Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification
GAMA Team, Department of Applied Physics, University of Barcelona, Barcelona, Spain
Cartographic and Geological Institute of Catalonia (ICGC), Barcelona, Spain
URBAG research team, Sostenipra SGR 1412 ICTA-UAB, Barcelona, Spain
Anna Deluca
Climate and Health Program, Barcelona Institute for Global Health, Barcelona, Spain
Dirk Lauwaet
Flemish Institute for Technological Research (VITO), Mol, Belgium
Joan Ballester
Climate and Health Program, Barcelona Institute for Global Health, Barcelona, Spain
Jordi Corbera
Cartographic and Geological Institute of Catalonia (ICGC), Barcelona, Spain
Maria Carmen Llasat
GAMA Team, Department of Applied Physics, University of Barcelona, Barcelona, Spain
Related authors
No articles found.
Hendrik Wouters, Jente Broeckx, Francisco Pereira, Boucary Dara, Afoussatou Diarra, Robin Houdmeyers, and Dirk Lauwaet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2214, https://doi.org/10.5194/egusphere-2025-2214, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Predicting shifts in local extreme weather under global warming is key for climate adaptation, but climate projections lack detail. A new tool, EXSoDOS, combines ground measurements, reanalysis data, and climate models to improve estimates of extreme weather, aiding better risk planning. Tested in five regions, it accurately captures temperature, rainfall, and wind extremes including their past changes, outperforming raw model data. Results show worsening heat (stress) and precipitation by 2100.
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023, https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Short summary
Understanding how air pollution varies across space and time is of key importance for the safeguarding of human health. This work arose in the context of the project EARLY-ADAPT, for which the Barcelona Supercomputing Center developed an air pollution database covering all of Europe. Through different statistical methods, we compared two global pollution models against measurements from ground stations and found significant discrepancies between the observed and the modeled surface pollution.
Zhao-Yue Chen, Raul Méndez, Hervé Petetin, Aleksander Lacima, Carlos Pérez García-Pando, and Joan Ballester
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-104, https://doi.org/10.5194/essd-2023-104, 2023
Preprint withdrawn
Short summary
Short summary
Given in the limitations of existing AOD and its size fraction information, a new 18-year daily Aerosol Optical Depth (AOD) dataset over Europe has been developed based on quantile machine learning (QML) models. This dataset improves the ability to monitor and analyse fine-mode and coarse-mode aerosols. They provide better tools to investigate negatively affect human health and have impacts on climate, visibility, and biogeochemical cycling.
B. Beaumont, Y. Loozen, T. Castin, J. Radoux, C. Wyard, D. Lauwaet, F. Lefebre, T. Halford, M. Haid, P. Defourny, and E. Hallot
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2022, 243–250, https://doi.org/10.5194/isprs-annals-V-4-2022-243-2022, https://doi.org/10.5194/isprs-annals-V-4-2022-243-2022, 2022
Cited articles
Achebak, H., Devolder, D. and Ballester, J.: Heat-related mortality trends under recent climate warming in Spain: A 36-year observational study, PLoS Med., 15, e1002617, https://doi.org/10.1371/journal.pmed.1002617, 2018.
Achebak, H., Devolder, D., and Ballester, J.: Trends in temperature-related
age-specific and sex-specific mortality from cardiovascular diseases in
Spain: a national time-series analysis, Lancet Planet. Health, 3,
e297–e306, 2019.
Alexander, P. and Mills, G.: Local climate classification and Dublin's
urban heat island, Atmosphere-Basel, 5, 755–774, 2014.
Aminipouri, M., Knudby, A. J., Krayenhoff, E. S., Zickfeld, K., and Middel,
A.: Modelling the impact of increased street tree cover on mean radiant
temperature across Vancouver's local climate zones, Urban For. Urban Gree., 39, 9–17, 2019.
Arnfield, A. J.: Two decades of urban climate research: a review of
turbulence, exchanges of energy and water, and the urban heat island, Int.
