Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stochastic system dynamics modelling for climate change water scarcity assessment of a reservoir in the Italian Alps
Institute for Earth Observation, Eurac Research, Viale Druso 1, 39100, Bolzano, Italy
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
Institute for Environment and Human Security (UNU-EHS), United Nations University, Platz der Vereinten Nationen 1, 53113 Bonn, Germany
Janez Sušnik
Land & Water Management, IHE Delft Institute for Water Education, 2601DA, Delft, the Netherlands
Stefan Schneiderbauer
Institute for Earth Observation, Eurac Research, Viale Druso 1, 39100, Bolzano, Italy
Institute for Environment and Human Security (UNU-EHS), United Nations University, Platz der Vereinten Nationen 1, 53113 Bonn, Germany
Department of Geography, University of the Free State, Bloemfontein, South Africa
Silvia Torresan
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100, Lecce, Italy
Andrea Critto
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100, Lecce, Italy
Related authors
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Jess Delves, Kathrin Renner, Piero Campalani, Jesica Piñón, Stefan Schneiderbauer, Stefan Steger, Mateo Moreno, Maria Belen Benito Oterino, Eduardo Perez, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2024-3445, https://doi.org/10.5194/egusphere-2024-3445, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This scientific paper presents a multi-hazard risk assessment for Burundi, focusing on flooding, torrential rains, landslides, earthquakes, and strong winds. The study identifies key risk hotspots with estimated economic losses of 92 million USD (2.5 % of GDP). Climate change projections indicate increased precipitation. The paper highlights data limitations and stresses the need for improved hazard models and the consideration of compounding risks in future assessments.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Sylvia Kruse, Thomas Abeling, Hugh Deeming, Maureen Fordham, John Forrester, Sebastian Jülich, A. Nuray Karanci, Christian Kuhlicke, Mark Pelling, Lydia Pedoth, and Stefan Schneiderbauer
Nat. Hazards Earth Syst. Sci., 17, 2321–2333, https://doi.org/10.5194/nhess-17-2321-2017, https://doi.org/10.5194/nhess-17-2321-2017, 2017
Short summary
Short summary
The emBRACE framework of community resilience conceptualizes resilience across three core domains: resources and capacities, actions, and learning. These are influenced by extra community forces, i.e. risk governance, societal context, disturbances and system change over time. It was developed by building on existing scholarly debates, on empirical case study work in five countries and on participatory consultation with community stakeholders where the framework was applied and ground-tested.
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
P. Ronco, V. Gallina, S. Torresan, A. Zabeo, E. Semenzin, A. Critto, and A. Marcomini
Hydrol. Earth Syst. Sci., 18, 5399–5414, https://doi.org/10.5194/hess-18-5399-2014, https://doi.org/10.5194/hess-18-5399-2014, 2014
Short summary
Short summary
This paper proposes a methodology, shaped by the EU Flood Directive, for the integrated assessment of flood risk at the regional scale for multiple receptors (i.e. people, economic activities, natural and semi-natural systems and cultural heritage) based on the subsequent assessment of hazards, exposure and vulnerability. By means of MCDA and GIS tools, it supports the ranking of the area, sub-areas and hotspots at risk, in order to evaluate the benefits of different risk prevention scenarios.
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Enhancement of state response capability and famine mitigation: A comparative analysis of two drought events in northern China during the Ming dynasty
Content Analysis of Multi-Annual Time Series of Flood-Related Twitter (X) Data
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Flood exposure of environmental assets
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Adaptive Behavior of Over a Million Individual Farmers Under Consecutive Droughts: A Large-Scale Agent-Based Modeling Analysis in the Bhima Basin, India
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
A New Method for Calculating Highway Blocking due to High Impact Weather Conditions
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Alexandre Dunant, Tom R. Robinson, Alexander L. Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
Nat. Hazards Earth Syst. Sci., 25, 267–285, https://doi.org/10.5194/nhess-25-267-2025, https://doi.org/10.5194/nhess-25-267-2025, 2025
Short summary
Short summary
Natural hazards like earthquakes often trigger other disasters, such as landslides, creating complex chains of impacts. We developed a risk model using a mathematical approach called hypergraphs to efficiently measure the impact of interconnected hazards. We showed that it can predict broad patterns of damage to buildings and roads from the 2015 Nepal earthquake. The model's efficiency allows it to generate multiple disaster scenarios, even at a national scale, to support preparedness plans.
