSIs and RMSEs for the temporal distribution of rainfall simulations based on the nine data assimilation modes.

Modes
Event I Event II Event III Average values for

the three events

CSI RMSE CSI RMSE CSI RMSE CSI RMSE

No radar 0.6875 0.6018 0.3718 1.3131 0.6146 1.9223 0.5580 1.2791
data assimilation

1 0.6830 1.0351 0.3069 1.3843 0.6034 1.8138 0.5311 1.4111

2 0.6458 1.1787 0.2483 2.0950 0.6034 1.8232 0.4992 1.6990

3 0.6421 1.2414 0.2969 1.4631 0.6034 1.8318 0.5141 1.5121

4 0.6674 1.1411 0.2902 2.2037 0.6034 1.8153 0.5203 1.7200

5 0.6796 1.1115 0.2969 2.0414 0.6145 1.7793 0.5303 1.6441

6 0.6667 1.2878 0.2031 2.6387 0.5851 2.0122 0.4850 1.9796

7 0.4549 1.5132 0.3125 2.3337 0.5938 1.8452 0.4537 1.8974

8 0.6877 0.3822 0.3969 0.7015 0.6221 0.8459 0.5689 0.6432

9 0.6875 1.3862 0.2663 1.1180 0.6146 1.1699 0.5228 1.2247

simulations at 12:00–13:00 and 15:00 for mode 5 are worse
than for mode 8.

According to the values of CSI and RMSE, only modes 8
and 9 are useful for the improvement of rainfall simulations,
and obvious improvement can be found in mode 8 for event
II. The actual main rainfall process occurs at 15:00–18:00,
while the time is advanced by 3 h for modes 1, 4, 5, 6, and 7.
There is a delay of 3 h for the main rainfall process of mode

3. Although the times of heavy rainfall for modes 2 and 9 are
consistent with the observation, the areal rainfall at 18:00 is
much higher than the observation.

For event III, although most CSIs of the simulations with
radar data assimilation are lower than the simulations with-
out data assimilation, the RMSEs show the opposite conclu-
sions. From Fig. 9, the observed rainfall is concentrated at
08:00–11:00. It can be easily found that modes 1, 2, 3, 4, 5,
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Figure 7. Time series bars of observed and simulated areal rainfall with nine data assimilation modes and the rainfall observation for event I.

Figure 8. Time series bars of observed and simulated areal rainfall with nine data assimilation modes and the rainfall observation for event
II.
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Figure 9. Time series bars of observed and simulated areal rainfall with nine data assimilation modes and the rainfall observation for event
III.

and 6 cannot reproduce the heavy rainfall process in temporal
dimension. The simulated rainfall is concentrated at 15:00–
16:00 for mode 7. Only the simulation of mode 8 is basically
consistent with the observation, while the simulation of mode
9 is worse than mode 8 at 08:00 and 10:00.

According to the CSIs and RMSEs of modes 1, 2,
and 3, assimilating radar reflectivity at a time interval
of 6 h performs better than assimilating the other two
kinds of radar data. Assimilating radial velocity performs
the worst for event II, and assimilating radar reflectivity
and radial velocity at the same time always leads to the
worst simulations for events I and III. Based on the two
indices of modes 4, 5, and 6, assimilating radial velocity
at a time interval of 3 h can obtain the highest CSI and
lowest RMSE for the three storm events, while assimi-
lating radar reflectivity and radial velocity at the same
time performs worse than the other two modes. For the
time interval of 1 h, the ranking of assimilation modes
for the temporal distribution of rainfall simulations is
assimilating radial velocity> assimilating radar reflectivity
and radial velocity> assimilating radar reflectivity.

Comparing the indices of modes 1, 4 and 7, rainfall sim-
ulations for temporal distribution become even worse as the
time interval of radar reflectivity assimilation shortens from
6 to 1 h. For modes 2, 5, and 8, shortening the time interval
can significantly improve the rainfall simulations by assimi-
lating radial velocity. Modes 3, 6, and 9 indicate that rainfall
simulations are improved by shortening the time interval as a
whole, whereas assimilating radar reflectivity and radial ve-

locity at the same time at a time interval of 3 h obtains the
worst rainfall simulations for events II and III.