J. Climatol., 23, 1–26, 2003.
Baccini, M., Kosatsky, T., Analitis, A., Anderson, H. R., D'Ovidio, M.,
Menne, B., Michelozzi, P., and Biggeri, A.: Impact of heat on mortality in 15
European cities: attributable deaths under different weather scenarios, J.
Epidemiol. Commun. H., 65, 64–70, 2011.
Balchin, W. G. V. and Pye, N.: A micro-climatological investigation of bath
and the surrounding district, Q. J. Roy. Meteor. Soc., 73, 297–323, 1947.
Bao, J., Li, X., and Yu, C.: The construction and validation of the heat
vulnerability index, a review, Int. J. Env. Res. Pub. He., 12,
7220–7234, 2015.
Bechtel, B., Alexander, P. J., Böhner, J., Ching, J., Conrad, O.,
Feddema, J., Mills, G., See, L., and Stewart, I.: Mapping local climate zones
for a worldwide database of the form and function of cities, ISPRS Int.
Geo.-Inf., 4, 199–219, 2015.
Beck, C., Straub, A., Breitner, S., Cyrys, J., Philipp, A., Rathmann, J.,
Schneider, A., Wolf, K., and Jacobeit, J.: Air temperature characteristics of
local climate zones in the Augsburg urban area (Bavaria, southern Germany)
under varying synoptic conditions, Urban Clim., 25, 152–166, 2018.
Benzie, M., Burningham, K., and Hodgson, N.: Vulnerability to Heat Waves and Drought: Case Studies of Adaptation to Climate Change in South-West England, York, UK, The Joseph Rowntree Foundation, 2011.
Berrisford, P., Dee, D. P. K. F., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., and Uppala, S.: The ERA-interim archive. ERA report series, 1–16, available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (last access: 23 July 2020), 2009.
Brousse, O., Martilli, A., Foley, M., Mills, G., and Bechtel, B.: WUDAPT, an
efficient land use producing data tool for mesoscale models? Integration of
urban LCZ in WRF over Madrid, Urban Clim., 17, 116–134, 2016.
Chen, X. L., Zhao, H. M., Li, P. X., and Yin, Z. Y.: Remote sensing image-based
analysis of the relationship between urban heat island and land use/cover
changes, Remote Sens. Environ, 104, 133–146, 2006.
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C.,
Brousse, O., Martilli, A., Neophytou, M., Mouzoudires, P., Stewart, I.,
Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D.,
Shreevastava, A., Bhalachandran, S., Masson, V., Hidalgo, J., Fung, J., de
Fatima Andrad, M., Baklanov, A., Wei Dai, D., Milcinski, G., Demuzere, M.,
Brunsell, N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwes, N.:
World urban data base and access portal tools (WUDAPT), an urban weather,
climate and environmental modelling infrastructure for the Anthropocene,
B. Am. Meteorol. Soc., 99, 1907–1924, 2018.
Cortès, M., Llasat, M. C., Gilabert, J., Llasat-Botija, M., Turco, M.,
Marcos, R., Martin Vide, J. P., and Falcón L.: Towards a better
understanding of the evolution of the flood risk in Mediterranean urban
areas: the case of Barcelona, Nat. Hazards, 93, 39–60, 2018.
CREAF: Generalitat de Catalunya, Mapa de cobertes del sòl de Catalunya, available at: https://www.creaf.uab.es/mcsc/ (last access: 23 July 2020), 2009.
Cutter, S. L.: Vulnerability to environmental hazards, Prog. Hum.
Geogr., 20, 529–539, 1996.