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-159, https://doi.org/10.5194/nhess-2024-159, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. Spatial distribution of drought and famine during the Chenghua Drought and the Wanli Drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
EGUsphere, https://doi.org/10.5194/egusphere-2024-2556, https://doi.org/10.5194/egusphere-2024-2556, 2024
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-105, https://doi.org/10.5194/nhess-2024-105, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Environmental assets are crucial to sustain and fulfil life on Earth through ecosystem services. Assessing their flood risk is thus seminal, besides required by several norms. Even though, this field is not yet sufficiently developed. We explored the exposure component of the flood risk, and developed an evaluating methodology based on the ecosystem services provided by the environmental assets, to discern assets and areas more important than others with metrics suitable to large scale studies.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
EGUsphere, https://doi.org/10.5194/egusphere-2024-1407, https://doi.org/10.5194/egusphere-2024-1407, 2024
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners’ needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1588, https://doi.org/10.5194/egusphere-2024-1588, 2024
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrology models in shaping policies to lessen drought impacts.
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2024-650, https://doi.org/10.5194/egusphere-2024-650, 2024
Short summary
Short summary
The research aimed to understand the role of society in mitigating drought impacts through policy responses in the context of northeast Brazil. Results revealed that socio-environmental-economic impacts of drought are less frequently reported, while hydrological impacts of drought were the most reported. It emphasized that public policies addressing the impacts of drought need to focus not only on increasing water availability, but also on strengthening the local economy.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-230, https://doi.org/10.5194/nhess-2023-230, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is developed into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East and Southwest China.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Cited articles
Alpine convention: Guidelines for Climate Change Adaptation at the local level in the Alps, Permanent Secretariat of the Alpine Convention,
Innsbruck, 44, 2013.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.:
Potential impacts of a warming climate on water availability in snow-dominated regions,
Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C.:
Fitting linear mixed-effects models using lme4,
J. Stat. Softw.,
67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Bellin, A., Majone, B., Cainelli, O., Alberici, D., and Villa, F.:
A continuous coupled hydrological and water resources management model,
Environ. Model. Softw.,
75, 176–192, https://doi.org/10.1016/j.envsoft.2015.10.013, 2016.
Beniston, M. and Stoffel, M.:
Assessing the impacts of climatic change on mountain water resources,
Sci. Total Environ.,
493, 1129–1137, https://doi.org/10.1016/j.scitotenv.2013.11.122, 2014.
Brunner, M. I., Björnsen Gurung, A., Zappa, M., Zekollari, H., Farinotti, D., and Stähli, M.:
Present and future water scarcity in Switzerland: Potential for alleviation through reservoirs and lakes,
Sci. Total Environ.,
666, 1033–1047, https://doi.org/10.1016/j.scitotenv.2019.02.169, 2019.
Bucchignani, E., Montesarchio, M., Zollo, A. L., and Mercogliano, P.:
High-resolution climate simulations with COSMO-CLM over Italy: Performance evaluation and climate projections for the 21st century,
Int. J. Climatol.,
36, 735–756, https://doi.org/10.1002/joc.4379, 2016.
Chiogna, G., Skrobanek, P., Narany, T. S., Ludwig, R., and Stumpp, C.:
Effects of the 2017 drought on isotopic and geochemical gradients in the Adige catchment, Italy,
Sci. Total Environ.,
645, 924–936, https://doi.org/10.1016/j.scitotenv.2018.07.176, 2018.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.:
An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets,
J. Geophys. Res.-Atmos.,
123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Davies, E. and Simonovic, S. P.:
Global water resources modeling with an integrated model of the social-economic-environmental system,
Adv. Water Resour.,
34, 684–700, https://doi.org/10.1016/j.advwatres.2011.02.010, 2011.
