Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3873-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3873-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Preface: Remote sensing, modelling-based hazard and risk assessment, and management of agro-forested ecosystems
Department of Geomatics, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, 1435, Norway
Ana M. Tarquis
Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid (UPM), Madrid, Spain
Anne Gobin
Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
Flemish Institute for Technological Research, 2400 Mol, Belgium
Mikhail Semenov
Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
Wenwu Zhao
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Paolo Tarolli
Department of Land, Environment, Agriculture and Forestry, University of Padova, 35020, Legnaro, Italy
Related authors
No articles found.
Alfonso Allen-Perkins, Angel Giménez-García, Ainhoa Magrach, Javier Galeano, Ana María Tarquis, and Ignasi Bartomeus
Web Ecol., 24, 81–96, https://doi.org/10.5194/we-24-81-2024, https://doi.org/10.5194/we-24-81-2024, 2024
Short summary
Short summary
Machine learning models outperform simple mechanistic models in predicting pollinator visitation rates. We use deep learning to infer rules from land cover maps to estimate pollination services globally. Results suggest deep learning can improve predictions by identifying complex patterns in landscape composition, especially in data-rich but knowledge-poor areas. The challenge is to make deep learning algorithms more interpretable so that experts can validate prediction rules for pollination.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Juan J. Martin-Sotoca, Ernesto Sanz, Antonio Saa-Requejo, Rubén Moratiel, Andrés F. Almeida-Ñauñay, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-145, https://doi.org/10.5194/nhess-2023-145, 2023
Manuscript not accepted for further review
Short summary
Short summary
This work includes vegetation (VCI) and water content index (WCI) series from two semiarid rangeland areas in Spain. Based on then, a Z-score for both was calculated to use it as an anomaly index. In this way, we associated negative anomalies with drought episodes. Then, we study the relations of these negative anomalies to see if it is possible to use WCI as an alarm of agronomic drought (VCI negative anomaly). The description of the behaviour of both areas and their comparison are made.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Mihai Ciprian Mărgărint, Mihai Niculiță, Giulia Roder, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3251–3283, https://doi.org/10.5194/nhess-21-3251-2021, https://doi.org/10.5194/nhess-21-3251-2021, 2021
Short summary
Short summary
Local stakeholders' knowledge plays a deciding role in emergencies, supporting rescue officers in natural hazard events; coordinating; and assisting, both physically and psychologically, the affected populations. Their risk perception was assessed using a questionnaire for an area in north-eastern Romania. The results show low preparedness and reveal substantial distinctions among stakeholders and different risks based on their cognitive and behavioral roles in their communities.
A. Masiero, P. Dabove, V. Di Pietra, M. Piragnolo, A. Vettore, S. Cucchiaro, A. Guarnieri, P. Tarolli, C. Toth, V. Gikas, H. Perakis, K.-W. Chiang, L. M. Ruotsalainen, S. Goel, and J. Gabela
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 111–116, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, 2021
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Anne Gobin, Nicoletta Addimando, Christoph Ramshorn, and Karl Gutbrod
Adv. Sci. Res., 18, 21–25, https://doi.org/10.5194/asr-18-21-2021, https://doi.org/10.5194/asr-18-21-2021, 2021
Short summary
Short summary
Agricultural production is largely determined by weather conditions during the crop growing season. Weather events such as frosts, droughts or heat stress during crop growth and development helps explain yield variability of common arable crops. We developed a methodology and visualisation tool for risk assessment, and tested the workflow for drought and frost risk. The methodology can be extended to other extreme weather events and their impacts on crop growth in different regions of the world.
Sara Top, Lola Kotova, Lesley De Cruz, Svetlana Aniskevich, Leonid Bobylev, Rozemien De Troch, Natalia Gnatiuk, Anne Gobin, Rafiq Hamdi, Arne Kriegsmann, Armelle Reca Remedio, Abdulla Sakalli, Hans Van De Vyver, Bert Van Schaeybroeck, Viesturs Zandersons, Philippe De Maeyer, Piet Termonia, and Steven Caluwaerts
Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, https://doi.org/10.5194/gmd-14-1267-2021, 2021
Short summary
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Faith E. Taylor, Paolo Tarolli, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 20, 2585–2590, https://doi.org/10.5194/nhess-20-2585-2020, https://doi.org/10.5194/nhess-20-2585-2020, 2020
A. Masiero, G. Sofia, and P. Tarolli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 259–264, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-259-2020, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-259-2020, 2020
N. A. Nyathi, W. Zhao, and W. Musakwa
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 809–816, https://doi.org/10.5194/isprs-annals-V-3-2020-809-2020, https://doi.org/10.5194/isprs-annals-V-3-2020-809-2020, 2020
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020, https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
Irene Blanco-Gutiérrez, Rhys Manners, Consuelo Varela-Ortega, Ana M. Tarquis, Lucieta G. Martorano, and Marisol Toledo
Nat. Hazards Earth Syst. Sci., 20, 797–813, https://doi.org/10.5194/nhess-20-797-2020, https://doi.org/10.5194/nhess-20-797-2020, 2020
Short summary
Short summary
The Amazon rainforest is being destroyed, resulting in negative ecological and social impacts. We explore how stakeholders perceive the causes of the Amazon's degradation in Bolivia and Brazil and develop a series of scenarios to help strengthen the balance between human development and environmental conservation. The results suggest that the application of governance and well-integrated technical and social reform strategies encourages positive regional changes even under climate change.
