Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification
GAMA Team, Department of Applied Physics, University of Barcelona, Barcelona, Spain
Cartographic and Geological Institute of Catalonia (ICGC), Barcelona, Spain
URBAG research team, Sostenipra SGR 1412 ICTA-UAB, Barcelona, Spain
Anna Deluca
Climate and Health Program, Barcelona Institute for Global Health, Barcelona, Spain
Dirk Lauwaet
Flemish Institute for Technological Research (VITO), Mol, Belgium
Joan Ballester
Climate and Health Program, Barcelona Institute for Global Health, Barcelona, Spain
Jordi Corbera
Cartographic and Geological Institute of Catalonia (ICGC), Barcelona, Spain
Maria Carmen Llasat
GAMA Team, Department of Applied Physics, University of Barcelona, Barcelona, Spain
Related authors
No articles found.
Hendrik Wouters, Jente Broeckx, Francisco Pereira, Boucary Dara, Afoussatou Diarra, Robin Houdmeyers, and Dirk Lauwaet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2214, https://doi.org/10.5194/egusphere-2025-2214, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Predicting shifts in local extreme weather under global warming is key for climate adaptation, but climate projections lack detail. A new tool, EXSoDOS, combines ground measurements, reanalysis data, and climate models to improve estimates of extreme weather, aiding better risk planning. Tested in five regions, it accurately captures temperature, rainfall, and wind extremes including their past changes, outperforming raw model data. Results show worsening heat (stress) and precipitation by 2100.
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023, https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Short summary
Understanding how air pollution varies across space and time is of key importance for the safeguarding of human health. This work arose in the context of the project EARLY-ADAPT, for which the Barcelona Supercomputing Center developed an air pollution database covering all of Europe. Through different statistical methods, we compared two global pollution models against measurements from ground stations and found significant discrepancies between the observed and the modeled surface pollution.
Zhao-Yue Chen, Raul Méndez, Hervé Petetin, Aleksander Lacima, Carlos Pérez García-Pando, and Joan Ballester
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-104, https://doi.org/10.5194/essd-2023-104, 2023
Preprint withdrawn
Short summary
Short summary
Given in the limitations of existing AOD and its size fraction information, a new 18-year daily Aerosol Optical Depth (AOD) dataset over Europe has been developed based on quantile machine learning (QML) models. This dataset improves the ability to monitor and analyse fine-mode and coarse-mode aerosols. They provide better tools to investigate negatively affect human health and have impacts on climate, visibility, and biogeochemical cycling.
B. Beaumont, Y. Loozen, T. Castin, J. Radoux, C. Wyard, D. Lauwaet, F. Lefebre, T. Halford, M. Haid, P. Defourny, and E. Hallot
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2022, 243–250, https://doi.org/10.5194/isprs-annals-V-4-2022-243-2022, https://doi.org/10.5194/isprs-annals-V-4-2022-243-2022, 2022
R. Alamús, F. Pérez, L. Pipia, and J. Corbera
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 5–10, https://doi.org/10.5194/isprs-archives-XLII-1-5-2018, https://doi.org/10.5194/isprs-archives-XLII-1-5-2018, 2018
Markel García-Díez, Dirk Lauwaet, Hans Hooyberghs, Joan Ballester, Koen De Ridder, and Xavier Rodó
Geosci. Model Dev., 9, 4439–4450, https://doi.org/10.5194/gmd-9-4439-2016, https://doi.org/10.5194/gmd-9-4439-2016, 2016
Short summary
Short summary
Here we present a comparison between two approaches to modelling the influence of the city of Barcelona over the local temperature. We show that medium-complexity models such as UrbClim are well suited for impact and adaptation studies at a city scale without high computing requirements, but that they are sensitive to the
ability of the input data to represent the local wind regime.
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Verifying the relationships among the variabilities of summer rainfall extremes over Japan in the d4PDF climate ensemble, Pacific sea surface temperature, and monsoon activity
Tree fall along railway lines: modelling the impact of wind and other meteorological factors
The probabilistic skill of extended-range heat wave forecasts over Europe
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Evaluation of machine learning approaches for large-scale agricultural drought forecasts to improve monitoring and preparedness in Brazil
Soil moisture–atmosphere coupling strength over central Europe in the recent warming climate
A data-driven framework for assessing climatic impact drivers in the context of food security
Soil conditioner mixtures as an agricultural management alternative to mitigate drought impacts: a proof of concept
Extreme heat and mortality in the State of Rio de Janeiro in the 2023/24 season: attribution to climate change and ENSO
Compound winter low-wind and cold events impacting the French electricity system: observed evolution and role of large-scale circulation
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
The record-breaking precipitation event of December 2022 in Portugal
Compound events in Germany in 2018: drivers and case studies
Indirect assimilation of radar reflectivity data with an adaptive hydrometer retrieval scheme for the short-term severe weather forecasts
Assimilation of temperature and relative humidity observations from personal weather stations in AROME-France
The anomalously thundery month of June 1925 in southwest Spain: description and synoptic analysis
Spatial identification of regions exposed to multi-hazards at the pan-European level
Classification of North Atlantic and European extratropical cyclones using multiple measures of intensity
Subseasonal forecasts of heat waves in West African cities
Impacts on and damage to European forests from the 2018–2022 heat and drought events
Brief communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Examining the Eastern European extreme summer temperatures of 2023 from a long-term perspective: the role of natural variability vs. anthropogenic factors
How well are hazards associated with derechos reproduced in regional climate simulations?
Is considering runs (in)consistency so useless for weather forecasting?
