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Abstract. There is a strong scientific and social interest in
understanding the factors leading to extreme events in or-
der to improve the management of risks associated with haz-
ards like droughts. In this study, artificial neural networks
are applied to predict the occurrence of a drought in two con-
trasting European domains, Munich and Lisbon, with a lead
time of 1 month. The approach takes into account a list of
28 atmospheric and soil variables as input parameters from
a single-model initial-condition large ensemble (CRCM5-
LE). The data were produced in the context of the ClimEx
project by Ouranos, with the Canadian Regional Climate
Model (CRCM5) driven by 50 members of the Canadian
Earth System Model (CanESM2). Drought occurrence is de-
fined using the standardized precipitation index. The best-
performing machine learning algorithms manage to obtain
a correct classification of drought or no drought for a lead
time of 1 month for around 55 %–57 % of the events of each
class for both domains. Explainable AI methods like SHap-
ley Additive exPlanations (SHAP) are applied to understand
the trained algorithms better. Variables like the North At-
lantic Oscillation index and air pressure 1 month before the
event prove essential for the prediction. The study shows that
seasonality strongly influences the performance of drought
prediction, especially for the Lisbon domain.

1 Introduction

Droughts remain to be one of the most dangerous hazards,
having a serious and large-scale impact on environment, so-
ciety and economy. Recent events like the summer 2018
drought in huge parts of central Europe led to severe forest

fires and crop failures. The damage was estimated to amount
to several hundred millions of euros solely in Germany (Fed-
eral Ministry of Food and Agriculture, 2018). Moreover the
effect of global warming leads to major changes in the earth’s
climate system, having a direct influence on the frequency
and severity of extreme events like droughts (Spinoni et al.,
2016). An increase in frequency of drought occurrence is a
major threat for current and future generations, and compre-
hensive knowledge on the phenomenon of drought is needed
in order to take action early and to prevent humanitarian
catastrophes. This goes in conjunction with drought predic-
tion. Precise drought prediction would enable the mitigation
of the dangers connected to drought occurrences such that
stakeholders, for example, would be able to store the maxi-
mal possible amount of water in the endangered regions. This
would help to mitigate the water shortage when the drought
arrives. Measures for demand reduction like that could be in-
troduced earlier and to a better-adjusted extent; this would
help to reduce the economic and societal damage.

To mitigate the effects of droughts the information on the
their onset is of crucial importance. This can be derived from
a drought index. A variety of drought indices exist, which are
typically defined according to statistical and physical mea-
sures. These mostly take into account atmospheric and soil
variables. Among the most popular ones are the standardized
precipitation index (SPI), standardized precipitation evapora-
tion index (SPEI), soil moisture percentile (SMP) and Palmer
drought severity index (PDSI). The standardized precipita-
tion index (SPI) is adopted as the standard meteorological
index by World Meteorological Organization (2012). It is a
measure of meteorological drought based on the probabil-
ity of occurrence of certain precipitation amounts in the area
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of interest (Sheffield and Wood, 2011). Studies on drought
prediction by Belayneh et al. (2016) and Bonaccorso et al.
(2015) use SPI as a prediction variable for the forecast.

Forecasting of any physical phenomenon can be done by
either a physical, conceptual or data-driven model. The lat-
ter ones are widely used due to their rapid development
times and the flexibility in input parameters. McGovern et al.
(2017) argue that AI methods have a high potential for pre-
diction of extremes due to the ability of machine learning
methods to learn from past data, to handle large numbers of
input variables, to integrate physical understanding into the
models and to discover additional knowledge from the data.

A review of seasonal drought prediction given by Hao
et al. (2018) identifies two typical predictor groups of vari-
ables: large-scale climate indices that reflect the atmosphere–
ocean circulation patterns and local climate variables. The
first ones are known to correlate with precipitation patterns in
special regions and therefore are naturally correlated with the
occurrence of drought. The teleconnection indices important
for European precipitation include North Atlantic Oscilla-
tion (NAO), Scandinavian Oscillation (SCA), East Atlantic–
Western Russia Oscillation (EAWR), East Atlantic Oscil-
lation (EA) and Atlantic Multidecadal Oscillation (AMO)
(Hao et al., 2018). As shown by Folland et al. (2009) a
positive NAO index in summer is associated with dry and
warm conditions in the northwest of Europe, whereas south-
ern Europe and the Mediterranean experience cooler and
wetter conditions. More information on the influence of the
NAO, SCA, EA and EAWR on the European climate can be
found in Folland et al. (2009), Bueh and Nakamura (2007),
Mikhailova and Yurovsky (2016), Lim (2015); Barnston and
Livezey (1987) and Sheffield et al. (2009). A positive phase
of AMO is associated with humid conditions over Great
Britain and parts of Scandinavia and with dry conditions in
the Mediterranean (Sheffield and Wood, 2011, p. 26); the
negative phase is associated with a reversed pattern: dry con-
ditions in Great Britain and wet conditions in the Mediter-
ranean. A study by Sheffield et al. (2009) showed a correla-
tion between the amount of droughts and AMO of 62 % with
a significance at the 90 % level. A recent study by Bonac-
corso et al. (2015) uses NAO for prediction of probability
of drought occurrence for Sicily. The local climate variables
like precipitation, temperature and soil moisture were also
used as inputs to reflect the conditions at the time the pre-
diction occurs. Belayneh et al. (2016) and Bonaccorso et al.
(2015) used SPI for the past months as input variable to the
algorithm. A study by Morid et al. (2007) used precipitation
as an input parameter.