Davies, E. G. R. and Simonovic, S. P.:
An Integrated System Dynamics Model for Analyzing Behaviour of the Social-Economic-Climatic System: Model Description and Model Use Guide,
Department of Civil and Environmental Engineering, The University of Western Ontario, London, Ontario, Canada, 2008.
Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I. E., Garcia, M., van Oel, P. R., Breinl, K., and Van Loon, A.:
Water shortages worsened by reservoir effects,
Nat. Sustain.,
1, 617–622, https://doi.org/10.1038/s41893-018-0159-0, 2018.
Duggan, J.:
System Dynamics Modeling with R,
Springer International Publishing, Switzerland, https://doi.org/10.1007/978-3-319-34043-2, 2016.
Duran-Encalada, J. A., Paucar-Caceres, A., Bandala, E. R., and Wright, G. H.:
The impact of global climate change on water quantity and quality: A system dynamics approach to the US-Mexican transborder region,
Eur. J. Oper. Res.,
256, 567–581, https://doi.org/10.1016/j.ejor.2016.06.016, 2017.
Etter, S., Addor, N., Huss, M., and Finger, D.:
Climate change impacts on future snow, ice and rain runoff in a Swiss mountain catchment using multi-dataset calibration,
J. Hydrol. Reg. Stud.,
13, 222–239, https://doi.org/10.1016/j.ejrh.2017.08.005, 2017.
European Commission:
Commission Staff working document Evaluation of the EU Strategy on adaptation to climate change Accompanying – Accompanying the document Report from the Commission to the European Parliament and the Council on the implementation of the EU Strategy on adapt, SWD(2018) 460 Final, European Commission,
Brussels, 1–65, 2018.
European Commission:
Forging a climate-resilient Europe – the new EU Strategy on Adaptation to Climate Change, European Commission,
Brussels, 2021.
European Parliament and Council: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, OJ L 327, 22.12.2000, European Parliament and Council, Brussels, 1–73, available at: http://data.europa.eu/eli/dir/2000/60/oj (last access: 16 November 2021), 2000.
Farinotti, D., Usselmann, S., Huss, M., Bauder, A., and Funk, M.:
Runoff evolution in the Swiss Alps: Projections for selected high-alpine catchments based on ENSEMBLES scenarios,
Hydrol. Process.,
26, 1909–1924, https://doi.org/10.1002/hyp.8276, 2012.
Ford, A.:
Statistical Screening Analysis of System Dynamics Models,
Island Press, Washington, USA, 2005.
Ford, A.:
Modelling the Environment: An Introduction to System Dynamics Modeling of Environmental Systems, 2nd edn.,
Isl. Press, Washington, 400, 2010.
Forrester, J. W.:
World dynamics,
Wright-Allen Press, Cambridge, Massachusetts, 1971.
Fuhrer, J., Smith, P., and Gobiet, A.:
Implications of climate change scenarios for agriculture in alpine regions – A case study in the Swiss Rhone catchment,
Sci. Total Environ.,
493, 1232–1241, https://doi.org/10.1016/j.scitotenv.2013.06.038, 2014.
Gaudard, L., Romerio, F., Dalla Valle, F., Gorret, R., Maran, S., Ravazzani, G., Stoffel, M., and Volonterio, M.:
Climate change impacts on hydropower in the Swiss and Italian Alps,
Sci. Total Environ.,
493, 1211–1221, https://doi.org/10.1016/j.scitotenv.2013.10.012, 2014.
Gohari, A., Mirchi, A., and Madani, K.:
System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran,
Water Resour. Manag.,
31, 1413–1434, https://doi.org/10.1007/s11269-017-1575-z, 2017.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., and Kumar, R.:
Revisiting the recent European droughts from a long-term perspective,
Sci. Rep.-UK,
8, 1–11, https://doi.org/10.1038/s41598-018-27464-4, 2018.
Hastie, T., Tibshirani, R., and Friedman, J.:
The Elements of Statistical Learning,
Springer, New York, https://doi.org/10.1007/978-0-387-84858-7, 2009.