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Exploring the interplay between observed warming, atmospheric circulation, and soil-atmosphere feedbacks on heatwaves in a temperate mountain region
High-Resolution Data Assimilation for Two Maritime Extreme Weather Events: A comparison between 3DVar and EnKF
Reask UTC: a machine learning modeling framework to generate climate connected tropical cyclone event sets globally
Historical changes in drought characteristics and its impact on vegetation cover over Madagascar
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Invited perspectives: Thunderstorm Intensification from Mountains to Plains
Intense rains in Israel associated with the train effect
Review article: The growth in compound weather events research in the decade since SREX
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Impact-based temporal clustering of multiple meteorological hazard types in southwestern Germany
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
The ability of a stochastic regional weather generator to reproduce heavy precipitation events across scales
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Shao-Yi Lee, Sicheng He, and Tetsuya Takemi
Nat. Hazards Earth Syst. Sci., 25, 2225–2253, https://doi.org/10.5194/nhess-25-2225-2025, https://doi.org/10.5194/nhess-25-2225-2025, 2025
Short summary
Short summary
The authors performed verification on the relationships between extreme monsoon rainfall over Japan and Pacific sea surface temperature variability in the “database for Policy Decision-making for Future climate changes” (d4PDF). Observations showed widespread weak relationships between hourly extremes and the warming mode but reversed relationships between daily extremes and the decadal variability mode. Biases in d4PDF could be explained by the monsoon's slower movement over Japan in the model.
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Benjamin Schmitz
Nat. Hazards Earth Syst. Sci., 25, 2179–2196, https://doi.org/10.5194/nhess-25-2179-2025, https://doi.org/10.5194/nhess-25-2179-2025, 2025
Short summary
Short summary
Tree fall events have an impact on forests and transport systems. Our study explored tree fall in relation to wind and other weather conditions. We used tree fall data along railway lines and ERA5 and radar meteorological data to build a logistic regression model. We found that high and prolonged wind speeds, wet conditions, and high air density increase tree fall risk. These factors might change in the changing climate, which in return will change risks for trees, forests and transport.
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025, https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
Short summary
The skill of hindcasts from the European Centre for Medium-Range Weather Forecasts in forecasting heat wave days, defined as periods with the 5 d moving average temperature exceeding its local summer 90th percentile over Europe 1 to 4 weeks ahead, is examined. Forecasts of heat wave days show potential for warning of heat risk 1 to 2 weeks in advance and enhanced accuracy in forecasting prolonged heat waves up to 3 weeks ahead, when the heat wave had already begun before forecast issuance.
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025, https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Short summary
Estimates of the risk posed by rare and catastrophic weather events are often derived from relatively short measurement records, which renders them highly uncertain. We investigate if (and by how much) this uncertainty can be reduced by making use of large datasets of simulated weather. More specifically, we focus on coastal flood hazard in the Netherlands and on the challenge of estimating the once in 10 million years coastal water level and wind stress as accurately as possible.
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025, https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Short summary
This study provides detailed insight into the thunderstorm characteristics associated with abrupt changes in the lightning activity of a thunderstorm – lightning jumps (LJs) and lightning dives (LDs) – using geostationary satellite observations. Thunderstorms exhibiting one or multiple LJs or LDs feature characteristics similar to severe thunderstorms. Storms with multiple LJs contain strong convective updrafts and are prone to produce high rain rates, large hail, or tornadoes.
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025, https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Short summary
A persistent severe rainfall event occurred over North China in July 2023, which was regarded as one of the most extreme episodes globally during that year. The extreme rainfall was significantly underestimated by forecasters at that time. Flooding from this event affected 1.3 million people, causing severe human casualties and economic losses. We examined the convective initiation and subsequent persistent heavy rainfall based on simulations with the Weather Research and Forecasting model.
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025, https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary
Short summary
We present a classification method for extratropical cyclones and windstorms and show their impacts on Finland's electricity grid by analysing the 92 most damaging windstorms (2005–2018). The south-west- and north-west-arriving windstorms cause the most damage to the power grid. The most relevant parameters for damage are the wind gust speed and extent of wind gusts. Windstorms are more frequent and damaging in autumn and winter, but weaker wind speeds in summer also cause significant damage.
Joseph W. Gallear, Marcelo Valadares Galdos, Marcelo Zeri, and Andrew Hartley
Nat. Hazards Earth Syst. Sci., 25, 1521–1541, https://doi.org/10.5194/nhess-25-1521-2025, https://doi.org/10.5194/nhess-25-1521-2025, 2025
Short summary
Short summary
In Brazil, drought is of national concern and can have major consequences for agriculture. Here, we determine how to develop forecasts for drought stress on vegetation health using machine learning. Results aim to inform future developments in operational drought monitoring at the National Centre for Monitoring and Early Warning of Natural Disasters (CEMADEN) in Brazil. This information is essential for disaster preparedness and planning of future actions to support areas affected by drought.
Thomas Schwitalla, Lisa Jach, Volker Wulfmeyer, and Kirsten Warrach-Sagi
Nat. Hazards Earth Syst. Sci., 25, 1405–1424, https://doi.org/10.5194/nhess-25-1405-2025, https://doi.org/10.5194/nhess-25-1405-2025, 2025
Short summary
Short summary
During recent decades, Europe has experienced increasing periods of severe drought and heatwave. To provide an overview of how land-surface conditions shape land–atmosphere (LA) coupling, the interannual LA coupling strength variability for the summer seasons of 1991–2022 is investigated by means of ERA5 data. The results clearly reflect ongoing climate change by a shift in the coupling relationships towards reinforced heating and drying by the land surface.
Marcos Roberto Benso, Roberto Fray Silva, Gabriela Chiquito Gesualdo, Antonio Mauro Saraiva, Alexandre Cláudio Botazzo Delbem, Patricia Angélica Alves Marques, José Antonio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 25, 1387–1404, https://doi.org/10.5194/nhess-25-1387-2025, https://doi.org/10.5194/nhess-25-1387-2025, 2025
Short summary
Short summary
This study applies climate extreme indices to assess climate risks to food security. Using an explainable machine learning analysis, key climate indices affecting maize and soybean yields in Brazil were identified. Results reveal the temporal sensitivity of these indices and critical yield loss thresholds, informing policy and adaptation strategies.