Cutter, S. L., Mitchell, J. T., and Scott, M. S.: Revealing the vulnerability
of people and places: a case study of Georgetown County, South
Carolina, Ann. Am. Assoc. Geogr., 90, 713–737, 2000.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias,
A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J.,
Snoussi, M., Toreti, A., Tsimplis, M. N., and Xoplaki, E.: Climate change
and interconnected risks to sustainable development in the Mediterranean,
Nat. Clim. Change, 8, 972–980, https://doi.org/10.1038/s41558-018-0299-2, 2018.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Healy S. B., Hersbach,
H., Hólm, E. V., Isaksen, L., Kallberg, P., Kölher, M., Matricardi,
M., McNally, A. P., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay,
P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation
system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
DeJarnett, N. and Pittman, M.: Protecting the Health and Wellbeing of
Communities in a Changing Climate, Proceedings of a Workshop – in Brief,
The National Academies Press, Washington, DC, https://doi.org/10.17226/24797, 8, 2017.
De Ridder, K., Lauwaet, D., and Maiheu, B.: UrbClim–A fast urban boundary
layer climate model, Urban Clim., 12, 21–48, 2015.
Dickson, E., Baker, J. L., and Hoornweg, D.: Urban risk assessments:
understanding disaster and climate risk in cities, The World Bank
Publications, Washington DC, 2012.
Diffenbaugh, N. S., Pal, J. S., Giorgi, F., and Gao, X.: Heat stress
intensification in the Mediterranean climate change hotspot, Geophys.
Res. Lett., 34, L11706, https://doi.org/10.1029/2007GL030000, 2007.
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K.,
Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C.,
Filali Boubrahmi, N., Font, J., Grubisic, V., Gualdi, S., Homar, V.,
Ivancan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello,
P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E.,
Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage,
I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX, a 10-year
multidisciplinary program on the Mediterranean water cycle, B. Am. Meteor.
Soc., 95, 1063–1082, 2014.
Eum, J. H., Kim, K., Jung, E. H., and Rho, P.: Evaluation and Utilization of
Thermal Environment Associated with Policy: A Case Study of Daegu
Metropolitan City in South Korea, Sustainability, 10, 1179, https://doi.org/10.3390/su10041179, 2018.
European Environment Agency (EEA): Copernicus Programme, Urban Atlas LCLU, EU, available at; https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012 (last access: 23 July 2020), 2012.
García-Díez, M., Lauwaet, D., Hooyberghs, H., Ballester, J., De Ridder, K., and Rodó, X.: Advantages of using a fast urban boundary layer model as compared to a full mesoscale model to simulate the urban heat island of Barcelona, Geosci. Model Dev., 9, 4439–4450, https://doi.org/10.5194/gmd-9-4439-2016, 2016.
Geletič, J. and Lehnert, M.: GIS-based delineation of local climate zones: The case of medium-sized Central European cities, Morav. Geogr. Rep., 24, 2–12, 2016.
Geletič, J., Lehnert, M., and Dobrovolný, P.: Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities, Remote Sens., 8, 788, https://doi.org/10.3390/rs8100788, 2016.
Geletič, J., Lehnert, M., Savic, S., and Miloševic, D.: Modelled
spatiotemporal variability of outdoor thermal comfort in local climate zones
of the city of Brno, Czech Republic, Sci. Total Environ., 624,
385–395, 2018.
Generalitat de Catalunya and Institut d'Estadística de Catalunya:
Població De Catalunya Georeferenciada a 1 De Gener De 2014 Barcelona, available at: https://biblio.idescat.cat/publicacions/Record/21104 (last access: 23 July 2020), 2014.
Geological Survey (U.S.) and EROS Data Center: EarthExplorer, Reston, Va., U.S. Dept. of the Interior, U.S. Geological Survey, available at: https://earthexplorer.usgs.gov/ (last access: 23 July 2020), 1980.
Giannaros, T. M., Melas, D., Daglis, I. A., and Keramitsoglou, I.: Development of an operational modeling system for urban heat islands: an application to Athens, Greece, Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, 2014.
Gilabert, J. and Llasat, M. C.: Circulation Weather Types associated with
extreme flood events in Northwestern Mediterranean, Int. J. Climatol. 38,
1864–1876, 2017.