Omar Roberto Valverde-Arias, Paloma Esteve, Ana María Tarquis, and Alberto Garrido
Nat. Hazards Earth Syst. Sci., 20, 345–362, https://doi.org/10.5194/nhess-20-345-2020, https://doi.org/10.5194/nhess-20-345-2020, 2020
Short summary
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Le Thi Thu Hien, Anne Gobin, and Pham Thi Thanh Huong
Nat. Hazards Earth Syst. Sci., 19, 2325–2337, https://doi.org/10.5194/nhess-19-2325-2019, https://doi.org/10.5194/nhess-19-2325-2019, 2019
Short summary
Short summary
Desertification is influenced by different factors that relate to climate, natural resources and human pressure. In southeast Vietnam nearly 15 % of the area is desertified and another 35 % is at severe risk. With climate change and population growth the desertified area is projected to increase by 122 % towards 2050. We developed a framework that allows for decision support in a
what ifstructure, which can be extended to regions that experience similar sensitivities.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
Ting Hua, Wenwu Zhao, Yanxu Liu, and Yue Liu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-122, https://doi.org/10.5194/nhess-2019-122, 2019
Manuscript not accepted for further review
Short summary
Short summary
We used the RUSLE model and geographical detector method to evaluate and identify the dominant factors and variability in the Yellow River basin. We found that in the period of low rainfall and vegetation coverage, the interaction of rainfall and slope can enhance their impact on the distribution of soil erosion, while the combination of vegetation and slope was the dominant interacting factor in other periods, and the dominant driving factors of soil erosion variability were rainfall.
Wenwu Zhao, Hui Wei, Lizhi Jia, Stefani Daryanto, Xiao Zhang, and Yanxu Liu
Solid Earth, 9, 1507–1516, https://doi.org/10.5194/se-9-1507-2018, https://doi.org/10.5194/se-9-1507-2018, 2018
Short summary
Short summary
Soil erodibility (K) is one of the key factors of soil erosion. Selecting the optimal estimation method of soil erodibility is critical to estimate the amount of soil erosion, and provide the base for sustainable land management. This research took the Loess Plateau of China as a case study, estimated soil erodibility factor with different methods, selected the best texture-based method to estimate K, and aimed to understand the indirect environmental factors of soil erodibility.
Daniele Giordan, Yuichi S. Hayakawa, Francesco Nex, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 3085–3087, https://doi.org/10.5194/nhess-18-3085-2018, https://doi.org/10.5194/nhess-18-3085-2018, 2018
Short summary
Short summary
In the special issue
The use of remotely piloted aircraft systems (RPAS) in monitoring applications and management of natural hazardswe propose a collection of papers that provide a critical description of the state of the art in the use of RPAS for different scenarios. In particular, the sequence of papers can be considered an exhaustive representation of the state of the art of the methodologies and approaches applied to the study and management of natural hazards.
Daniele Giordan, Yuichi Hayakawa, Francesco Nex, Fabio Remondino, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 18, 1079–1096, https://doi.org/10.5194/nhess-18-1079-2018, https://doi.org/10.5194/nhess-18-1079-2018, 2018
Short summary
Short summary
Remotely piloted aerial systems can acquire on-demand ultra-high-resolution images that can be used for the identification of active processes like landslides or volcanic activities but also for the definition of effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologies developed for the study and monitoring of natural hazards.