Juan F. Dueñas, Edda Kunze, Huiying Li, and Matthias C. Rillig
Nat. Hazards Earth Syst. Sci., 25, 1377–1386, https://doi.org/10.5194/nhess-25-1377-2025, https://doi.org/10.5194/nhess-25-1377-2025, 2025
Short summary
Short summary
We investigated the potential of adding mixtures composed of minimum dosages of several popular amendment types to soil. Our goal was to increase the resistance of agricultural soil to drought stress. We found that adding mixtures of three to five amendment types increased the capacity of soil to retain water, reduced soil erosion, and increased fungal abundance while buffering soil from drastic changes in pH. More research is encouraged to validate this approach.
Soledad Collazo, David Barriopedro, Ricardo García-Herrera, and Santiago Beguería
EGUsphere, https://doi.org/10.5194/egusphere-2025-792, https://doi.org/10.5194/egusphere-2025-792, 2025
Short summary
Short summary
In the 2023/24 season, Rio de Janeiro experienced record-breaking heatwaves linked to climate change and El Niño. Our study shows global warming made these extreme temperatures at least 2°C hotter than in pre-industrial times. Heat-related deaths surged, with climate change contributing to 1 in 3 fatalities during the peak event. Without adaptation, future heatwaves will claim even more lives. This underscores the urgent need for policies to mitigate climate impacts from escalating heat threats.
François Collet, Margot Bador, Julien Boé, Laurent Dubus, and Bénédicte Jourdier
Nat. Hazards Earth Syst. Sci., 25, 843–856, https://doi.org/10.5194/nhess-25-843-2025, https://doi.org/10.5194/nhess-25-843-2025, 2025
Short summary
Short summary
Our aim is to characterize the observed evolution of compound winter low-wind and cold events impacting the French electricity system. The frequency of compound events exhibits a decrease over the 1950–2022 period, which is likely due to a decrease in cold days. Large-scale atmospheric circulation is an important driver of compound event occurrence and has likely contributed to the decrease in cold days, while we cannot draw conclusions on its influence on the decrease in compound events.
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025, https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Short summary
We present results of non-volcanic-gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold-gas stream, which has already been lethal to humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentrations at defined probability levels and the probability of overcoming specified CO2 concentrations over specified time intervals.
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025, https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Short summary
We investigate the correlation between heavy-rainfall events and three associated natural hazards along the German rail network using GIS analyses and random-effects logistic models. The results show that 23 % of floods, 14 % of gravitational mass movements, and 2 % of tree fall events between 2017 and 2020 occurred after a heavy-rainfall event, and the probability of occurrence of flood and tree fall events significantly increased. This study contributes to more resilient rail transport.
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025, https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
Short summary
Extreme rainfall comprises a major hydrohazard for New Zealand and is commonly associated with atmospheric rivers – narrow plumes of very high atmospheric moisture transport. Here, we focus on improved forecasting of these events by testing a forecasting tool previously applied to similar situations in western Europe. However, our results for New Zealand suggest the performance of this forecasting tool may vary depending on geographical setting.
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025, https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary
Short summary
We investigate the synoptic evolution associated with the occurrence of an atmospheric river that led to a 24 h record-breaking extreme precipitation event (120.3 mm) in Lisbon, Portugal, on 13 December 2022. The synoptic background allowed the formation, on 10 December, of an atmospheric river associated with a deep extratropical cyclone and with a high moisture content and an inflow of moisture, due to the warm conveyor belt, throughout its life cycle. The system made landfall on 12 December.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Lixin Song, Feifei Shen, Zhixin He, Dongmei Xu, Aiqing Shu, and Jiajun Chen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-203, https://doi.org/10.5194/nhess-2024-203, 2025
Revised manuscript accepted for NHESS
Short summary
Short summary
When retrieving hydrometeors from reflectivity, there are two methods to allocate hydrometeor types: temperature-based and background hydrometer-dependent schemes. The temperature-based method divides hydrometeor proportions based on the background temperature, while the other scheme calculates average weights of each hydrometeor in various reflectivity intervals from background fields. The blending scheme adaptively combines these methods and is found to improve precipitation forecast accuracy.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 25, 429–449, https://doi.org/10.5194/nhess-25-429-2025, https://doi.org/10.5194/nhess-25-429-2025, 2025
Short summary
Short summary
The use of numerical weather prediction models enables the forecasting of hazardous weather situations. The incorporation of new temperature and relative humidity observations from personal weather stations into the French limited-area model is evaluated in this study. This leads to the improvement of the associated near-surface variables of the model during the first hours of the forecast. Examples are provided for a sea breeze case during a heatwave and a fog episode.
Francisco Javier Acero, Manuel Antón, Alejandro Jesús Pérez Aparicio, Nieves Bravo-Paredes, Víctor Manuel Sánchez Carrasco, María Cruz Gallego, José Agustín García, Marcelino Núñez, Irene Tovar, Javier Vaquero-Martínez, and José Manuel Vaquero
Nat. Hazards Earth Syst. Sci., 25, 305–320, https://doi.org/10.5194/nhess-25-305-2025, https://doi.org/10.5194/nhess-25-305-2025, 2025
Short summary
Short summary
The month of June 1925 was found to be exceptional in the southwest interior of the Iberian Peninsula due to the large number of thunderstorms and their significant impacts, with serious losses of human lives and material resources. We analyzed this event from different, complementary perspectives: reconstruction of the history of the events from newspapers, study of monthly meteorological variables of the longest series available, and the analysis of the meteorological synoptic situation.
