Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3873-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3873-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Preface: Remote sensing, modelling-based hazard and risk assessment, and management of agro-forested ecosystems
Department of Geomatics, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, 1435, Norway
Ana M. Tarquis
Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid (UPM), Madrid, Spain
Anne Gobin
Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
Flemish Institute for Technological Research, 2400 Mol, Belgium
Mikhail Semenov
Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
Wenwu Zhao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Paolo Tarolli
Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020, Legnaro, Italy
Related authors
No articles found.
Francesco Marra, Nadav Peleg, Elena Cristiano, Efthymios I. Nikolopoulos, Federica Remondi, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 25, 2565–2570, https://doi.org/10.5194/nhess-25-2565-2025, https://doi.org/10.5194/nhess-25-2565-2025, 2025
Short summary
Short summary
Climate change is escalating the risks related to hydro-meteorological extremes. This preface introduces a special issue originating from a European Geosciences Union (EGU) session. It highlights the challenges posed by these extremes, ranging from hazard assessment to mitigation strategies, and covers both water excess events like floods, landslides, and coastal hazards and water deficit events such as droughts and fire weather. The collection aims to advance understanding, improve resilience, and inform policy-making.
Yue Liu, Wenwu Zhao, Zhijie Zhang, Jingyi Ding, and Lixin Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-107, https://doi.org/10.5194/essd-2025-107, 2025
Preprint under review for ESSD
Short summary
Short summary
This study integrated the high precision remote sensing data and ground observations to produce 30-meter spatial resolution maps of four key ecosystem services in China – net primary productivity, soil conservation, sandstorm prevention, and water yield – for the years 2000, 2010, and 2020. Through comparison and cross-validation with other data sources, this dataset has been proven to have significant advantages in accuracy and applicability.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Alfonso Allen-Perkins, Angel Giménez-García, Ainhoa Magrach, Javier Galeano, Ana María Tarquis, and Ignasi Bartomeus
Web Ecol., 24, 81–96, https://doi.org/10.5194/we-24-81-2024, https://doi.org/10.5194/we-24-81-2024, 2024
Short summary
Short summary
Machine learning models outperform simple mechanistic models in predicting pollinator visitation rates. We use deep learning to infer rules from land cover maps to estimate pollination services globally. Results suggest deep learning can improve predictions by identifying complex patterns in landscape composition, especially in data-rich but knowledge-poor areas. The challenge is to make deep learning algorithms more interpretable so that experts can validate prediction rules for pollination.
Juan J. Martin-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-145, https://doi.org/10.5194/nhess-2023-145, 2023
Manuscript not accepted for further review
Short summary
Short summary
This work includes vegetation (VCI) and water content index (WCI) series from two semiarid rangeland areas in Spain. Based on then, a Z-score for both was calculated to use it as an anomaly index. In this way, we associated negative anomalies with drought episodes. Then, we study the relations of these negative anomalies to see if it is possible to use WCI as an alarm of agronomic drought (VCI negative anomaly). The description of the behaviour of both areas and their comparison are made.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Mihai Ciprian Mărgărint, Mihai Niculiță, Giulia Roder, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3251–3283, https://doi.org/10.5194/nhess-21-3251-2021, https://doi.org/10.5194/nhess-21-3251-2021, 2021
Short summary
Short summary
Local stakeholders' knowledge plays a deciding role in emergencies, supporting rescue officers in natural hazard events; coordinating; and assisting, both physically and psychologically, the affected populations. Their risk perception was assessed using a questionnaire for an area in north-eastern Romania. The results show low preparedness and reveal substantial distinctions among stakeholders and different risks based on their cognitive and behavioral roles in their communities.
A. Masiero, P. Dabove, V. Di Pietra, M. Piragnolo, A. Vettore, S. Cucchiaro, A. Guarnieri, P. Tarolli, C. Toth, V. Gikas, H. Perakis, K.-W. Chiang, L. M. Ruotsalainen, S. Goel, and J. Gabela
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 111–116, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, 2021
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Anne Gobin, Nicoletta Addimando, Christoph Ramshorn, and Karl Gutbrod
Adv. Sci. Res., 18, 21–25, https://doi.org/10.5194/asr-18-21-2021, https://doi.org/10.5194/asr-18-21-2021, 2021
Short summary
Short summary
Agricultural production is largely determined by weather conditions during the crop growing season. Weather events such as frosts, droughts or heat stress during crop growth and development helps explain yield variability of common arable crops. We developed a methodology and visualisation tool for risk assessment, and tested the workflow for drought and frost risk. The methodology can be extended to other extreme weather events and their impacts on crop growth in different regions of the world.