This paper examines the possibilities of meteorological
drought prediction with the lead time of 1 month, apply-
ing artificial neural networks (ANNs) for two domains with
different climate: one with Mediterranean (Lisbon) and one
with continental climate (Munich) (Ceglar et al., 2019). Both
sites experienced an increase in drought frequency when
comparing 2015 and 1950 and are projected to keep rising

under RCP4.5 as well as RCP8.5. (Spinoni et al., 2017). Ob-
servational data offer only a limited field for drought inves-
tigation, as can be seen from the following approximation.
Systematical weather observations started in 1781 by the So-
cietas Meteorologica Palatina (Kington, 1980). In this study
SPI1<−1 is used as a threshold for drought occurrence. It
corresponds to the 15 % driest months (Keyantash and Na-
tional Center for Atmospheric Research Staff, 2018) and can
be estimated by a total number of 430 observed events until
the year 2020 (Eq. 1).

(2020− 1781)years · 12monthsyr−1
· 15%

= 430 events (1)

Compared to that, CRCM5-LE offers a total number of
roughly 4500 events when using the first 50 years from the
climate simulation data (1955–2005) (see Eq. 2).

50 years per member · 50 members · 12monthsyr−1
· 15%

= 4500 events (2)

This is a difference of an order of magnitude. The more data
are available the better the predictions that can be derived by
a drought-predicting machine learning model and the more
can be learned about drought formation. According to von
Trentini et al. (2020) precipitation in summer and winter de-
rived from the European gridded dataset (E-OBS) does fall
to a high percentage into the range produced by CRCM5-LE
for the historic period. Therefore, the CRCM5-LE proves ap-
plicable to this study, and its larger number of extreme events
can be used as input to the machine learning algorithms. In
this study a variety of ANNs are trained. The best-performing
models are investigated, using explainable AI methods to un-
derstand the results.

While no comparable study exists for the Munich domain,
Santos et al. (2014) performed a drought prediction based on
SPI6 for Portugal for the months April, May and June us-
ing the following input variables: sea surface temperatures
(JFM), NAO (DJFM) and cumulative precipitation (NDJFM
for SPI6April, DJFM for SPI6May, JFM for SPI6June). The
best results were achieved for the prediction of SPI6 for
April, with a correlation coefficient of 0.98. SPI6 for May
and June referred to a correlation coefficient of 0.78 and 0.77,
respectively.

2 Data and methods

2.1 Datasets

To investigate the predictability of drought data from the
single-model initial-condition large ensemble (SMILE) con-
sisting of 50 members, the Canadian Regional Climate
Model 5 Large Ensemble (CRCM5-LE) is used. The data
were produced within the scope of the ClimEx project
(Leduc et al., 2019, http://www.climex-project.org, last ac-
cess: 28 November 2021). The CRCM5-LE was generated
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Figure 1. CRCM5 topography.

by dynamical downscaling of the data provided by the 50-
member initial-condition Canadian Earth System Model 2
using the Canadian Regional Climate Model 5 (Martynov
et al., 2013). The data have a resolution of 0.11◦ (12 km) and
are produced for the years 1950–2099 for a European and an
eastern North America domain. For the years 1950–2005 the
historical greenhouse gas concentrations and aerosol emis-
sions are being used. Starting from 2005, the model intro-
duces the RCP8.5 (IPCC, 2013) forcing scenario. A total of
42 atmospheric variables are available at a temporal resolu-
tion of 1 to 3 h. They are used on a monthly basis as input
to the machine learning algorithms. The list of variables is
provided in Table 1.

In the study we use monthly sea level pressure (psl)
from the driving model CanESM2-LE (Kushner et al., 2018;
Kirchmeier-Young et al., 2016) for the calculation of North
Atlantic Oscillation (NAO), Scandinavian Oscillation (SCA),
East Atlantic Oscillation (EA) and East Atlantic–Western
Russia Oscillation (EAWR) over the whole Atlantic basin
(20–80◦ N, 90◦W–40◦ E). The Atlantic Multidecadal Oscil-
lation (AMO) is calculated using the sea surface tempera-
ture (SST) over 0–60◦ N, 0–80◦W from the CanESM2. Only
the period 1955–2005 is considered in order to stay within
the scope of historical climate. The CRCM5 domain is dis-
played in Fig. 1. For the machine learning training a grid
point situated at 48.11◦ N, 11.91◦ E is referenced as Munich,
and 38.67◦ N, 9.17◦W is referenced as Lisbon.