6 Discussion

In order to prove the accuracy of the assimilation results, ty-
phoon paths for different assimilation modes are also sim-
ulated (Fig. 10). According to the simulations of Saola and
Nepartak, the accurate typhoon path simulations always lead
to accurate rainfall simulations. However, for typhoon Hag-
ibis, the actual typhoon center is far away from the Meixi
catchment during the assimilation process. Hence, only the
actual typhoon path for Hagibis is added in Fig. 10. Com-
paring the nine radar data assimilation modes, assimilating
radial velocity at a time interval of 6 h always performs the
worst in rainfall simulations, while the rainfall simulations
can be significantly improved by shortening the time interval
of data assimilation. According to Eq. (3), although the phys-
ical process of the rainfall formation cannot be influenced by
the radial velocity assimilation directly, the wind field and the
water vapor transportation in initial and lateral boundary con-
ditions can be changed with the wind information in radial
velocity. However, the wind field is quite variable, especially
for stormy weather. As the time interval becomes longer, the
WRF model cannot be corrected by the radial velocity in
time, whereas compared to the simulations without data as-
similation, the inevitable observation errors caused by atmo-
spheric refractivity in the radial velocity might lead to worse
performance in the WRF model as the running time goes on
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Figure 10. Typhoon path and simulations for (a) Saola, (b) Hagibis, and (c) Nepartak.

(Montmerle and Faccani, 2009). That is the main reason that
assimilating radial velocity at a time interval of 6 h cannot
obtain satisfactory simulations. Increasing the frequency of
data assimilation, the effective information in radial velocity
can correct the wind field and the water vapor transportation
in the background field of the WRF model timely, which is
helpful to improve the rainfall simulations (Kawabata et al.,
2014).

The water vapor transportation increments and wind field
for different modes at the rainfall concentrating time are used
to show how assimilating radial velocity and radar reflec-
tivity affects the WRF model’s initial and boundary condi-
tions (Figs. 11–13). The shadows in Figs. 11–13 mean that
water vapor transportation in the analysis field is more than
in the background field. The darker the shadow in the fig-
ures is, the more the water vapor transportation increment
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Figure 11. Water vapor transportation increment and wind field (850 hPa) for event I at 12:00 on 3 August 2012.

is, which is one of the most important factors that affects
the amount of rainfall. For event I, counterclockwise wind
field has contributed to the water vapor transportation from
ocean to inland at 12:00 on 3 August 2012. Modes 1, 2, 5,
7, 8, and 9 all obtain the shadow area with the obvious wa-
ter vapor transportation increment. However, according to
the coverage area of the shadow, only modes 5 and 8 in-
fluence Meixi catchment directly, which is consistent with

the result that rainfall simulations with modes 5 and 8 are
higher than simulations with no data assimilation at 12:00,
while the increment of simulated rainfall is quite obvious for
mode 8. The differences of nine modes can be easily found
in both the wind field and water vapor transportation incre-
ments for event II. The water vapor transportation increases
significantly in modes 2, 3, 8, and 9 at 18:00 on 18 June
2014, which has a direct impact on the rainfall simulations
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Figure 12. Wind field and water vapor transportation increment (850 hPa) for event II at 18:00 on 18 June 2014.

in Meixi catchment. That is the main reason why simulated
rainfalls with modes 2, 3, 8, and 9 are higher than the sim-
ulated rainfall with no data assimilation. However, the wind
fields in these modes indicate a lack of warm and wet flow
supply, and the rainfall weakening is almost inevitable after
18:00. Considering the wind field and the range of water va-
por transportation increments, the rainfalls may continue for

a period of time after 18:00 in modes 3, 8, and 9, which can
also be reflected by hourly simulated rainfall shown in Fig. 8.
For event III, the water vapor transportation increases signif-
icantly in modes 2, 3, 5, 6, 7, 8, and 9 at 06:00 on 9 July
2016, while only modes 8 and 9 affect Meixi catchment di-
rectly. The range of shadows in Fig. 13 is also consistent with
the rainfall simulations. The wind field indicates that water
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Figure 13. Wind field and water vapor transportation increment (850 hPa) for event III at 06:00 on 9 July 2016.

vapor transportation is sufficient for mode 8 at a later time,
which leads to a significant increase in simulated rainfall.