Hendrickx, F. and Sauquet, E.:
Impact du changement climatique sur la gestion de l'eau dans le bassin de l'Ariége,
Hydrol. Sci. J.,
58, 976–993, https://doi.org/10.1080/02626667.2013.788790, 2013.
Hollander, M. and Wolfe, D. A.:
Nonparametric statistical methods,
Wiley, New York, 1973.
Huss, M. and Hock, R.:
Global-scale hydrological response to future glacier mass loss,
Nat. Clim. Change, 8,
135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
IPCC:
Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp., 2014.
IPCC:
Global Warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,
Geneva, Switzerland, 32 pp., 2018.
Kohavi, R.:
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,
Int. Joint Conf. Artif., 14, 1137–1145, Montreal, Quebec, Canada, 1995.
Kohler, T., Wehrli, A., and Jurek, M.:
Mountains and climate change: A global concern, Sustainable Mountain Development Series,
edited by: Centre for Development and Environment, Swiss Agency for Development and Cooperation, and Geographica Bernensia, Bern, Switzerland, 2014.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
La Jeunesse, I., Cirelli, C., Aubin, D., Larrue, C., Sellami, H., Afifi, S., Bellin, A., Benabdallah, S., Bird, D. N., Deidda, R., Dettori, M., Engin, G., Herrmann, F., Ludwig, R., Mabrouk, B., Majone, B., Paniconi, C., and Soddu, A.:
Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale,
Sci. Total Environ.,
543, 981–996, https://doi.org/10.1016/j.scitotenv.2015.04.062, 2016.
Majone, B., Villa, F., Deidda, R., and Bellin, A.:
Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region,
Sci. Total Environ.,
543, 965–980, https://doi.org/10.1016/j.scitotenv.2015.05.009, 2016.
Malard, J. J., Inam, A., Hassanzadeh, E., Adamowski, J., Tuy, H. A., and Melgar-Quiñonez, H.:
Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models,
Environ. Model. Softw.,
96, 410–420, https://doi.org/10.1016/j.envsoft.2017.06.053, 2017.
Maraun, D.:
Bias Correcting Climate Change Simulations – a Critical Review,
Curr. Clim. Chang. Reports,
2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016.
Masia, S., Sušnik, J., Marras, S., Mereu, S., Spano, D., and Trabucco, A.:
Assessment of Irrigated Agriculture Vulnerability under Climate Change in Southern Italy,
Water,
10, 209, https://doi.org/10.3390/w10020209, 2018.
Meadows, D. H., Meadows, D. L., Randers, J., and Behrens, W. W.:
The limits to growth,
Universe Books, New York, 2018.
Mehran, A., AghaKouchak, A., Nakhjiri, N., Stewardson, M. J., Peel, M. C., Phillips, T. J., Wada, Y., and Ravalico, J. K.:
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability,
Sci. Rep.-UK,
7, 1–9, https://doi.org/10.1038/s41598-017-06765-0, 2017.
Menk, L., Neuwirth, C., and Kienberger, S.:
Mapping the Structure of Social Vulnerability Systems for Malaria in East Africa,
Sustainability,
12, 5112, https://doi.org/10.3390/su12125112, 2020.
Mereu, S., Sušnik, J., Trabucco, A., Daccache, A., Vamvakeridou-Lyroudia, L., Renoldi, S., Virdis, A., Savić, D., and Assimacopoulos, D.:
Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia,
Sci. Total Environ.,
543, 1028–1038, https://doi.org/10.1016/j.scitotenv.2015.04.066, 2016.
Montesarchio, M., Manzi, M. P., Cattaneo, L., and Mercogliano, P.:
Performance Evaluation of a Regional Simulation with COSMO-CLM in the Alpine Space,
SSRN Electron. J.,
(July), CMCC Research Paper No. 137, https://doi.org/10.2139/ssrn.2195316, 2013.
Neuwirth, C., Hofer, B., and Peck, A.:
Spatiotemporal processes and their implementation in Spatial System Dynamics models,
J. Spat. Sci.,
60, 277–288, https://doi.org/10.1080/14498596.2015.997316, 2015.