2.2 Input variables for drought prediction

In order to calculate NAO, SCA, EA and EAWR, the method
introduced by Hurrell et al. (2003) is used: a principal com-
ponent analysis (PCA) of the monthly psl is performed over
the 20–80◦ N, 90◦W–40◦ E domain. The leading eigenvec-
tors, scaled by the amount of variance they explain, rep-
resent the leading circulation patterns of the atmospheric
system. The first eigenvector corresponds to NAO, the sec-
ond one to SCA, the third one to EA and the fourth one to
EAWR. To calculate the teleconnection indices (NAO, SCA,
EA, EAWR) the eofs package described in Dawson (2016)
is used. It is an implementation of the technique of empiri-

Figure 2. First four leading eigenfunctions of the mean sea level
pressure in CanESM2. Percentage of variance the mode explains is
given at the top of the panels.

cal orthogonal functions (EOFs) (Dawson, 2016). The lead-
ing modes of the PCA corresponding to NAO, SCA, EA
and EAWR derived from the CanEsm2 dataset are shown in
Fig. 2.

AMO is calculated by spatial averaging over the 0–60◦ N,
0–80◦W area of the anomaly of sea surface temperature
(Trenberth, 2011). Additionally the 10-year running mean of
AMO is calculated as an input variable as it is widely used in
various studies and was shown to be correlated with precipi-
tation (Enfield et al., 2001).

Variable subset selection helps to limit the computational
time and to improve predictive accuracy (Kumar and Minz,
2014). In order to eliminate redundant variables, Pearson’s R
between all the CRCM5 variables for the chosen domains is
calculated. Pearson’s R (ρX,Y ) is a measure of linear corre-
lation between two variables X and Y ; ρX,Y equals 1 if the
correlation is totally positive, 0 if there is no linear correla-
tion and −1 if the correlation is total negative (Guyon and
Elisseeff, 2003). For two samples x and y, Pearson’s R is
defined in the following way:

ρx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)
2
√∑n

i=1(yi − ȳ)
2
. (3)

The bar refers to the average over the index i (Guyon and
Elisseeff, 2003). Pearson’s R is a popular and easy method
for feature selection of continuous variables as introduced in
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Table 1. The 42 monthly atmospheric and soil variables from CRCM5-LE. TOA refers to top of atmosphere.

clt Total cloud fraction % prw Water vapor path kgm−2

dds Near-surface dew point depression K ps Surface air pressure Pa
evspsbl Evaporation kgm−2 s−1 psl Sea level pressure Pa
evspsblland Water evaporation from land kgm−2 s−1 rlds Surface downwelling longwave radiation Wm−2

hfls Surface upward latent heat flux Wm−2 rlus Surface upwelling longwave radiation Wm−2

hfss Surface upward sensible heat flux Wm−2 rlut TOA Outgoing longwave radiation Wm−2

hurs Near-surface relative humidity % rsaa Shortwave radiation absorbed by atmosphere Wm−2

huss Near-surface specific humidity 1 rsds Surface downwelling shortwave radiation Wm−2

mrfso Soil frozen water content kgm−2 rsdt TOA incident shortwave radiation Wm−2

mrlso Soil liquid water content kgm−2 rsus Surface upwelling shortwave radiation Wm−2

mrro Total runoff kgm−2s− 1 rsut TOA outgoing shortwave radiation Wm−2

mrros Surface runoff kgm−2 s−1 sfcWindmax Daily maximum near-surface wind speed ms−1

mrso Total soil moisture content kgm−2 snc Snow area fraction %
mrsos Moisture in upper portion of soil column kgm−2 snd Snow depth m
prc Convective precipitation kgm−2 s−1 snw Surface snow amount kgm−2

prdc Deep convective precipitation kgm−2 s−1 tas Near-surface air temperature K
prfr Freezing rain kgm−2 s−1 tasmax Daily maximum near-surface temperature K
pr Precipitation kgm−2 s−1 tasmin Daily minimum near-surface temperature K
prlp Liquid precipitation kgm−2 s−1 ts Surface temperature K
prrp Refrozen rain kgm−2 s−1 uas Eastward near-surface wind ms−1

prsn Snowfall flux kgm−2 s−1 vas Northward near-surface wind ms−1

Table 2. List of sorted-out variables.

Kept variable Sorted-out variable Pearson’s R

hurs dds −0.9879
evspsbl evspsblland 0.9994
evspsbl hfls 0.9988
mrso mrlso 0.9991
rlut rlaa −0.9549
tas rlds 0.9550
tas rlus 0.9960
rnt rns 0.9954
rnt rsaa 0.9831
rnt rsdt 0.9970
rnt rss 0.9872
rnt rst 0.9926
tas tasmax 0.9932
tas tasmin 0.9864

Biesiada and Duch (2007); ρ is calculated for all possible
permutations of the 41 input variables. The ones correlating
to a high degree are examined, and a threshold of 0.95 is
chosen. In Table 2 a list of sorted-out variables and the corre-
sponding values of Pearson’sR is given. The high correlation
values can be explained by a physical relationship between
the variables: e.g., the total evaporation (evspsbl) is almost
the same as evaporation from land (evspsblland) as there are
no relevant water bodies in the chosen domains. Out of the
full list of 42 variables, 14 are sorted out as being redundant.