Tiberiu-Eugen Antofie, Stefano Luoni, Aloïs Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci., 25, 287–304, https://doi.org/10.5194/nhess-25-287-2025, https://doi.org/10.5194/nhess-25-287-2025, 2025
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hotspots) and meta-analysis in order to identify the regions at a European level at risk of multi-hazards. The findings point out the socioeconomic dimension as a determining factor in the potential risk of multi-hazards. The outcome provides valuable input for the disaster risk management policy support and will assist national authorities on the implementation of a multi-hazard approach in national risk assessment preparation.
Joona Cornér, Clément Bouvier, Benjamin Doiteau, Florian Pantillon, and Victoria A. Sinclair
Nat. Hazards Earth Syst. Sci., 25, 207–229, https://doi.org/10.5194/nhess-25-207-2025, https://doi.org/10.5194/nhess-25-207-2025, 2025
Short summary
Short summary
Classification reduces the considerable variability between extratropical cyclones (ETCs) and thus simplifies studying their representation in climate models and changes in the future climate. In this paper we present an objective classification of ETCs using measures of ETC intensity. This is motivated by the aim of finding a set of ETC intensity measures which together comprehensively describe both the dynamical and impact-relevant nature of ETC intensity.
Cedric G. Ngoungue Langue, Christophe Lavaysse, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 25, 147–168, https://doi.org/10.5194/nhess-25-147-2025, https://doi.org/10.5194/nhess-25-147-2025, 2025
Short summary
Short summary
The present study addresses the predictability of heat waves at subseasonal timescales in West African cities over the period 2001–2020. Two models, the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office models, were evaluated using two reanalyses: ERA5 and MERRA. The results suggest that at subseasonal timescales, the forecast models provide a better forecast than climatology, but the hit rate and false alarm rate are sub-optimal.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Georgy Ayzel and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 25, 41–47, https://doi.org/10.5194/nhess-25-41-2025, https://doi.org/10.5194/nhess-25-41-2025, 2025
Short summary
Short summary
Forecasting rainfall over the next hour is an essential feature of early warning systems. Deep learning (DL) has emerged as a powerful alternative to conventional nowcasting technologies, but it still struggles to adequately predict impact-relevant heavy rainfall. We think that DL could do much better if the training tasks were defined more specifically and that such specification presents an opportunity to better align the output of nowcasting models with actual user requirements.
Monica Ionita, Petru Vaideanu, Bogdan Antonescu, Catalin Roibu, Qiyun Ma, and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 24, 4683–4706, https://doi.org/10.5194/nhess-24-4683-2024, https://doi.org/10.5194/nhess-24-4683-2024, 2024
Short summary
Short summary
Eastern Europe's heat wave history is explored from 1885 to 2023, with a focus on pre-1960 events. The study reveals two periods with more frequent and intense heat waves (HWs): 1920s–1960s and 1980s–present. The research highlights the importance of a long-term perspective, revealing that extreme heat events have occurred throughout the entire study period, and it emphasizes the combined influence of climate change and natural variations on increasing HW severity.
Tristan Shepherd, Frederick Letson, Rebecca J. Barthelmie, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 24, 4473–4505, https://doi.org/10.5194/nhess-24-4473-2024, https://doi.org/10.5194/nhess-24-4473-2024, 2024
Short summary
Short summary
A historic derecho in the USA is presented. The 29 June 2012 derecho caused more than 20 deaths and millions of US dollars of damage. We use a regional climate model to understand how model fidelity changes under different initial conditions. We find changes drive different convective conditions, resulting in large variation in the simulated hazards. The variation using different reanalysis data shows that framing these results in the context of contemporary and future climate is a challenge.
Hugo Marchal, François Bouttier, and Olivier Nuissier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-208, https://doi.org/10.5194/nhess-2024-208, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper investigates the relationship between changes in weather forecasts and predictability, which has so far been considered weak. By focusing on the persistence of weather scenarios over successive forecasts, we found that it significantly affects the reliability of forecasts.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024, https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past hail days in Switzerland from 1959–2022. This new time series reveals a significant increase in hail day occurrences over the last 7 decades. We link this trend to increases in moisture and instability variables in the models. This time series can now be used to unravel the complexities of Swiss hail occurrence and to understand what drives its year-to-year variability.
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-192, https://doi.org/10.5194/nhess-2024-192, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study explores the 2022 heatwaves in the Pyrenees, examining the factors that contributed to their intensity and distribution. The June event was driven by strong winds that created uneven temperature patterns, while the July heatwave featured calmer conditions and more uniform temperatures. Human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Diego Saúl Carrió, Vincenzo Mazzarella, and Rossella Ferretti
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-177, https://doi.org/10.5194/nhess-2024-177, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Populated coastal regions in the Mediterranean are known to be severely affected by extreme weather events that are initiated over maritime regions. These weather events are known to pose a serious problem in terms of numerical predictability. Different Data Assimilation techniques are used in this study with the main aim of enhancing short-range forecasts of two challenging severe weather events.
Thomas Loridan and Nicolas Bruneau
EGUsphere, https://doi.org/10.5194/egusphere-2024-3253, https://doi.org/10.5194/egusphere-2024-3253, 2024
Short summary
Short summary
Tropical Cyclone (TC) risk models have been used by the insurance industry to quantify occurrence and severity risk since the 90s. To date these models are mostly built from backward looking statistics and portray risk under a static view of the climate. We here introduce a novel approach, based on machine learning, that allows sampling of climate variability when assessing TC risk globally. This is of particular importance when computing forward looking views of TC risk.