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020, https://doi.org/10.5194/nhess-20-2585-2020, 2020
Cited articles
Blanco-Gutiérrez, I., Manners, R., Varela-Ortega, C., Tarquis, A. M.,
Martorano, L. G., and Toledo, M.: Examining the sustainability and development challenge in agricultural-forest frontiers of the Amazon Basin
through the eyes of locals, Nat. Hazards Earth Syst. Sci., 20, 797–813,
https://doi.org/10.5194/nhess-20-797-2020, 2020.
Chen, H., Zhao, G., Li, Y., Wang, D., and Ma, Y.: Monitoring the seasonal
dynamics of soil salinization in the Yellow River delta of China using Landsat data, Nat. Hazards Earth Syst. Sci., 19, 1499–1508,
https://doi.org/10.5194/nhess-19-1499-2019, 2019.
Delkash, M., Al-Faraj, F. A., and Scholz, M.: Impacts of anthropogenic land use changes on nutrient concentrations in surface waterbodies: a review, CLEAN – Soil, Air, Water, 46, 1800051, https://doi.org/10.1002/clen.201800051, 2018.
Hien, L. T. T., Gobin, A., and Huong, P. T. T.: Spatial indicators for desertification in southeast Vietnam, Nat. Hazards Earth Syst. Sci., 19,
2325–2337, https://doi.org/10.5194/nhess-19-2325-2019, 2019.
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Cambridge University Press, in press, 2021.
Jiménez-Donaire, M. P., Tarquis, A., and Giráldez, J. V.: Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain, Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, 2020.
Lee, G., Jun, K. S., and Kang, M.: Framework to prioritize watersheds for
diffuse pollution management in the Republic of Korea: application of multi-criteria analysis using the Delphi method, Nat. Hazards Earth Syst. Sci., 19, 2767–2779, https://doi.org/10.5194/nhess-19-2767-2019, 2019.
Martín-Sotoca, J. J., Saa-Requejo, A., Moratiel, R., Dalezios, N.,
Faraslis, I., and Tarquis, A. M.: Statistical analysis for satellite-index-based insurance to define damaged pasture thresholds, Nat.
Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, 2019.
Moratiel, R., Bravo, R., Saa, A., Tarquis, A. M., and Almorox, J.: Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain), Nat. Hazards Earth Syst. Sci., 20, 859–875,
https://doi.org/10.5194/nhess-20-859-2020, 2020.
Nastos, P. T., Dalezios, N. R., Faraslis, I. N., Mitrakopoulos, K., Blanta, A., Spiliotopoulos, M., Sakellariou, S., Sidiropoulos, P., and Tarquis, A. M.: Review article: Risk management framework of environmental hazards and
extremes in Mediterranean ecosystems, Nat. Hazards Earth Syst. Sci., 21,
1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, 2021.
Rodríguez, A., Pérez-López, D., Sánchez, E., Centeno, A.,
Gómara, I., Dosio, A., and Ruiz-Ramos, M.: Chilling accumulation in fruit trees in Spain under climate change, Nat. Hazards Earth Syst. Sci., 19, 1087–1103, https://doi.org/10.5194/nhess-19-1087-2019, 2019.
Tarolli, P. and Straffelini, E.: Agriculture in hilly and mountainous landscapes: threats, monitoring and sustainable management, Geogr. Sustainabil., 1, 70–76, 2020.
Valverde-Arias, O. R., Esteve, P., Tarquis, A. M., and Garrido, A.: Remote
sensing in an index-based insurance design for hedging economic impacts on
rice cultivation, Nat. Hazards Earth Syst. Sci., 20, 345–362,
https://doi.org/10.5194/nhess-20-345-2020, 2020.
Altmetrics