2.3 Standardized precipitation index

The standardized precipitation index (SPI) is a precipitation-
based index introduced by McKee et al. (1993). For the cal-
culation of SPI a continuous monthly precipitation dataset
is used. The index can be calculated on different timescales:
typically, it is 1, 3, 6, 12 or 24 months. As a first step the pre-
cipitation values are accumulated for the needed timescale.
The resulting dataset is fitted to a gamma distribution for
each month separately and then transformed to a normal dis-
tribution such that the mean SPI is zero. The SPI value for a
given precipitation is then the number of standard deviations
from normal. Because of the normalization, the SPI is espe-
cially useful to represent wetter and drier climates as well as
to account for differences among seasons. As the two study
sites are having different meteorological conditions, the SPI
provides a convenient and comparable measure (Zargar et al.,
2011). As noted in Yoon et al. (2012) the accumulation pe-
riod of the SPI value needs to be chosen equal to or less than
the prediction lead time as otherwise the precipitation values
needed for the mathematical calculation of the SPI would
be given as input to the machine learning algorithm. There-
fore the accumulation period of 1 month is chosen. SPI1 is
calculated for Lisbon and Munich each using the data from
1955–2005 from all members as reference.

2.4 Machine learning

This study investigates drought predictability applying the
technique of supervised machine learning for this purpose.
Machine learning is a promising tool for the analysis of com-
plex and data-rich phenomena as droughts (McGovern et al.,
2017). The Python package Keras, a high-level neural net-
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work package, is used for the design of the machine learn-
ing models (Chollet et al., 2015) as it allows the design of
neural networks in an easy way by adding layers. Three cru-
cial elements are needed to perform drought prediction by
supervised machine learning: input data; a target variable to
be predicted; and a computation pipeline, which includes the
machine learning algorithm.

The data from the years 1957–1999 are used as training
data; the years 2000–2005 are used for the testing purpose.
Each of the time periods is available 50 times as we are deal-
ing with an ensemble of 50 members. This results in 2150
model years for training and 250 years for testing. A small
fraction of the training data are used for the validation of the
machine learning algorithms. The target variable chosen for
the prediction of droughts is SPI1. Two classes for the predic-
tion are identified in the following way: SPI1<−1 is defined
as an event and is initialized with 1; SPI1>−1 is initialized
with 0 and corresponds to a non-drought event. The lead time
of 1 month is chosen for the prediction as it has been used in
previous studies by Yoon et al. (2012) and Deo et al. (2017).
Moreover shorter prediction lead times usually obtain better
results when compared to longer periods, as seen in Bonac-
corso et al. (2015). After the feature selection 28 variables
originating directly from the CRCM5-LE dataset are used as
input. In addition to those the teleconnection indices NAO,
SCA, EA, EAWR, AMO and AMO10 are used as input.

To predict, for example, a drought or non-drought in April
of 1980, the data for 12 months before the event are used as
input. This is NAO and other teleconnection and atmospheric
variables for the period April 1989–March 1980; for a pre-
diction of an event in May 1980, May 1989–April 1980 is
used as input. The 12 months before the event are chosen in
accordance with the study by Morid et al. (2007), who found
that the best-performing drought prediction model was the
one including the value up to 12 months before the predicted
one. We perform a time series prediction with no limitation
on special months or seasons to be inspected.

For this analysis we use a supervised machine learning al-
gorithm, an artificial neural network (ANN). ANNs are algo-
rithms whose design is inspired by the architecture of the hu-
man brain with its neurons (Russell and Norvig, 2009); they
both consists of connected nodes. A link between the node i
and the node j serves to propagate the activation ai from i

to j . To each connection a numeric weight wi,j is assigned.
The output of the node is computed by

ai = g(inj )= g

(
n∑
i=0

wi,jai

)
(4)

(Russell and Norvig, 2009, p. 728). The activation function
defines the output of the node. In order to have stable learners
with confident predictions a function with a soft threshold
is recommended (Russell and Norvig, 2009). In this study
the following three activation functions are used: sigmoid,
rectified linear unit (ReLU), exponential linear unit (ELU).

Sigmoid activation is especially useful for the output layer
(Russell and Norvig, 2009), while ReLU and ELU both have
the property of allowing very fast optimization (Maas, 2013).

The sigmoid function, also called the logistic function, is
defined in the following way:

Logistic(x)=
1

1+ e−x
(5)

(Russell and Norvig, 2009). This function has an output be-
tween 0 and 1. This can be interpreted as a probability of be-
longing to the class 1. One of the main disadvantages of the
sigmoid activation function is the vanishing gradient prob-
lem: at higher, almost saturated layers with values of 1 or
−1, the gradients become nearly 0, resulting in a slow opti-
mization convergence (Russell and Norvig, 2009, p. 726).

ReLU refers to rectified linear unit and shows better per-
formance when dealing with the vanishing gradient problem
(Maas, 2013). ReLU is defined in the following way:

f (x)=max(0,x). (6)

ELU refers to the exponential linear unit and was intro-
duced by Clevert et al. (2016). Clevert et al. (2016) claim
that in experiments the ELU activation led to faster learn-
ing and significantly better generalization performance than
ReLU and sigmoid activation. The function is defined as

f (x)=

{
x if x > 0

α(exp(x)− 1) if x ≤ 0;
(7)

α controls the value to which an ELU saturates for negative
inputs. Per default the value is set to 1 such that the function
saturates at −1.