Herijaona Hani-Roge Hundilida Randriatsara, Eva Holtanova, Karim Rizwan, Hassen Babaousmail, Mirindra Finaritra Tanteliniaina Rabezanahary, Kokou Romaric Posset, Donnata Alupot, and Brian Odhiambo Ayugi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-191, https://doi.org/10.5194/nhess-2024-191, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study aims to analyze the spatiotemporal characteristics of drought (duration, frequency, severity, intensity) over Madagascar during 1981–2022 by using Standardized Precipitation Index (SPI-3, -6 and -12). Additionally, the impact of drought on vegetation over the studied area was assessed based on the relationship evaluation between SPI and the Normalized Difference Vegetation Index (NDVI) during 2000–2022.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024, https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance compared to a single meteorological drought index or agricultural drought index in terms of drought identification.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024, https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological loss index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high-impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Jannick Fischer, Pieter Groenemeijer, Alois Holzer, Monika Feldmann, Katharina Schröer, Francesco Battaglioli, Lisa Schielicke, Tomáš Púčik, Christoph Gatzen, Bogdan Antonescu, and the TIM Partners
EGUsphere, https://doi.org/10.5194/egusphere-2024-2798, https://doi.org/10.5194/egusphere-2024-2798, 2024
Short summary
Short summary
Strong thunderstorms have been studied mainly over flat terrain and in computer simulations in the past. However, they are particularly frequent near mountain ranges, which emphasizes the need to study storms near mountains. This article gives an overview about our existing knowledge on this topic and presents plans for a large European field campaign with the goals to fill these knowledge gaps, validate tools for thunderstorm warnings, and improve numerical weather prediction near mountains.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024, https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Short summary
The train effect is related to convective cells that pass over the same place. Trains produce heavy rainfall and sometimes floods and are reported in North America during spring and summer. In Israel, 17 trains associated with Cyprus lows were identified by radar images and were found within the cold sector south of the low center and in the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km; last 1–3 h; and yield 35 mm of rainfall up to 60 mm.
Lou Brett, Christopher J. White, Daniela I.V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-182, https://doi.org/10.5194/nhess-2024-182, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events and compounding flooding. The review also highlights opportunities for research in the coming years.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024, https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
Short summary
A computer model that simulates the climate of southeastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Katharina Küpfer, Alexandre Tuel, and Michael Kunz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2803, https://doi.org/10.5194/egusphere-2024-2803, 2024
Short summary
Short summary
Using loss data, we assess when and how single and multiple types of meteorological extremes (river floods and heavy rainfall events, windstorms and convective gusts, and hail). We find that the combination of several types of hazards clusters robustly on a seasonal scale, whereas only some single hazard types occur in clusters. This can be associated with higher losses compared to isolated events. We argue for the relevance of jointly considering multiple types of hazards.
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143, https://doi.org/10.5194/nhess-2024-143, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We evaluated a multi-site stochastic regional weather generator (nsRWG) for its ability to capture the cross-scale extremity of high precipitation events (HPEs) in Germany. We generated 100 realizations of 72 years of daily synthetic precipitation data. The performance was assessed using WEI and xWEI indices, which measure event extremity across spatio-temporal scales. Results show nsRWG simulates well the extremity patterns of HPEs, though it overestimates short-duration, small-extent events.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Cited articles
Achebak, H., Devolder, D. and Ballester, J.: Heat-related mortality trends under recent climate warming in Spain: A 36-year observational study, PLoS Med., 15, e1002617, https://doi.org/10.1371/journal.pmed.1002617, 2018.
Achebak, H., Devolder, D., and Ballester, J.: Trends in temperature-related
age-specific and sex-specific mortality from cardiovascular diseases in
Spain: a national time-series analysis, Lancet Planet. Health, 3,
e297–e306, 2019.
Alexander, P. and Mills, G.: Local climate classification and Dublin's
urban heat island, Atmosphere-Basel, 5, 755–774, 2014.
Aminipouri, M., Knudby, A. J., Krayenhoff, E. S., Zickfeld, K., and Middel,
A.: Modelling the impact of increased street tree cover on mean radiant
temperature across Vancouver's local climate zones, Urban For. Urban Gree., 39, 9–17, 2019.
Arnfield, A. J.: Two decades of urban climate research: a review of
turbulence, exchanges of energy and water, and the urban heat island, Int.
J. Climatol., 23, 1–26, 2003.
Baccini, M., Kosatsky, T., Analitis, A., Anderson, H. R., D'Ovidio, M.,
Menne, B., Michelozzi, P., and Biggeri, A.: Impact of heat on mortality in 15
European cities: attributable deaths under different weather scenarios, J.
Epidemiol. Commun. H., 65, 64–70, 2011.
Balchin, W. G. V. and Pye, N.: A micro-climatological investigation of bath
and the surrounding district, Q. J. Roy. Meteor. Soc., 73, 297–323, 1947.
Bao, J., Li, X., and Yu, C.: The construction and validation of the heat
vulnerability index, a review, Int. J. Env. Res. Pub. He., 12,
7220–7234, 2015.
Bechtel, B., Alexander, P. J., Böhner, J., Ching, J., Conrad, O.,
Feddema, J., Mills, G., See, L., and Stewart, I.: Mapping local climate zones
for a worldwide database of the form and function of cities, ISPRS Int.
Geo.-Inf., 4, 199–219, 2015.
Beck, C., Straub, A., Breitner, S., Cyrys, J., Philipp, A., Rathmann, J.,
Schneider, A., Wolf, K., and Jacobeit, J.: Air temperature characteristics of
local climate zones in the Augsburg urban area (Bavaria, southern Germany)
under varying synoptic conditions, Urban Clim., 25, 152–166, 2018.
Benzie, M., Burningham, K., and Hodgson, N.: Vulnerability to Heat Waves and Drought: Case Studies of Adaptation to Climate Change in South-West England, York, UK, The Joseph Rowntree Foundation, 2011.
Berrisford, P., Dee, D. P. K. F., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., and Uppala, S.: The ERA-interim archive. ERA report series, 1–16, available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (last access: 23 July 2020), 2009.