K. Pawłuszek, A. Borkowski, and P. Tarolli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1-W1, 83–90, https://doi.org/10.5194/isprs-archives-XLII-1-W1-83-2017, https://doi.org/10.5194/isprs-archives-XLII-1-W1-83-2017, 2017
Jingyi Ding, Wenwu Zhao, Stefani Daryanto, Lixin Wang, Hao Fan, Qiang Feng, and Yaping Wang
Hydrol. Earth Syst. Sci., 21, 2405–2419, https://doi.org/10.5194/hess-21-2405-2017, https://doi.org/10.5194/hess-21-2405-2017, 2017
Short summary
Short summary
In this study, we focused on exploring the spatial distribution and temporal variation of desert riparian forests and their influencing factors based on field experiment and remote sensing data. Our result revealed how the environmental factors shape the spatial distribution and temporal variation of desert riparian forest in the downstream Heihe river. The results of this study provide support for the effective restoration of desert riparian forest in the hyperarid zone.
Carmelo Alonso, Ana M. Tarquis, Ignacio Zúñiga, and Rosa M. Benito
Nonlin. Processes Geophys., 24, 141–155, https://doi.org/10.5194/npg-24-141-2017, https://doi.org/10.5194/npg-24-141-2017, 2017
Short summary
Short summary
NDVI and EVI vegetation indexes, estimated from satellite images, can been used to estimate root zone soil moisture. However, depending on the spatial and radiometric resolution of the sensors used, estimations could change. In this work, images taken by satellites IKONOS-2 and LANDSAT-7 of the same location are compared on the four bands involved in these vegetation indexes. The results show that spatial resolution has a similar scaling effect in the four bands, but not radiometric resolution.
Ana M. Tarquis, María Teresa Castellanos, Maria Carmen Cartagena, Augusto Arce, Francisco Ribas, María Jesús Cabello, Juan López de Herrera, and Nigel R. A. Bird
Nonlin. Processes Geophys., 24, 77–87, https://doi.org/10.5194/npg-24-77-2017, https://doi.org/10.5194/npg-24-77-2017, 2017
Short summary
Short summary
Melon crop got different levels of N that constituted a contribution to the variation of soil N at mainly larger scales. During its development a proportion of the N was taken up, adding a second factor of variability at smaller scales. After the melon harvest, the wheat was sown across the plots and harvested at the end of the season. Wheat was used as a N sink crop and allowed us to evaluate the soil N residual. Multiscale and relative entropy were applied to study N scale dependencies.
Xuening Fang, Wenwu Zhao, Lixin Wang, Qiang Feng, Jingyi Ding, Yuanxin Liu, and Xiao Zhang
Hydrol. Earth Syst. Sci., 20, 3309–3323, https://doi.org/10.5194/hess-20-3309-2016, https://doi.org/10.5194/hess-20-3309-2016, 2016
Short summary
Short summary
In this study, we focused on analyzing the variation and factors influencing deep soil moisture content based on a soil moisture survey of the Ansai watershed. Our results revealed the variation characteristics of deep soil moisture and its controlling mechanism at a moderate scale. The results of this study are of practical significance for vegetation restoration strategies and the sustainability of restored ecosystems.
Livia Piermattei, Luca Carturan, Fabrizio de Blasi, Paolo Tarolli, Giancarlo Dalla Fontana, Antonio Vettore, and Norbert Pfeifer
Earth Surf. Dynam., 4, 425–443, https://doi.org/10.5194/esurf-4-425-2016, https://doi.org/10.5194/esurf-4-425-2016, 2016
Short summary
Short summary
We investigated the applicability of the SfM–MVS approach for calculating the geodetic mass balance of a glacier and for the detection of the surface displacement rate of an active rock glacier located in the eastern Italian Alps. The results demonstrate that it is possible to reliably quantify the investigated glacial and periglacial processes by means of a quick ground-based photogrammetric survey that was conducted using a consumer grade SRL camera and natural targets as ground control points.
T. De Groote, D. Zona, L. S. Broeckx, M. S. Verlinden, S. Luyssaert, V. Bellassen, N. Vuichard, R. Ceulemans, A. Gobin, and I. A. Janssens
Geosci. Model Dev., 8, 1461–1471, https://doi.org/10.5194/gmd-8-1461-2015, https://doi.org/10.5194/gmd-8-1461-2015, 2015
Short summary
Short summary
This paper describes the modification of the widely used land surface model ORCHIDEE for stand-scale simulations of short rotation coppice (SRC) plantations. The modifications presented in this paper were evaluated using data from two Belgian poplar-based SRC sites, for which multiple measurements and meteorological data were available. The simulations show that the model predicts aboveground biomass production, ecosystem photosynthesis and ecosystem respiration well.