Two kinds of layers are used in this study: dense and
dropout. Dense refers to a regular fully connected neural net-
work layer. Dropout refers to a layer which is randomly set-
ting a fraction of inputs to zero at each update. This technique
is used to prevent overfitting and therefore to improve the
performance of the algorithm (Chollet et al., 2015). The first
part of the study concentrates on the methodological search
for the best-performing algorithms. A pipeline to search for
the best-performing architecture, value for L2 regularization
and loss function is built up.

The model performance is evaluated using accuracy and
F1 score (Sasaki, 2007). The latter one is especially useful
when training on datasets with an imbalanced class distribu-
tion as it is in the case of our dataset. Accuracy is defined in
the following way:

Accuracy=
Number of right predictions

Total number of samples
. (8)

F1 score is a harmonic measure between precision and re-
call. Precision is the amount of true positives with respect to
the amount of positively classified data. Recall is the amount
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of true positives with respect to the total number of positives
in the data. The F1 score is defined in the following way:

F1 score= 2
Precision ·Recall

Precision+Recall
. (9)

Due to the class imbalance within the dataset we require
that the accuracy of each class is at least 50 %. In that case
given the distribution of the test dataset of 1803 non-drought
events to 387 droughts for Lisbon and 1848 non-drought
events to 352 drought events for Munich a marginal F1 score
of 0.26 for Lisbon and 0.24 for Munich is given.

The best-performing models are additionally evaluated us-
ing the Heidke skill score (HSS). The range of the HSS is
−∞ to 1. Values below zero indicate that the random fore-
cast (a forecast which randomly assigns the labels) has a bet-
ter performance than the trained model. HSS of 1 indicates a
perfect forecast. HSS is defined in the following way:

HSS= 2
ad − bc

(a+ c)(c+ d)+ (a+ b)(b+ d)
, (10)

where a is the number of true positives, b the number of false
positives, c number of false negatives and d number of true
negatives.

The second part of the study analyzes the best-performing
algorithms (one for the Lisbon domain, one for the Munich
domain) by applying explainable AI methods. SHAP (SHap-
ley Additive exPlanations) is a state-of-the-art method for in-
terpretation of machine learning models, which was inspired
by game theory (Lundberg and Lee, 2017). It estimates for
each input feature an average marginal contribution to the
prediction of the result and therefore allows a comparison
of the contributions among different features. In addition to
that the difference in predictability among the seasons is cal-
culated and compared to gain a better understanding on the
influence of seasonal weather patterns.

An overview of the proposed methodology can be found
in Fig. 3.

3 Results

This study consists of two parts: the first part deals with a
systematical search for the best-performing setup of the ANN
model for the two domains of interest: Munich and Lisbon.
A repeated training is conducted by varying the values of
parameters like the architecture of the hidden layers, L2 reg-
ularization and the loss function. In the second part of the
analysis the best-performing models for the two domains are
analyzed using explainable AI methods.

3.1 Model training results

For the design of the ANN it is crucial to perform fine-tuning
of the model parameters to find the optimal setup. An ar-
chitecture has to have enough layers and neurons to capture

the complexity of the dataset (Goodfellow et al., 2016). In
order to find the best architecture the learning curve of the
algorithm is inspected. The learning curve shows the loss of
the training and validation datasets on the weights during the
training (Goodfellow et al., 2016). Two examples are shown
in Fig. 4. The plot shown at the top refers to an architecture
which is not able to capture the complexity of the dataset: the
loss is hardly decreasing in the training or validation data.
The bottom figure refers to an architecture which overfits:
in the last epochs the loss of the validation dataset is rising,
while it decreases in the training dataset.

In this way a network is searched which captures the given
complexity of the dataset. This is reached with an algorithm
consisting of at least five layers. Additionally two dropout
layers, which set a specified number of nodes to zero in a
random way, are introduced in order to fight overfitting.

3.1.1 L2 regularization

L2 regularization is a broadly applied method to prevent
overfitting in the training data (Bishop, 2007). The main idea
behind regularization is to add a penalty term to the loss func-
tion, which will punish the classifier for complexity and force
some of the weights to zero (Russell and Norvig, 2009). In
case of L2 regularization the punishing term is proportional
to the L2 norm of the weight vector. The weight of the pun-
ishing term λ determines the relative importance of the regu-
larization.

The results of the training with different values of λ for
L2 regularization are shown in Table 3. Training results are
displayed in this particular case as the regularization is intro-
duced to prevent overfitting. Generally the performance for
the test dataset is more important and will be inspected in fol-
lowing experiments. If λ is set to zero the regularization term
vanishes. Especially in those cases the overfitting is high. For
Lisbon overall higher performance could be seen for λ val-
ues around 0.01, 0.001 or 0.0001. Models that are trained on
the Munich dataset perform better with the λ value of 0.001.
Since the performance of the model with regards to the F1
score has a higher importance for an imbalanced dataset than
the pure accuracy, the value of 0.001 is chosen for the fol-
lowing ANN model training.

3.1.2 Loss function

As a next step the influence of the different loss functions
on the model performance is investigated. Loss function is a
function to evaluate how well a specific algorithm manages
to fit the training data (Janocha and Czarnecki, 2016). It is an
important part of the optimization function which has a direct
influence on the updating of the weights of the ANN (Rus-
sell and Norvig, 2009). In addition to overall accuracy and F1
metric, the accuracies of the non-drought and drought classes
in the test dataset are displayed. The results are shown in Ta-
ble 4. Binary cross-entropy, mean absolute error and hinge
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Figure 3. Overview of the proposed methodology.

