Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3563-2021
https://doi.org/10.5194/nhess-21-3563-2021
Research article
 | 
22 Nov 2021
Research article |  | 22 Nov 2021

Modeling of a compound flood induced by the levee breach at Qianbujing Creek, Shanghai, during Typhoon Fitow

Yuhan Yang, Jie Yin, Weiguo Zhang, Yan Zhang, Yi Lu, Yufan Liu, Aoyue Xiao, Yunxiao Wang, and Wenming Song

Related authors

Flood relief logistics planning for coastal cities: a case study in Shanghai, China
Pujun Liang, Jie Yin, Dandan Wang, Yi Lu, Yuhan Yang, Dan Gao, and Jianfeng Mai
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-88,https://doi.org/10.5194/nhess-2024-88, 2024
Revised manuscript under review for NHESS
Short summary
Multi-coverage optimal location model for emergency medical service (EMS) facilities under various disaster scenarios: a case study of urban fluvial floods in the Minhang district of Shanghai, China
Yuhan Yang, Jie Yin, Mingwu Ye, Dunxian She, and Jia Yu
Nat. Hazards Earth Syst. Sci., 20, 181–195, https://doi.org/10.5194/nhess-20-181-2020,https://doi.org/10.5194/nhess-20-181-2020, 2020
Short summary

Related subject area

Hydrological Hazards
The effect of wildfires on flood risk: a multi-hazard flood risk approach for the Ebro River basin, Spain
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
Nat. Hazards Earth Syst. Sci., 24, 3703–3721, https://doi.org/10.5194/nhess-24-3703-2024,https://doi.org/10.5194/nhess-24-3703-2024, 2024
Short summary
Modelling hazards impacting the flow regime in the Hranice Karst due to the proposed Skalička Dam
Miroslav Spano and Jaromir Riha
Nat. Hazards Earth Syst. Sci., 24, 3683–3701, https://doi.org/10.5194/nhess-24-3683-2024,https://doi.org/10.5194/nhess-24-3683-2024, 2024
Short summary
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 3663–3682, https://doi.org/10.5194/nhess-24-3663-2024,https://doi.org/10.5194/nhess-24-3663-2024, 2024
Short summary
Risk of compound flooding substantially increases in the future Mekong River delta
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
Nat. Hazards Earth Syst. Sci., 24, 3627–3649, https://doi.org/10.5194/nhess-24-3627-2024,https://doi.org/10.5194/nhess-24-3627-2024, 2024
Short summary
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024,https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary

Cited articles

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling, J. Hydrol., 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010. 
Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. 
Calder, I. R., Harding, R. J., and Rosier, P. T. W.: An objective assessment of soil-moisture deficit models, J. Hydrol., 60, 329–355, https://doi.org/10.1016/0022-1694(83)90030-6, 1983. 
Cannata, M. and Marzocchi, R.: Two-dimensional dam break flooding simulation: a GIS-embedded approach, Nat. Hazards., 61, 1143–1159, https://doi.org/10.1007/s11069-011-9974-6, 2011. 
Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and Ward, P. J.: Measuring compound flood potential from river discharge and storm surge extremes at the global scale, Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, 2020. 
Download
Short summary
This is the first time the compound flooding process of heavy rain and levee-breach-induced flooding has been modeled. Real-life cases of historical flooding events have been adequately investigated. Our results provide a comprehensive view of the spatial patterns of the flood evolution, the dynamic process, and mechanism of these cases, which can help decision makers to develop effective emergency response plans and flood adaptation strategies.
Altmetrics
Final-revised paper
Preprint