Brousse, O., Martilli, A., Foley, M., Mills, G., and Bechtel, B.: WUDAPT, an
efficient land use producing data tool for mesoscale models? Integration of
urban LCZ in WRF over Madrid, Urban Clim., 17, 116–134, 2016.
Chen, X. L., Zhao, H. M., Li, P. X., and Yin, Z. Y.: Remote sensing image-based
analysis of the relationship between urban heat island and land use/cover
changes, Remote Sens. Environ, 104, 133–146, 2006.
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C.,
Brousse, O., Martilli, A., Neophytou, M., Mouzoudires, P., Stewart, I.,
Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D.,
Shreevastava, A., Bhalachandran, S., Masson, V., Hidalgo, J., Fung, J., de
Fatima Andrad, M., Baklanov, A., Wei Dai, D., Milcinski, G., Demuzere, M.,
Brunsell, N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwes, N.:
World urban data base and access portal tools (WUDAPT), an urban weather,
climate and environmental modelling infrastructure for the Anthropocene,
B. Am. Meteorol. Soc., 99, 1907–1924, 2018.
Cortès, M., Llasat, M. C., Gilabert, J., Llasat-Botija, M., Turco, M.,
Marcos, R., Martin Vide, J. P., and Falcón L.: Towards a better
understanding of the evolution of the flood risk in Mediterranean urban
areas: the case of Barcelona, Nat. Hazards, 93, 39–60, 2018.
CREAF: Generalitat de Catalunya, Mapa de cobertes del sòl de Catalunya, available at: https://www.creaf.uab.es/mcsc/ (last access: 23 July 2020), 2009.
Cutter, S. L.: Vulnerability to environmental hazards, Prog. Hum.
Geogr., 20, 529–539, 1996.
Cutter, S. L., Mitchell, J. T., and Scott, M. S.: Revealing the vulnerability
of people and places: a case study of Georgetown County, South
Carolina, Ann. Am. Assoc. Geogr., 90, 713–737, 2000.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias,
A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J.,
Snoussi, M., Toreti, A., Tsimplis, M. N., and Xoplaki, E.: Climate change
and interconnected risks to sustainable development in the Mediterranean,
Nat. Clim. Change, 8, 972–980, https://doi.org/10.1038/s41558-018-0299-2, 2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Healy S. B., Hersbach,
H., Hólm, E. V., Isaksen, L., Kallberg, P., Kölher, M., Matricardi,
M., McNally, A. P., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay,
P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation
system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
DeJarnett, N. and Pittman, M.: Protecting the Health and Wellbeing of
Communities in a Changing Climate, Proceedings of a Workshop – in Brief,
The National Academies Press, Washington, DC, https://doi.org/10.17226/24797, 8, 2017.
De Ridder, K., Lauwaet, D., and Maiheu, B.: UrbClim–A fast urban boundary
layer climate model, Urban Clim., 12, 21–48, 2015.
Dickson, E., Baker, J. L., and Hoornweg, D.: Urban risk assessments:
understanding disaster and climate risk in cities, The World Bank
Publications, Washington DC, 2012.
Diffenbaugh, N. S., Pal, J. S., Giorgi, F., and Gao, X.: Heat stress
intensification in the Mediterranean climate change hotspot, Geophys.
Res. Lett., 34, L11706, https://doi.org/10.1029/2007GL030000, 2007.
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K.,
Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C.,
Filali Boubrahmi, N., Font, J., Grubisic, V., Gualdi, S., Homar, V.,
Ivancan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello,
P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E.,
Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage,
I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX, a 10-year
multidisciplinary program on the Mediterranean water cycle, B. Am. Meteor.
Soc., 95, 1063–1082, 2014.
Eum, J. H., Kim, K., Jung, E. H., and Rho, P.: Evaluation and Utilization of
Thermal Environment Associated with Policy: A Case Study of Daegu
Metropolitan City in South Korea, Sustainability, 10, 1179, https://doi.org/10.3390/su10041179, 2018.
European Environment Agency (EEA): Copernicus Programme, Urban Atlas LCLU, EU, available at; https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012 (last access: 23 July 2020), 2012.
García-Díez, M., Lauwaet, D., Hooyberghs, H., Ballester, J., De Ridder, K., and Rodó, X.: Advantages of using a fast urban boundary layer model as compared to a full mesoscale model to simulate the urban heat island of Barcelona, Geosci. Model Dev., 9, 4439–4450, https://doi.org/10.5194/gmd-9-4439-2016, 2016.
Geletič, J. and Lehnert, M.: GIS-based delineation of local climate zones: The case of medium-sized Central European cities, Morav. Geogr. Rep., 24, 2–12, 2016.
Geletič, J., Lehnert, M., and Dobrovolný, P.: Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities, Remote Sens., 8, 788, https://doi.org/10.3390/rs8100788, 2016.
Geletič, J., Lehnert, M., Savic, S., and Miloševic, D.: Modelled
spatiotemporal variability of outdoor thermal comfort in local climate zones
of the city of Brno, Czech Republic, Sci. Total Environ., 624,
385–395, 2018.
Generalitat de Catalunya and Institut d'Estadística de Catalunya:
Població De Catalunya Georeferenciada a 1 De Gener De 2014 Barcelona, available at: https://biblio.idescat.cat/publicacions/Record/21104 (last access: 23 July 2020), 2014.
Geological Survey (U.S.) and EROS Data Center: EarthExplorer, Reston, Va., U.S. Dept. of the Interior, U.S. Geological Survey, available at: https://earthexplorer.usgs.gov/ (last access: 23 July 2020), 1980.
Giannaros, T. M., Melas, D., Daglis, I. A., and Keramitsoglou, I.: Development of an operational modeling system for urban heat islands: an application to Athens, Greece, Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, 2014.
Gilabert, J. and Llasat, M. C.: Circulation Weather Types associated with
extreme flood events in Northwestern Mediterranean, Int. J. Climatol. 38,
1864–1876, 2017.