Gilabert, J., Tardà, A., Llasat, M. C., and Corbera, J.: Assessment of
Local Climate Zones over Metropolitan Area of Barcelona and added value of
Urban Atlas, Corine Land Cover and Copernicus Layers under INSPIRE
Specifications, INSPIRE Conference, 26 September 2016, Barcelona, 2016.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Change, 3, 802–806, 2013.
Hammerberg, K., Brousse, O., Martilli, A., and Mahdavi, A.: Implications of
employing detailed urban canopy parameters for mesoscale climate modelling:
a comparison between WUDAPT and GIS databases over Vienna, Austria, Int. J.
Climatol., 38, 1241–1257, 2018.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Cofree-Morlot, J.,
Herweijer, C., and Chateau, J.: A global ranking of port cities with high
exposure to climate extremes, Climatic Change, 104, 89–111, 2011.
Ingole, V., Marí-Dell'Olmo, M., Deluca, A., Quijal, M., Borrell, C.,
Rodríguez-Sanz, M., Achebak, H., Lauwet, D., Gilabert, J., Murage, P.,
Hajat, S., Basagaña, X., and Ballester, J.: Spatial Variability of
Heat-Related Mortality in Barcelona from 1992–2015: A Case Crossover Study
Design, Int. J. Env. Res. Pub. He., 17, 2553, https://doi.org/10.3390/ijerph17072553, 2020.
Inostroza, L., Palme, M., and de la Barrera, F.: A heat vulnerability index:
spatial patterns of exposure, sensitivity and adaptive capacity for Santiago
de Chile, Plos One, 11, e0162464, https://doi.org/10.1371/journal.pone.0162464, 2016.
Kotharkar, R. and Bagade, A.: Local Climate Zone classification for Indian
cities: A case study of Nagpur, Urban Clim., 24, 369–392, 2018.
Krstic, N., Yuchi, W., Ho, H. C., Walker, B. B., Knudby, A. J., and
Henderson, S. B.: The Heat Exposure Integrated Deprivation Index (HEIDI): A
data-driven approach to quantifying neighborhood risk during extreme hot
weather, Environ. Int., 109, 42–52, 2017.
Kwok, Y. T., Schoetter, R., Lau, K. K. L., Hidalgo, J., Ren, C., Pigeon, G.,
and Masson, V.: How well does the local climate zone scheme discern the
thermal environment of Toulouse (France)? An analysis using numerical
simulation data, Int. J. Climatol., 39, 5292–5315, 2019.
Lehoczky, A., Sobrino, J. A., Skoković, D., and Aguilar, E.: The Urban
Heat Island Effect in the City of Valencia: A Case Study for Hot Summer
Days, Urban Science, 1, 9, https://doi.org/10.3390/urbansci1010009, 2017.
Lelovics, E., Unger, J., and Gál, T.: Design of an urban monitoring
network based on Local Climate Zone mapping and temperature pattern
modelling, Clim. Res., 60, 51–62, 2014.
Li, D. and Bou-Zeid, E.: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts, J. Appl. Meteorol. Clim., 52, 2051–2064, https://doi.org/10.1175/JAMC-D-13-02.1, 2013.
Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., and Turner, B. L.:
Remote sensing of the surface urban heat island and land architecture in
Phoenix, Arizona: Combined effects of land composition and configuration and
cadastral- demographic- economic factors, Remote Sens. Environ., 174,
233–243, 2016.
Lionello, P., Abrantes, F., Gacic, M., Planton, S., Trigo, R., and Ulbrich,
U.: The climate of the Mediterranean region: research progress and climate
change impacts, Reg. Environ. Change, 14, 1679–1684., 2014.
Llasat, M. C., Llasat-Botija, M., and López, L.: A press database on natural risks and its application in the study of floods in Northeastern Spain, Nat. Hazards Earth Syst. Sci., 9, 2049–2061, https://doi.org/10.5194/nhess-9-2049-2009, 2009.
