Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3679-2021
https://doi.org/10.5194/nhess-21-3679-2021
Research article
 | 
03 Dec 2021
Research article |  | 03 Dec 2021

Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations

Elizaveta Felsche and Ralf Ludwig

Related authors

Drought impact on productivity: Data informed process-based field-scale modeling of a pre-Alpine grassland region
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864,https://doi.org/10.5194/egusphere-2024-2864, 2024
Short summary
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024,https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024,https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021,https://doi.org/10.5194/esd-12-401-2021, 2021
Ten-year return levels of sub-daily extreme precipitation over Europe
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021,https://doi.org/10.5194/essd-13-983-2021, 2021
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Reconstructing hail days in Switzerland with statistical models (1959–2022)
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 3869–3894, https://doi.org/10.5194/nhess-24-3869-2024,https://doi.org/10.5194/nhess-24-3869-2024, 2024
Short summary
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary

Cited articles

Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987. a
Belayneh, A., Adamowski, J., Khalil, B., and Quilty, J.: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction, Atmos. Res., 172–173, 37–47, https://doi.org/10.1016/j.atmosres.2015.12.017, 2016. a, b
Biesiada, J. and Duch, W.: Feature Selection for High-Dimensional Data – A Pearson Redundancy Based Filter, in: Computer Recognition Systems 2, edited by: Kurzynski, M., Puchala, E., Wozniak, M., and Zolnierek, A., Springer, Berlin, Heidelberg, 242–249, 2007. a
Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn., Springer, Berlin, Heidelberg, 2007. a
Bonaccorso, B., Cancelliere, A., and Rossi, G.: Probabilistic forecasting of drought class transitions in Sicily (Italy) using Standardized Precipitation Index and North Atlantic Oscillation Index, J. Hydrol., 526, 136–150, https://doi.org/10.1016/j.jhydrol.2015.01.070, 2015. a, b, c, d
Download
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Altmetrics
Final-revised paper
Preprint