Gilabert, J., Tardà, A., Llasat, M. C., and Corbera, J.: Assessment of
Local Climate Zones over Metropolitan Area of Barcelona and added value of
Urban Atlas, Corine Land Cover and Copernicus Layers under INSPIRE
Specifications, INSPIRE Conference, 26 September 2016, Barcelona, 2016.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, 2013.
Hammerberg, K., Brousse, O., Martilli, A., and Mahdavi, A.: Implications of
employing detailed urban canopy parameters for mesoscale climate modelling:
a comparison between WUDAPT and GIS databases over Vienna, Austria, Int. J.
Climatol., 38, 1241–1257, 2018.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Cofree-Morlot, J.,
Herweijer, C., and Chateau, J.: A global ranking of port cities with high
exposure to climate extremes, Climatic Change, 104, 89–111, 2011.
Ingole, V., Marí-Dell'Olmo, M., Deluca, A., Quijal, M., Borrell, C.,
Rodríguez-Sanz, M., Achebak, H., Lauwet, D., Gilabert, J., Murage, P.,
Hajat, S., Basagaña, X., and Ballester, J.: Spatial Variability of
Heat-Related Mortality in Barcelona from 1992–2015: A Case Crossover Study
Design, Int. J. Env. Res. Pub. He., 17, 2553, https://doi.org/10.3390/ijerph17072553, 2020.
Inostroza, L., Palme, M., and de la Barrera, F.: A heat vulnerability index:
spatial patterns of exposure, sensitivity and adaptive capacity for Santiago
de Chile, Plos One, 11, e0162464, https://doi.org/10.1371/journal.pone.0162464, 2016.
Kotharkar, R. and Bagade, A.: Local Climate Zone classification for Indian
cities: A case study of Nagpur, Urban Clim., 24, 369–392, 2018.
Krstic, N., Yuchi, W., Ho, H. C., Walker, B. B., Knudby, A. J., and
Henderson, S. B.: The Heat Exposure Integrated Deprivation Index (HEIDI): A
data-driven approach to quantifying neighborhood risk during extreme hot
weather, Environ. Int., 109, 42–52, 2017.
Kwok, Y. T., Schoetter, R., Lau, K. K. L., Hidalgo, J., Ren, C., Pigeon, G.,
and Masson, V.: How well does the local climate zone scheme discern the
thermal environment of Toulouse (France)? An analysis using numerical
simulation data, Int. J. Climatol., 39, 5292–5315, 2019.
Lehoczky, A., Sobrino, J. A., Skoković, D., and Aguilar, E.: The Urban
Heat Island Effect in the City of Valencia: A Case Study for Hot Summer
Days, Urban Science, 1, 9, https://doi.org/10.3390/urbansci1010009, 2017.
Lelovics, E., Unger, J., and Gál, T.: Design of an urban monitoring
network based on Local Climate Zone mapping and temperature pattern
modelling, Clim. Res., 60, 51–62, 2014.
Li, D. and Bou-Zeid, E.: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts, J. Appl. Meteorol. Clim., 52, 2051–2064, https://doi.org/10.1175/JAMC-D-13-02.1, 2013.
Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., and Turner, B. L.:
Remote sensing of the surface urban heat island and land architecture in
Phoenix, Arizona: Combined effects of land composition and configuration and
cadastral- demographic- economic factors, Remote Sens. Environ., 174,
233–243, 2016.
Lionello, P., Abrantes, F., Gacic, M., Planton, S., Trigo, R., and Ulbrich,
U.: The climate of the Mediterranean region: research progress and climate
change impacts, Reg. Environ. Change, 14, 1679–1684., 2014.
Llasat, M. C., Llasat-Botija, M., and López, L.: A press database on natural risks and its application in the study of floods in Northeastern Spain, Nat. Hazards Earth Syst. Sci., 9, 2049–2061, https://doi.org/10.5194/nhess-9-2049-2009, 2009.
Lo, C. P., Quattrochi, D. A., and Luvall, J. C.: Application of
high-resolution thermal infrared remote sensing and GIS to assess the urban
heat island effect, Int. J. Remote Sens., 18, 287–304, 1997.
Lowe, R., Ballester, J., Creswick, J., Robine, J. M., Herrmann, F. R., and
Rodó, X.: Evaluating the performance of a climate-driven mortality model
during heat waves and cold spells in Europe, Int. J. Env. Res. Pub. He., 12, 1279–1294, 2015.
Martin-Vide, J. and Moreno-Garcia, M. C.: Probability values for the
intensity of Barcelona's urban heat island (Spain), Atmos. Res., 240, 104877, https://doi.org/10.1016/j.atmosres.2020.104877,
2020.
Masterton, J. M. and Richardson, F. A.: Humidex: a method of quantifying
human discomfort due to excessive heat and humidity, Environment Canada,
Atmospheric Environment, National government publication, 1979.
MedECC: Risks associated to climate and environmental changes in the
Mediterranean region. A preliminary assessment by the MedECC Network,
Science-policy interface – 2019, 36 pp., 2019.
Mirzaei, P. A. and Haghighat, F.: Approaches to study urban heat
island–abilities and limitations, Build. Environ., 45, 2192–2201, 2010.
Mitraka, Z., del Frate, F., Chrysoulakis, N., and Gastellu-Etchegorry, J.
P.: Exploiting earth observation data products for mapping local climate
zones, 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, 30 March–1 April, 15201755, https://doi.org/10.1109/JURSE.2015.7120456, 2015.
Nakamura, I. and Llasat, M. C.: Policy and systems of flood risk
management: a comparative study between Japan and Spain, Nat.
Hazards, 87, 919–943, 2017.
Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C.,
Pantea, C. I., Hsu, W. H., Muscatiello, N., and Hwang, S. A.: Development of
a heat vulnerability index for New York State, Public Health, 161, 127–137,
2018.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor.