N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis
Nat. Hazards Earth Syst. Sci., 14, 2435–2448, https://doi.org/10.5194/nhess-14-2435-2014, https://doi.org/10.5194/nhess-14-2435-2014, 2014
P. Cely, A. M. Tarquis, J. Paz-Ferreiro, A. Méndez, and G. Gascó
Solid Earth, 5, 585–594, https://doi.org/10.5194/se-5-585-2014, https://doi.org/10.5194/se-5-585-2014, 2014
D. Penna, M. Borga, G. T. Aronica, G. Brigandì, and P. Tarolli
Hydrol. Earth Syst. Sci., 18, 2127–2139, https://doi.org/10.5194/hess-18-2127-2014, https://doi.org/10.5194/hess-18-2127-2014, 2014
A. Matulka, P. López, J. M. Redondo, and A. Tarquis
Nonlin. Processes Geophys., 21, 269–278, https://doi.org/10.5194/npg-21-269-2014, https://doi.org/10.5194/npg-21-269-2014, 2014
Cited articles
Blanco-Gutiérrez, I., Manners, R., Varela-Ortega, C., Tarquis, A. M.,
Martorano, L. G., and Toledo, M.: Examining the sustainability and development challenge in agricultural-forest frontiers of the Amazon Basin
through the eyes of locals, Nat. Hazards Earth Syst. Sci., 20, 797–813,
https://doi.org/10.5194/nhess-20-797-2020, 2020.
Chen, H., Zhao, G., Li, Y., Wang, D., and Ma, Y.: Monitoring the seasonal
dynamics of soil salinization in the Yellow River delta of China using Landsat data, Nat. Hazards Earth Syst. Sci., 19, 1499–1508,
https://doi.org/10.5194/nhess-19-1499-2019, 2019.
Delkash, M., Al-Faraj, F. A., and Scholz, M.: Impacts of anthropogenic land use changes on nutrient concentrations in surface waterbodies: a review, CLEAN – Soil, Air, Water, 46, 1800051, https://doi.org/10.1002/clen.201800051, 2018.
Hien, L. T. T., Gobin, A., and Huong, P. T. T.: Spatial indicators for desertification in southeast Vietnam, Nat. Hazards Earth Syst. Sci., 19,
2325–2337, https://doi.org/10.5194/nhess-19-2325-2019, 2019.
IPCC: Climate Change 2021: The Physical Science Basis, in: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.: Cambridge University Press, in press, 2021.
Jiménez-Donaire, M. P., Tarquis, A., and Giráldez, J. V.: Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain, Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, 2020.
Lee, G., Jun, K. S., and Kang, M.: Framework to prioritize watersheds for
diffuse pollution management in the Republic of Korea: application of multi-criteria analysis using the Delphi method, Nat. Hazards Earth Syst. Sci., 19, 2767–2779, https://doi.org/10.5194/nhess-19-2767-2019, 2019.
Martín-Sotoca, J. J., Saa-Requejo, A., Moratiel, R., Dalezios, N.,
Faraslis, I., and Tarquis, A. M.: Statistical analysis for satellite-index-based insurance to define damaged pasture thresholds, Nat.
Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, 2019.
Moratiel, R., Bravo, R., Saa, A., Tarquis, A. M., and Almorox, J.: Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain), Nat. Hazards Earth Syst. Sci., 20, 859–875,
https://doi.org/10.5194/nhess-20-859-2020, 2020.
Nastos, P. T., Dalezios, N. R., Faraslis, I. N., Mitrakopoulos, K., Blanta, A., Spiliotopoulos, M., Sakellariou, S., Sidiropoulos, P., and Tarquis, A. M.: Review article: Risk management framework of environmental hazards and
extremes in Mediterranean ecosystems, Nat. Hazards Earth Syst. Sci., 21,
1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, 2021.
Rodríguez, A., Pérez-López, D., Sánchez, E., Centeno, A.,
Gómara, I., Dosio, A., and Ruiz-Ramos, M.: Chilling accumulation in fruit trees in Spain under climate change, Nat. Hazards Earth Syst. Sci., 19, 1087–1103, https://doi.org/10.5194/nhess-19-1087-2019, 2019.
Tarolli, P. and Straffelini, E.: Agriculture in hilly and mountainous landscapes: threats, monitoring and sustainable management, Geogr. Sustainabil., 1, 70–76, 2020.
Valverde-Arias, O. R., Esteve, P., Tarquis, A. M., and Garrido, A.: Remote
sensing in an index-based insurance design for hedging economic impacts on
rice cultivation, Nat. Hazards Earth Syst. Sci., 20, 345–362,
https://doi.org/10.5194/nhess-20-345-2020, 2020.
Altmetrics