Lo, C. P., Quattrochi, D. A., and Luvall, J. C.: Application of
high-resolution thermal infrared remote sensing and GIS to assess the urban
heat island effect, Int. J. Remote Sens., 18, 287–304, 1997.
Lowe, R., Ballester, J., Creswick, J., Robine, J. M., Herrmann, F. R., and
Rodó, X.: Evaluating the performance of a climate-driven mortality model
during heat waves and cold spells in Europe, Int. J. Env. Res. Pub. He., 12, 1279–1294, 2015.
Martin-Vide, J. and Moreno-Garcia, M. C.: Probability values for the
intensity of Barcelona's urban heat island (Spain), Atmos. Res., 240, 104877, https://doi.org/10.1016/j.atmosres.2020.104877,
2020.
Masterton, J. M. and Richardson, F. A.: Humidex: a method of quantifying
human discomfort due to excessive heat and humidity, Environment Canada,
Atmospheric Environment, National government publication, 1979.
MedECC: Risks associated to climate and environmental changes in the
Mediterranean region. A preliminary assessment by the MedECC Network,
Science-policy interface – 2019, 36 pp., 2019.
Mirzaei, P. A. and Haghighat, F.: Approaches to study urban heat
island–abilities and limitations, Build. Environ., 45, 2192–2201, 2010.
Mitraka, Z., del Frate, F., Chrysoulakis, N., and Gastellu-Etchegorry, J.
P.: Exploiting earth observation data products for mapping local climate
zones, 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, 30 March–1 April, 15201755, https://doi.org/10.1109/JURSE.2015.7120456, 2015.
Nakamura, I. and Llasat, M. C.: Policy and systems of flood risk
management: a comparative study between Japan and Spain, Nat.
Hazards, 87, 919–943, 2017.
Nayak, S. G., Shrestha, S., Kinney, P. L., Ross, Z., Sheridan, S. C.,
Pantea, C. I., Hsu, W. H., Muscatiello, N., and Hwang, S. A.: Development of
a heat vulnerability index for New York State, Public Health, 161, 127–137,
2018.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor.
Soc., 108, 1–24, 1982.
Oke, T. R.: Urban observations, World Meteorological Organization, IOM Report
No. 81, WMO/TD no. 1250, WMO, Geneva, 2004.
Institut Cartogràfic i Geològic de Catalunya: Ortofoto de Catalunya, available at: https://www.icgc.cat/es/Administracion-y-empresa/Servicios/Servicios-en-linea-Geoservicios/WMS-y-teselas-Cartografia-de-referencia/WMS-Mapas-y-ortofotos-vigentes (last access: 23 July 2020), 2015.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W.,
Christ, R., Church J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K.,
Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P.,
Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden,
M., Jiang, K., Jimenez Cisneroz, B., Kattsov, K., Lee, H., Mach, K. J.,
Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y.,
O'Brien, Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.
K., Pörtner, H. O., Power, S. B., Preston, B., Ravindranath, N. H.,
Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona,
Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van
Ypserle, J. P.: Climate change 2014: synthesis report. Contribution of
working groups I, II and III to the fifth assessment report of the
intergovernmental panel on climate change, edited by: Pachauri, R. and Meyer, L., IPCC, Geneva, Switzerland, ISBN: 978-9-2916-9143-2, 2014.
Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., Mehrotra, S., Dhakal, S.,
and Ali Ibrahim, S.: Climate change and cities. Second assessment report of
the urban climate change research network, Cambridge University
Press, New York, 2018.
Sheridan, S. C. and Dixon, P. G.: Spatiotemporal trends in human
vulnerability and adaptation to heat across the United States, Anthropocene,
20, 61–73, 2016.
Skarbit, N., Gal, T., and Unger, J.: Airborne surface temperature
differences of the different Local Climate Zones in the urban area of a
medium sized city, Joint Urban Remote Sensing Event (JURSE), Lausanne, 30 March–1 April, 15215553, https://doi.org/10.1109/JURSE.2015.7120497, 2015.
