Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3679-2021
https://doi.org/10.5194/nhess-21-3679-2021
Research article
 | 
03 Dec 2021
Research article |  | 03 Dec 2021

Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations

Elizaveta Felsche and Ralf Ludwig

Related authors

Drought impact on productivity: Data informed process-based field-scale modeling of a pre-Alpine grassland region
Carolin Boos, Sophie Reinermann, Raul Wood, Ralf Ludwig, Anne Schucknecht, David Kraus, and Ralf Kiese
EGUsphere, https://doi.org/10.5194/egusphere-2024-2864,https://doi.org/10.5194/egusphere-2024-2864, 2024
Preprint archived
Short summary
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024,https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024,https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Large ensemble climate model simulations: introduction, overview, and future prospects for utilising multiple types of large ensemble
Nicola Maher, Sebastian Milinski, and Ralf Ludwig
Earth Syst. Dynam., 12, 401–418, https://doi.org/10.5194/esd-12-401-2021,https://doi.org/10.5194/esd-12-401-2021, 2021
Ten-year return levels of sub-daily extreme precipitation over Europe
Benjamin Poschlod, Ralf Ludwig, and Jana Sillmann
Earth Syst. Sci. Data, 13, 983–1003, https://doi.org/10.5194/essd-13-983-2021,https://doi.org/10.5194/essd-13-983-2021, 2021
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Probabilistic hazard analysis of the gas emission of Mefite d'Ansanto, southern Italy
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 25, 657–674, https://doi.org/10.5194/nhess-25-657-2025,https://doi.org/10.5194/nhess-25-657-2025, 2025
Short summary
Are heavy-rainfall events a major trigger of associated natural hazards along the German rail network?
Sonja Szymczak, Frederick Bott, Vigile Marie Fabella, and Katharina Fricke
Nat. Hazards Earth Syst. Sci., 25, 683–707, https://doi.org/10.5194/nhess-25-683-2025,https://doi.org/10.5194/nhess-25-683-2025, 2025
Short summary
Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 25, 675–682, https://doi.org/10.5194/nhess-25-675-2025,https://doi.org/10.5194/nhess-25-675-2025, 2025
Short summary
The record-breaking precipitation event of December 2022 in Portugal
Tiago M. Ferreira, Ricardo M. Trigo, Tomás H. Gaspar, Joaquim G. Pinto, and Alexandre M. Ramos
Nat. Hazards Earth Syst. Sci., 25, 609–623, https://doi.org/10.5194/nhess-25-609-2025,https://doi.org/10.5194/nhess-25-609-2025, 2025
Short summary
Compound events in Germany in 2018: drivers and case studies
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025,https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary

Cited articles

Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987. a
Belayneh, A., Adamowski, J., Khalil, B., and Quilty, J.: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction, Atmos. Res., 172–173, 37–47, https://doi.org/10.1016/j.atmosres.2015.12.017, 2016. a, b
Biesiada, J. and Duch, W.: Feature Selection for High-Dimensional Data – A Pearson Redundancy Based Filter, in: Computer Recognition Systems 2, edited by: Kurzynski, M., Puchala, E., Wozniak, M., and Zolnierek, A., Springer, Berlin, Heidelberg, 242–249, 2007. a
Bishop, C. M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn., Springer, Berlin, Heidelberg, 2007. a
Bonaccorso, B., Cancelliere, A., and Rossi, G.: Probabilistic forecasting of drought class transitions in Sicily (Italy) using Standardized Precipitation Index and North Atlantic Oscillation Index, J. Hydrol., 526, 136–150, https://doi.org/10.1016/j.jhydrol.2015.01.070, 2015. a, b, c, d
Download
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and...
Share
Altmetrics
Final-revised paper
Preprint