Permanent Secretariat of the Alpine Convention:
Water and water management issues – Report on the State of the Alps Alpine Signals – Special Edition 2,
Permanent Secretariat of the Alpine Convention, Innsbruck, 2009.
Pham, H. V., Sperotto, A., Torresan, S., Acuña, V., Jorda-Capdevila, D., Rianna, G., Marcomini, A., and Critto, A.: Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale, Ecosyst. Serv., 40, 101045, https://doi.org/10.1016/J.ECOSER.2019.101045, 2019.
Provincia Autonoma di Trento:
PGUAP – Piano Generale di Utilizzazione delle Acque Pubbliche Trento,
Trento, 2006.
Provincia Autonoma di Trento:
Provincia Autonoma di Trento – Agenzia provinciale per le risorse idriche e l'energia,
available at: http://www.energia.provincia.tn.it/ (lasst access: 6 July 2021), 2018.
R Core Development Team:
A language and environment for statistical computing,
Vienna, Austria, 1, 2019.
Ranzani, A., Bonato, M., Patro, E. R., Gaudard, L., and De Michele, C.:
Hydropower future: Between climate change, renewable deployment, carbon and fuel prices,
Water (Switzerland),
10, 1–17, https://doi.org/10.3390/w10091197, 2018.
Rockel, B. and Geyer, B.:
The performance of the regional climate model CLM in different climate regions, based on the example of precipitation,
Meteorol. Z.,
17, 487–498, https://doi.org/10.1127/0941-2948/2008/0297, 2008.
Ronco, P., Zennaro, F., Torresan, S., Critto, A., Santini, M., Trabucco, A., Zollo, A. L., Galluccio, G., and Marcomini, A.:
A risk assessment framework for irrigated agriculture under climate change,
Adv. Water Resour.,
110, 562–578, https://doi.org/10.1016/j.advwatres.2017.08.003, 2017.
Sahin, O. and Mohamed, S.:
Coastal vulnerability to sea-level rise: A spatial-temporal assessment framework,
Nat. Hazards,
70, 395–414, https://doi.org/10.1007/s11069-013-0818-4, 2014.
Simonovic, S. P.:
Systems Approach to Management of Disasters: Methods and Applications,
Wiley, Hoboken, New Jersey, 2001.
Simonovic, S. P.:
Systems approach to management of disasters: methods and applications,
J. Integr. Disaster Risk Manag.,
5, 70–83, https://doi.org/10.5595/idrim.2015.0099, 2015.
Solander, K. C., Reager, J. T., Thomas, B. F., David, C. H., and Famiglietti, J. S.:
Simulating human water regulation: The development of an optimal complexity, climate-adaptive reservoir management model for an LSM,
J. Hydrometeorol.,
17, 725–744, https://doi.org/10.1175/JHM-D-15-0056.1, 2016.
Stave, K.:
Participatory system dynamics modeling for sustainable environmental management: Observations from four cases,
Sustainability,
2, 2762–2784, https://doi.org/10.3390/su2092762, 2010.
Stephan, R., Erfurt, M., Terzi, S., Žun, M., Kristan, B., Haslinger, K., and Stahl, K.: An inventory of Alpine drought impact reports to explore past droughts in a mountain region, Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, 2021.
Sterman, J. D.:
Business Dynamics Systems Thinking and Modeling for a Complex World,
Mc Graw Hill, New York, United States, 2000.
Sušnik, J., Vamvakeridou-Lyroudia, L. S., Savić, D. A., and Kapelan, Z.:
Integrated modelling of a coupled water-agricultural system using system dynamics,
J. Water Clim. Change,
4, 209–231, https://doi.org/10.2166/wcc.2013.069, 2013.
Sušnik, J., Chew, C., Domingo, X., Mereu, S., Trabucco, A., Evans, B., Vamvakeridou-Lyroudia, L., Savić, D. A., Laspidou, C., and Brouwer, F.:
Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach,
Water (Switzerland),
10, 139, https://doi.org/10.3390/w10020139, 2018.