Skarbit, N., Stewart, I. D., Unger, J., and Gál, T.: Employing an urban
meteorological network to monitor air temperature conditions in the `local
climate zones' of Szeged, Hungary, Int. J. Climatol., 37, 582–596, 2017.
Smid, M., Russo, S., Costa, A. C., Granell, C., and Pebesma, E.: Ranking
European capitals by exposure to heat waves and cold waves, Urban Climate,
27, 388–402, 2019.
Sobrino, J. A. and Irakulis, I.: A Methodology for Comparing the Surface
Urban Heat Island in Selected Urban Agglomerations Around the World from
Sentinel-3 SLSTR Data, Remote Sens., 12, 2052, https://doi.org/10.3390/RS12122052, 2020.
Stewart, I. D.: A systematic review and scientific critique of methodology
in modern urban heat island literature, Int. J. Climatol., 31, 200–217,
2011.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900, 2012.
Stewart, I. D., Oke, T. R., and Krayenhoff, E. S.: Evaluation of the “local
climate zone” scheme using temperature observations and model
simulations, Int. J. Climatol., 34, 1062–1080, 2014.
Tromeur, E., Ménard, R., Bailly, J.-B., and Soulié, C.: Urban vulnerability and resilience within the context of climate change, Nat. Hazards Earth Syst. Sci., 12, 1811–1821, https://doi.org/10.5194/nhess-12-1811-2012, 2012.
UN: World population prospects: The 2015 revision, United
Nations Econ. Soc. Aff., 33, 1–66, 2015.
Unger, J., Skarbit, N., and Gál, T.: Evaluation of outdoor human thermal
sensation of local climate zones based on long-term database, Int.
J. Biometeorol., 62, 183–193, 2018.
UNISDR, UNOFDRR: Terminology on disaster risk reduction, Geneva,
Switzerland, 30 pp., 2009.
Verdonck, M. L., Demuzere, M., Hooyberghs, H., Beck, C., Cyrys, J.,
Schneider, A., Dewulf, R., and Van Coillie, F.: The potential of local
climate zones maps as a heat stress assessment tool, supported by simulated
air temperature data, Landscape Urban Plan., 178, 183–197, 2018.
Vicedo-Cabrera, A. M., Iñíguez, C., Barona, C., and Ballester, F.:
Exposure to elevated temperatures and risk of preterm birth in Valencia,
Spain, Environ. Res., 134, 210–217, 2014.
Voogt, J. A. and Oke, T. R.: Thermal remote sensing of urban climates,
Remote Sens. Environ, 86, 370–384, 2003.
Wang, R., Ren, C., Xu, Y., Lau, K. K. L., and Shi, Y.: Mapping the local
climate zones of urban areas by GIS-based and WUDAPT methods: A case study
of Hong Kong, Urban Clim., 24, 567–576, 2017.
Weber, S., Sadoff, N., Zell, E., and de Sherbinin, A.: Policy-relevant
indicators for mapping the vulnerability of urban populations to extreme
heat events: A case study of Philadelphia, Appl. Geogr., 63, 231–243, 2015.
Wolf, T. and McGregor, G.: The development of a heat wave vulnerability
index for London, United Kingdom, Weather and Climate Extremes, 1, 59–68,
2013
Xu, Z., Sheffield, P. E., Hu, W., Su, H., Yu, W., Qi, X., and Tong, S.:
Climate change and children's health- A call for research on what works to
protect children, Int. J. Env. Res. Pub. He., 9, 3298–3316, 2012.
Short summary
Trends of extreme temperature episodes in cities are increasing due to regional climate change in interaction with urban effects. Urban morphologies and thermal properties of the materials used to build them are factors that influence climate variability and are one of the main reasons for the climatic singularity of cities. This paper presents a methodology to evaluate the urban and peri-urban effect on extreme-temperature exposure using land cover and land use maps.
Trends of extreme temperature episodes in cities are increasing due to regional climate change...
Altmetrics
Final-revised paper
Preprint