Table 3. Results of ANN training for different values for λ for L2 regularization. λ of 0.001 (bold) is chosen for both domains for subsequent
training since the performance of the model with regards to the F1 score has a higher importance for an imbalanced dataset than the pure
accuracy.

λ Lisbon Munich

Train Test Train Test

Acc F1 Acc F1 Acc F1 Acc F1

0 0.961 0.861 0.733 0.206 0.959 0.865 0.787 0.176
0.1 0.495 0.233 0.373 0.294 0.506 0.241 0.536 0.215
0.01 0.517 0.245 0.460 0.269 0.519 0.268 0.431 0.275
0.001 0.572 0.261 0.540 0.288 0.490 0.288 0.563 0.266
0.0001 0.765 0.472 0.627 0.259 0.823 0.557 0.719 0.189

loss functions show the best performance for the Munich
domain. In contrast to that, for the Lisbon domain only the
mean absolute error loss function has an accuracy of higher
than 0.5. Also in the case of the Munich domain mean ab-
solute error shows a higher performance with regards to the
F1 score. Therefore mean absolute error is used for further
analysis.

3.1.3 Model architecture

Lastly the models are trained on both domains using differ-
ent architectures. Table 5 displays the model training results
for the test dataset. The column “architecture” refers to the
number of neurons in each dense (De) layer separated by the
*-sign. For dropout (Dr) layers the fraction of weights which
are randomly set to zero is given. The model architecture
consists overall of seven layers. For example the architecture
for the model in the first line of Table 5 is the following:

1. dense layer with 4000 neurons

2. dropout layer randomly setting 50 % of weights to zero

3. dense layer with 1000 neurons

4. dropout layer randomly setting 50 % of weights to zero

5. dense layer with 500 neurons

6. dense layer with 100 neurons

7. dense layer with 5 neurons.

We require the accuracy of both classes individually to
be higher than 0.5 and search for an F1 score as high as
possible. In the case of the Lisbon domain, three trained
models satisfy the criterion of at least 50 % accuracy of
each class: the model in the first, in the fourth and in
the last row. The best performance in terms of F1 score
is obtained for the last model with the following architec-
ture: 5000*0.5*4000*0.5*1000*500*100. For the Munich
domain only the first and the fourth models satisfy the cri-
terion of at least 50 % accuracy for each class. For further
analyses the first model is chosen as it shows the highest F1
score. The following model architecture is used for the Mu-
nich domain: 4000*0.5*1000*0.5*500*100*5. For the best-
performing models HSS equals 0.06 for Lisbon and 0.04 for
Munich. These results confirm that the obtained prediction is
better than the one obtained by a random forecast and there-
fore does show a weak prediction skill. In the next step those
models are analyzed using explainable AI methods.
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Table 4. Performance of the model for different loss functions for the test dataset. Acc nd refers to the accuracy on the non-drought class
and Acc d to the accuracy of the drought class. Mean absolute error (bold) is chosen for subsequent analysis since for Munich and Lisbon it
shows an accuracy of at least 0.5 for both classes and a higher performance with regards to the F1 score.

Loss function Lisbon Munich

Acc nd Acc d Acc F1 Acc nd Acc d Acc F1

Mean absolute error 0.511 0.516 0.540 0.288 0.500 0.582 0.512 0.276
Mean squared error 0.440 0.655 0.479 0.312 0.562 0.509 0.553 0.267
Binary cross-entropy 0.436 0.610 0.467 0.292 0.589 0.440 0.565 0.245
Hinge 0.229 0.753 0.323 0.287 0.568 0.486 0.555 0.259
Squared hinge 0.486 0.501 0.489 0.261 1.000 0.000 0.840 0.000

Figure 4. Learning curve for two chosen fitting examples: algorithm
complexity insufficient (a) and overfitting (b).

3.2 Explainable AI methods for the analysis of the
best-performing algorithms

3.2.1 Shapely values

For the Munich and Lisbon domain Shapely values are cal-
culated using the results of the best-performing models for
the test dataset. For the calculation each of the 12 months
used as input to the predicting algorithm for each variable
is considered individually, resulting in 28 atmospheric vari-
ables×12+ 6 teleconnection indices×12= 408 variables.
The number behind the variable name refers to the number of
months before the event (NAO1–NAO value 1 month before
the predicted event). The results are shown in Fig. 5. Since
the calculation of Shapely values is computationally expen-

Figure 5. Mean Shapely values normalized to the contribution to
the prediction for the top 15 variables, with the highest importance
for Lisbon (a) and Munich (b) in the test dataset. The number be-
hind the variable name refers to the number of months before the
event (NAO1–NAO value 1 month before the predicted event). The
results indicate that for the Lisbon domain psl1 and ps1 are the most
influential drought predictors; for Munich this is NAO1.

sive, they are calculated five times on a subset of 500 data
points. The error bars displayed in black on the plot indicate
that the uncertainties are smaller than the nominal values of
the variable contributions. The nominal Shapely values are
normed and recalculated to a percentage of contribution to
the prediction; e.g., the NAO1 value explains roughly 2.3 %
of the prediction for the Lisbon domain.