Soc., 108, 1–24, 1982.
Oke, T. R.: Urban observations, World Meteorological Organization, IOM Report
No. 81, WMO/TD no. 1250, WMO, Geneva, 2004.
Institut Cartogràfic i Geològic de Catalunya: Ortofoto de Catalunya, available at: https://www.icgc.cat/es/Administracion-y-empresa/Servicios/Servicios-en-linea-Geoservicios/WMS-y-teselas-Cartografia-de-referencia/WMS-Mapas-y-ortofotos-vigentes (last access: 23 July 2020), 2015.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W.,
Christ, R., Church J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K.,
Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P.,
Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden,
M., Jiang, K., Jimenez Cisneroz, B., Kattsov, K., Lee, H., Mach, K. J.,
Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y.,
O'Brien, Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.
K., Pörtner, H. O., Power, S. B., Preston, B., Ravindranath, N. H.,
Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona,
Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van
Ypserle, J. P.: Climate change 2014: synthesis report. Contribution of
working groups I, II and III to the fifth assessment report of the
intergovernmental panel on climate change, edited by: Pachauri, R. and Meyer, L., IPCC, Geneva, Switzerland, ISBN: 978-9-2916-9143-2, 2014.
Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., Mehrotra, S., Dhakal, S.,
and Ali Ibrahim, S.: Climate change and cities. Second assessment report of
the urban climate change research network, Cambridge University
Press, New York, 2018.
Sheridan, S. C. and Dixon, P. G.: Spatiotemporal trends in human
vulnerability and adaptation to heat across the United States, Anthropocene,
20, 61–73, 2016.
Skarbit, N., Gal, T., and Unger, J.: Airborne surface temperature
differences of the different Local Climate Zones in the urban area of a
medium sized city, Joint Urban Remote Sensing Event (JURSE), Lausanne, 30 March–1 April, 15215553, https://doi.org/10.1109/JURSE.2015.7120497, 2015.
Skarbit, N., Stewart, I. D., Unger, J., and Gál, T.: Employing an urban
meteorological network to monitor air temperature conditions in the `local
climate zones' of Szeged, Hungary, Int. J. Climatol., 37, 582–596, 2017.
Smid, M., Russo, S., Costa, A. C., Granell, C., and Pebesma, E.: Ranking
European capitals by exposure to heat waves and cold waves, Urban Climate,
27, 388–402, 2019.
Sobrino, J. A. and Irakulis, I.: A Methodology for Comparing the Surface
Urban Heat Island in Selected Urban Agglomerations Around the World from
Sentinel-3 SLSTR Data, Remote Sens., 12, 2052, https://doi.org/10.3390/RS12122052, 2020.
Stewart, I. D.: A systematic review and scientific critique of methodology
in modern urban heat island literature, Int. J. Climatol., 31, 200–217,
2011.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900, 2012.
Stewart, I. D., Oke, T. R., and Krayenhoff, E. S.: Evaluation of the “local
climate zone” scheme using temperature observations and model
simulations, Int. J. Climatol., 34, 1062–1080, 2014.
Tromeur, E., Ménard, R., Bailly, J.-B., and Soulié, C.: Urban vulnerability and resilience within the context of climate change, Nat. Hazards Earth Syst. Sci., 12, 1811–1821, https://doi.org/10.5194/nhess-12-1811-2012, 2012.
UN: World population prospects: The 2015 revision, United
Nations Econ. Soc. Aff., 33, 1–66, 2015.
Unger, J., Skarbit, N., and Gál, T.: Evaluation of outdoor human thermal
sensation of local climate zones based on long-term database, Int.
J. Biometeorol., 62, 183–193, 2018.
UNISDR, UNOFDRR: Terminology on disaster risk reduction, Geneva,
Switzerland, 30 pp., 2009.
Verdonck, M. L., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J.,
Schneider, A., Dewulf, R., and Van Coillie, F.: The potential of local
climate zones maps as a heat stress assessment tool, supported by simulated
air temperature data, Landscape Urban Plan., 178, 183–197, 2018.
Vicedo-Cabrera, A. M., Iñíguez, C., Barona, C., and Ballester, F.:
Exposure to elevated temperatures and risk of preterm birth in Valencia,
Spain, Environ. Res., 134, 210–217, 2014.
Voogt, J. A. and Oke, T. R.: Thermal remote sensing of urban climates,
Remote Sens. Environ, 86, 370–384, 2003.
Wang, R., Ren, C., Xu, Y., Lau, K. K. L., and Shi, Y.: Mapping the local
climate zones of urban areas by GIS-based and WUDAPT methods: A case study
of Hong Kong, Urban Clim., 24, 567–576, 2017.
Weber, S., Sadoff, N., Zell, E., and de Sherbinin, A.: Policy-relevant
indicators for mapping the vulnerability of urban populations to extreme
heat events: A case study of Philadelphia, Appl. Geogr., 63, 231–243, 2015.
Wolf, T. and McGregor, G.: The development of a heat wave vulnerability
index for London, United Kingdom, Weather and Climate Extremes, 1, 59–68,
2013
Xu, Z., Sheffield, P. E., Hu, W., Su, H., Yu, W., Qi, X., and Tong, S.:
Climate change and children's health- A call for research on what works to
protect children, Int. J. Env. Res. Pub. He., 9, 3298–3316, 2012.
Short summary
Trends of extreme temperature episodes in cities are increasing due to regional climate change in interaction with urban effects. Urban morphologies and thermal properties of the materials used to build them are factors that influence climate variability and are one of the main reasons for the climatic singularity of cities. This paper presents a methodology to evaluate the urban and peri-urban effect on extreme-temperature exposure using land cover and land use maps.
Trends of extreme temperature episodes in cities are increasing due to regional climate change...
Altmetrics
Final-revised paper
Preprint