Articles | Volume 21, issue 12
Research article
03 Dec 2021
Research article |  | 03 Dec 2021

Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations

Elizaveta Felsche and Ralf Ludwig

Related authors

Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428,,, 2024
Short summary
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 Large Ensemble
Florian Willkofer, Raul Roger Wood, and Ralf Ludwig
EGUsphere,,, 2023
Short summary
Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418,,, 2021
Ten-year return levels of sub-daily extreme precipitation over Europe
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003,,, 2021
Short summary
Comparing interannual variability in three regional single-model initial-condition large ensembles (SMILEs) over Europe
Fabian von Trentini, Emma E. Aalbers, Erich M. Fischer, and Ralf Ludwig
Earth Syst. Dynam., 11, 1013–1031,,, 2020
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457,,, 2024
Short summary
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436,,, 2024
Short summary
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355,,, 2024
Short summary
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285,,, 2024
Short summary
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098,,, 2024
Short summary

Cited articles

Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126,<1083:CSAPOL>2.0.CO;2, 1987. a
Belayneh, A., Adamowski, J., Khalil, B., and Quilty, J.: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction, Atmos. Res., 172–173, 37–47,, 2016. a, b
Biesiada, J. and Duch, W.: Feature Selection for High-Dimensional Data – A Pearson Redundancy Based Filter, in: Computer Recognition Systems 2, edited by: Kurzynski, M., Puchala, E., Wozniak, M., and Zolnierek, A., Springer, Berlin, Heidelberg, 242–249, 2007. a
Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn., Springer, Berlin, Heidelberg, 2007. a
Bonaccorso, B., Cancelliere, A., and Rossi, G.: Probabilistic forecasting of drought class transitions in Sicily (Italy) using Standardized Precipitation Index and North Atlantic Oscillation Index, J. Hydrol., 526, 136–150,, 2015. a, b, c, d
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Final-revised paper