We see that for both domains the contribution to the pre-
diction is broadly distributed among the many input vari-
ables. Between Lisbon and Munich, Shapely values show a
distinct difference in the nominal values of the feature con-
tributions: values for Lisbon are about 6 times higher than
those for Munich (e.g., the contribution of NAO1 for Munich
is around 0.3 % and for Lisbon around 1.9 %).

For the Lisbon domain, the variables with a higher-impact
are sea level pressure (psl), surface pressure (ps) and NAO 1
month before the event. The first two variables are strongly
autocorrelated for the Lisbon domain due to its location at
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Table 5. Performance of models for the Lisbon and Munich domains for different variations in architecture on the test dataset. Acc nd refers
to the accuracy of the non-drought class and Acc d to the accuracy of the drought class. The sixth model architecture is chosen for subsequent
analysis for Lisbon and first for Munich (bold) due to an accuracy of at least 0.5 of both classes and a higher performance with regards to the
F1 score.

Neurons Architecture Lisbon Munich

Acc nd Acc d Acc F1 Acc nd Acc d Acc F1

De*Dr*De*Dr*De*De*De 4000*0.5*1000*0.5*500*100*5 0.511 0.516 0.540 0.288 0.562 0.509 0.553 0.267
De*Dr*De*Dr*De*De*De 5000*0.5*1000*0.5*500*100*5 0.581 0.496 0.566 0.292 0.378 0.693 0.428 0.279
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*500*100*5 0.457 0.602 0.483 0.296 0.725 0.338 0.663 0.243
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*1000*100*5 0.570 0.501 0.558 0.290 0.527 0.514 0.525 0.257
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*1000*500*5 0.402 0.635 0.444 0.292 0.683 0.409 0.640 0.266
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*1000*500*100 0.575 0.526 0.566 0.305 0.420 0.619 0.452 0.266

the sea. The strong influence of ps and psl and NAO shows
the influence of the atmospheric pressure system on drought
formation in Lisbon. It is also striking that the influence of
the local pressure seems to be higher than the influence of
NAO. The next two variables for the Lisbon domain with
the strongest contribution to the prediction are northward
near-surface wind (vas) and evaporation (evspsbl). The lat-
ter variable has a very direct influence on the formation of
drought given that if evaporation is getting lower, the prob-
ability of formation of rain clouds also decreases (Sheffield
and Wood, 2011). The contribution of vas to drought forma-
tion in Lisbon needs to be further studied. For the Munich do-
main the highest influence is found for NAO1, psl1, EAWR5
and ps1. The results indicate that NAO is the most influential
drought predictor for Munich. Additionally the contribution
of EAWR5 and SCA5 on the Munich domain cannot be ne-
glected as they are found within the top five predictors. A
further investigation of this relationship is of interest for the
understanding of drought formation in Munich.

3.2.2 Seasonality

In order to evaluate the influence of seasonality on the pre-
diction the performance of the model is calculated sepa-
rately for the four seasons. Since the distribution between
the drought and non-drought classes is different among the
seasons (e.g., range of 17% to 19% of drought events for
the Lisbon domain) a rescaling of the number of drought
and non-drought events is performed to ensure comparabil-
ity among the results. To compare the performance a preci-
sion recall plot is used (Saito and Rehmsmeier, 2015). Re-
call and precision are calculated for each of the four seasons
(MAM, JJA, SON, DJF) and for the 2 half-years (MAMJJA
and SONDJF) using the estimated scaling factors. Results of
the calculation are shown in Fig. 6. The dotted line marks
the line under which the classifier shows no skill. The line
is defined as a proportion of drought events against overall
number of events (Saito and Rehmsmeier, 2015). For the Lis-
bon domain it becomes evident that the model performance
is very different across seasons: higher precision of around
0.23 can be found during the winter half-year. However for

Figure 6. The effect of seasonality on precision and recall for Lis-
bon (blue) and Munich (green). The results indicate that for the Mu-
nich and Lisbon domain better drought predictability is possible in
spring, fall and summer.

the spring season and summer half-year the recall rises, while
precision goes down. For the Munich classifier the results for
the different seasons are closer together in terms of recall.
It shows a worse performance for the winter months (DJF),
while fall, spring and summer show an overall better model
performance. This is an indication that for the Munich do-
main, better drought predictability is possible in spring, fall
and summer.

An additional analysis is conducted to calculate the
Shapely values separately for the four season and the two
domains in order to understand the influence of the different
variables on the prediction. The results of the analysis can be
seen in Figs. 7 and 8. The results for the Lisbon domain show
that NAO1 is the strongest predictor in winter and spring,
while the contribution of pressure to drought predictability is
higher in fall, followed by NAO1. In contrast, for the summer
season NAO1 is not among the top 10 predictors but rather
other teleconnection indices like EAWR5, NAO7 and SCA7.
Those teleconnection indices originate from winter months,
when NAO was shown to have the highest impact on the pre-
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Figure 7. Shapely values for Lisbon calculated separately for the four seasons and sorted by the maximum contribution in DJF (a), MAM
(b), JJA (c) and SON (d) for the test dataset; evspsbl abbreviated as evp.

