Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3679-2021
https://doi.org/10.5194/nhess-21-3679-2021
Research article
 | 
03 Dec 2021
Research article |  | 03 Dec 2021

Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations

Elizaveta Felsche and Ralf Ludwig

Related authors

Climate change effects on river droughts in Bavaria using a hydrological large ensemble
Benjamin Poschlod, Laura Sailer, Alexander Sasse, Anastasia Vogelbacher, and Ralf Ludwig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2483,https://doi.org/10.5194/egusphere-2025-2483, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Drought impact on productivity: Data informed process-based field-scale modeling of a pre-Alpine grassland region
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864,https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024,https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024,https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021,https://doi.org/10.5194/esd-12-401-2021, 2021

Related subject area

Atmospheric, Meteorological and Climatological Hazards
The probabilistic skill of extended-range heat wave forecasts over Europe
Natalia Korhonen, Otto Hyvärinen, Virpi Kollanus, Timo Lanki, Juha Jokisalo, Risto Kosonen, David S. Richardson, and Kirsti Jylhä
Nat. Hazards Earth Syst. Sci., 25, 1865–1879, https://doi.org/10.5194/nhess-25-1865-2025,https://doi.org/10.5194/nhess-25-1865-2025, 2025
Short summary
An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands
Cees de Valk and Henk van den Brink
Nat. Hazards Earth Syst. Sci., 25, 1769–1788, https://doi.org/10.5194/nhess-25-1769-2025,https://doi.org/10.5194/nhess-25-1769-2025, 2025
Short summary
Insights into thunderstorm characteristics from geostationary lightning jump and dive observations
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025,https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
The unique features in the 4 d widespread extreme rainfall event over North China in July 2023
Jinfang Yin, Feng Li, Mingxin Li, Rudi Xia, Xinghua Bao, Jisong Sun, and Xudong Liang
Nat. Hazards Earth Syst. Sci., 25, 1719–1735, https://doi.org/10.5194/nhess-25-1719-2025,https://doi.org/10.5194/nhess-25-1719-2025, 2025
Short summary
Classifying extratropical cyclones and their impact on Finland's electricity grid: insights from 92 damaging windstorms
Ilona Láng-Ritter, Terhi Kristiina Laurila, Antti Mäkelä, Hilppa Gregow, and Victoria Anne Sinclair
Nat. Hazards Earth Syst. Sci., 25, 1697–1717, https://doi.org/10.5194/nhess-25-1697-2025,https://doi.org/10.5194/nhess-25-1697-2025, 2025
Short summary

Cited articles

Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987. a
Belayneh, A., Adamowski, J., Khalil, B., and Quilty, J.: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction, Atmos. Res., 172–173, 37–47, https://doi.org/10.1016/j.atmosres.2015.12.017, 2016. a, b
Biesiada, J. and Duch, W.: Feature Selection for High-Dimensional Data – A Pearson Redundancy Based Filter, in: Computer Recognition Systems 2, edited by: Kurzynski, M., Puchala, E., Wozniak, M., and Zolnierek, A., Springer, Berlin, Heidelberg, 242–249, 2007. a
Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn., Springer, Berlin, Heidelberg, 2007. a
Bonaccorso, B., Cancelliere, A., and Rossi, G.: Probabilistic forecasting of drought class transitions in Sicily (Italy) using Standardized Precipitation Index and North Atlantic Oscillation Index, J. Hydrol., 526, 136–150, https://doi.org/10.1016/j.jhydrol.2015.01.070, 2015. a, b, c, d
Download
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Share
Altmetrics
Final-revised paper
Preprint