Does further shortening the assimilation interval obtain
better rainfall simulations? In terms of theory, the answer is
yes because improving the assimilation frequency can correct
the initial and lateral boundary conditions in a timely man-
ner. However, the observation errors of radial velocity may be

amplified with the high assimilation frequency in the WRF
model. There may be an “inverted u” relationship between
the accuracy of the rainfall simulations and the assimilation
time interval (Myung et al., 2000). Further study should be
carried out to investigate the optimal assimilation time inter-
val.
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On the contrary, assimilating radar reflectivity offers lit-
tle help for improving rainfall simulations except for accu-
mulated rainfall. Furthermore, rainfall simulations become
even worse as the time interval of radar reflectivity assim-
ilation shortens from 6 to 1 h. The background field of the
WRF model has large differences from the actual weather
situation, which can be reflected in the rainfall simulations
without data assimilation against the rainfall observations
for the three storm events. As shown in Eq. (2), radar re-
flectivity is closely related to the humidity field and con-
tains the information of rainfall hydrometeors (Wattrelot et
al., 2014). That is to say the humidity information in radar
reflectivity is quite different from the actual weather situa-
tion, which makes it difficult for the 3-DVar data assimila-
tion to produce an optimal estimate of the true atmospheric
state by the iterative solution of a prescribed cost function.
It should also be mentioned that due to its unchangeability,
the matrix of CV3 has wide applicability but is not practi-
cal for all cases (Kong et al., 2017). The inadaptability of
CV3 in the typhoon synoptic system and the large differ-
ences between the humidity information in radar reflectivity
and the actual weather situation might be the main reasons
for the poor performance of radar reflectivity assimilation
(Sun, 2005). The more frequent the radar reflectivity assimi-
lation is, the greater the pressure on the 3-DVar data assimi-
lation model is. Other data assimilation models with variable
background error covariance, such as the hybrid ensemble
transform Kalman filter–three-dimensional variational data
assimilation (ETKF-3DVAR) (Wang et al., 2012; Shen et al.,
2016), should be tested for radar reflectivity assimilation in
future studies.

For the even rainfall events in space and time, such as
storm event I, data assimilation should be used carefully. The
WRF model has good performance in rainfall simulations,
especially for accumulated rainfall. The errors in the assim-
ilated data may have a negative effect on the rainfall sim-
ulations. Additionally, assimilating other kinds of data and
radar data together may help to improve the rainfall simula-
tions. Though the conventional observations, such as upper-
air and surface observations from meteorological stations and
sounding balloons, have low spatiotemporal resolution, the
kinds of data are various and have wide coverage, which can
help to improve the atmospheric motion in the WRF model
at large scales (Li et al., 2018). Yesubabu et al. (2016) in-
dicate that assimilating the satellite observation also has a
positive effect on the rainfall simulations. Assimilating dif-
ferent data sources, together with the radar data, may fur-
ther improve the rainfall simulations at catchment scale. In
reality, ECMWF was also tested for the data assimilation be-
fore FNL was used in this study (Zhang et al., 2018; Zhao
et al., 2012). Although the rainfall simulations show some
differences based on the two kinds of boundary conditions,
the patterns of improvements from different data assimila-
tion modes are quite similar, and the same conclusions can
be obtained.

7 Conclusions

Data assimilation is an efficient technique for improving
rainfall simulations. In order to explore the reasonable use
of Doppler radar data assimilation to correct the initial and
lateral boundary conditions of the NWP systems, three ty-
phoon storm events, including Saola, Hagibis, and Nepar-
tak, are chosen to be simulated by the WRF model with nine
modes in Meixi catchment located on the southeast coast of
China. The FNL analysis data with 1◦× 1◦ grids are used
to drive the WRF model, and radar data from the Changle
Doppler radar station are applied to correct the initial and lat-
eral boundary conditions. Three evaluating indices, RE, CSI,
and RMSE, are used to evaluate the nine radar data assimila-
tion modes, which are designed by three kinds of radar data
(radar reflectivity, radial velocity, and radar reflectivity and
radial velocity) and at three assimilation time intervals (1, 3,
and 6 h).

Contrastive analyses of the nine modes are carried out
from three aspects: accumulated rainfall simulations, spatial
rainfall distribution, and temporal rainfall distribution. Four
main conclusions are obtained: (1) in the nine radar data as-
similation modes, assimilating radial velocity at a time in-
terval of 1 h can significantly improve the rainfall simula-
tions and outperform the other modes for all the three storm
events; (2) shortening the assimilation time interval can im-
prove the rainfall simulations in most cases, while assimi-
lating radar reflectivity always leads to worse simulations as
the time interval shortens; (3) radar reflectivity is the best
choice for the data assimilation at a time interval of 6 h, while
radial velocity performs best for the data assimilation at a
time interval of 1 h; and (4) data assimilation can improve
the rainfall simulations as a whole, especially for the heavy
rainfall with strong convection, whereas the improvement for
evenly distributed rainfall in space and time is limited. More
numerical simulation experiments should be tested in other
catchments in different climate conditions. Further studies
also should be carried out to investigate the data assimila-
tion techniques to improve the ability of the simulations of
heavy rainfall in the study areas.
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