Figure 8. Shapely values for Munich calculated separately for the four seasons and sorted by the maximum contribution in DJF (a), MAM
(b), JJA (c) and SON (d) for the test dataset; sfcWindmax abbreviated as sfcWm.

diction. However, given the low performance of the model
in the summer season, further investigation is needed. For
the Munich domain NAO1 has one of the highest contribu-
tions for spring, summer and fall, while it cannot be found
among the strongest predictors for winter. EAWR5 is one
of the strongest predictors for summer, spring and fall. The

feature contributions for predictions in the winter season in
Munich indicate that atmospheric variables 10 or 12 months
before the event might be drought indicators.
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4 Discussion and conclusion

Drought is a multiscale phenomenon, and its formation
and evolution are different for every climatology and sea-
son. In this study, we (i) explored the possibilities of us-
ing the data provided by CRCM5-LE to predict droughts
using ANNs and (ii) applied explainable AI methods to
gain a better understanding of the results. A drought event
is defined as an SPI1 less than −1 at the given site. The
first half of the study deals with the systematic search for
the best-performing models. For the Lisbon domain the
best results are obtained by the model with L2 regulariza-
tion of 0.001; mean absolute error as a loss function; and
the architecture 5000*0.5*4000*0.5*1000*500*100, where
five layers are fully connected, and two layers are dropout
layers. For the Munich domain, the best results are ob-
tained by the model with L2 regularization of 0.001; mean
absolute error as a loss function; and the architecture
4000*0.5*1000*0.5*500*100*5, where five layers are fully
connected, and two layers are dropout layers. The best-
performing models obtain accuracies of 57 % for the Lisbon
domain and 55 % for the Munich domain.

The precision of the prediction in both cases is rather mod-
erate as a high percentage of data are misclassified. For Lis-
bon, classifier precision remains at around 22 %. This means
that one out of four predicted drought events is an actual
drought. For the Munich case, this ratio is even lower and
amounts to 18 %. However, the models provide an impor-
tant basis for the development of future drought-predicting
models and offer a fruitful ground for the investigation of in-
fluence of single input variables during different seasons on
drought formation.

Compared to the study by Santos et al. (2014), who in-
vestigated drought predictability in Portugal, the weak pre-
diction accuracies of our study are not surprising. In Santos
et al. (2014), SPI6 for April, May and June is predicted; how-
ever precipitation amounts for the months until March were
also given as input. As SPI6 is calculated using the sum of
6 months precipitation, the model receives over half of the
information it needs for the calculation of the value. As no
similar studies exist for the Munich domain, no comparison
can be performed.

The second half of the study concentrates on the analy-
sis of the obtained algorithms using explainable AI methods.
Among the strongest predictors for the domains are NAO, psl
and ps 1 month before the event. This underlines the impor-
tance of the atmospheric system on the drought formation.
For the model trained for the Lisbon domain, the variables of
northward near-surface wind (vas) and evaporation (evspsbl)
followed. For the Munich domain, EAWR and SCA 5 months
before the event are found among the strongest predictors. In
general the percentages of the contribution of the strongest
predictors for the Munich domain are around 6 times lower
than those for the Lisbon domain.

This study indicates that seasonality is a crucial factor for
drought predictions. Precision and recall of the prediction are
lower in summer for the Lisbon domain and in winter for the
Munich domain. Moreover, while for the Munich domain the
spread of precision and recall across the seasons is rather low,
huge differences are found for the Lisbon domain: the trained
model obtained higher recall and lower precision for spring
and higher precision and lower recall for fall when com-
paring to the baseline of all data. The results show that for
the Lisbon domain, NAO1 is the strongest predictor in win-
ter and spring, while the contribution of pressure to drought
predictability is higher in fall, followed by the contribution
of NAO1. For the Munich domain, NAO1 is found to have
one of the highest contributions for spring, summer and fall,
while it could not be found among the 10 strongest predictors
for winter.

Further investigations are of interest for scientific research
on both objectives. In terms of drought prediction, further re-
search is possible within the same setting. The field of AI
is evolving rapidly, showing new algorithms, methods and
frameworks, such that there is a high potential for finding
better-suited algorithms (Hao, 2019). One of the main limita-
tions of this study remains that an application of the obtained
framework on observation data is not possible due to the fact
that observational data lack a multitude of variables which
are used as input in this study, e.g., heat fluxes and radiation.
However the results obtained by Shapely value calculation
are of high importance for the choice of variables for the
development of a future model which potentially could be
applied to observational data. Given the high Shapely impor-
tance of NAO for drought prediction, other large-scale vari-
ables, such as atmospheric blocking, can be added to the in-
put variables. Moreover, the application to new domains is
of interest to investigate the regionality of drought prediction
possibilities. Explainable AI methods offer an important ap-
proach to improve the current limitations of machine learning
models; their application is of high importance in the field of
physical geography since it enables a physical interpretation
of statistical results to be provided.

Data availability. Ensemble model data used in this study
may be retrieved from the following sources: CanESM2-
LE data are available via https://open.canada.ca/data/en/dataset/
aa7b6823-fd1e-49ff-a6fb-68076a4a477c (Environment and Cli-
mate Change Canada, 2020). CRCM5-LE data can be retrieved at
https://climex-data.srv.lrz.de/Public/ (ClimEx project, 2020).
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