Tashman, L. J.:
Out-of Sample Tests of Forecasting Accuracy: A Tutorial and Review,
Int. J. Forecasting,
16, 437–450, 2000.
Taylor, T. R. B., Ford, D. N., and Ford, A.:
Improving model understanding using statistical screening,
Syst. Dynam. Rev.,
26, 73–87, https://doi.org/10.1002/sdr.428, 2009.
Terna:
Dati generali, Terna Group, 1–9,
available at: https://download.terna.it/terna/1-DATI GENERALI_8d8e26126475683.pdf (last access: 24 March 2021), 2019.
Terzi, S.: Ste-rzi/SGiustina_future_SDM: S.Giustina outflow and volume data analysis (v1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.5701950, 2021.
Terzi, S., Torresan, S., Schneiderbauer, S., Critto, A., Zebisch, M., and Marcomini, A.:
Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation,
J. Environ. Manage.,
232, 759–771, https://doi.org/10.1016/j.jenvman.2018.11.100, 2019.
Teutschbein, C. and Seibert, J.:
Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,
J. Hydrol.,
456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
United Nations:
The Future We Want: Outcome document of the United Nations Conference on Sustainable Development, United Nations, Rio de Janeiro, Brasil, 2012.
van den Heuvel, L., Blicharska, M., Masia, S., Sušnik, J., and Teutschbein, C.:
Ecosystem services in the Swedish water–energy–food–land–climate nexus: Anthropogenic pressures and physical interactions,
Ecosyst. Serv.,
44, 101141, https://doi.org/10.1016/j.ecoser.2020.101141, 2020.
Varma, S. and Simon, R.:
Bias in error estimation when using cross-validation for model selection,
BMC Bioinformatics,
7, 1–8, https://doi.org/10.1186/1471-2105-7-91, 2006.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.:
Mountains of the world, water towers for humanity: Typology, mapping, and global significance,
Water Resour. Res.,
43, 1–13, https://doi.org/10.1029/2006WR005653, 2007.
Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I., López-Moreno, J. I., Lorentz, S., Schädler, B., Schreier, H., Schwaiger, K., Vuille, M., and Woods, R.: Climate change and mountain water resources: overview and recommendations for research, management and policy, Hydrol. Earth Syst. Sci., 15, 471–504, https://doi.org/10.5194/hess-15-471-2011, 2011.
Vogt, J. V., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., and Barbosa, P.:
Drought Risk Assessment and Management. A conceptual framework,
EUR 29464 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-97469-4, doi:10.2760/057223, JRC113937, 2018.
Wever, N., Comola, F., Bavay, M., and Lehning, M.: Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment, Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, 2017.
Wood, S. and Scheipl, F.:
gamm4: Generalized Additive Mixed Models Using mgcv and lme4,
R package version 0.2-6, available at: https://CRAN.R-project.org/package=gamm4 (last access: 7 August 2021), 2020.
Wood, S. N.:
Generalized Additive Models: An Introduction with R, second edn., Taylor and Francis, Boca Raton, Florida,
1–476, https://doi.org/10.1201/9781315370279, 2017.
Xu, D., Song, A., Tong, H., Ren, H., Hu, Y., and Shao, Q.:
A spatial system dynamic model for regional desertification simulation – A case study of Ordos, China,
Environ. Model. Softw.,
83, 179–192, https://doi.org/10.1016/j.envsoft.2016.05.017, 2016.
Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., and Wilkes, A.:
The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods,
Conserv. Biol.,
23, 520–530, https://doi.org/10.1111/j.1523-1739.2009.01237.x, 2009.
Yilmaz, K. K., Gupta, H. V., and Wagener, T.:
A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model,
Water Resour. Res.,
44, 1–18, https://doi.org/10.1029/2007WR006716, 2008.
Zebisch, M., Vaccaro, R., Niedrist, G., Schneiderbauer, S., Streifeneder, T., Weiss, M., Troi, A., Renner, K., Pedoth, L., Baumgartner, B., and V, B.:
Rapporto sul clima – Alto Adige 2018, Eurach Research,
Eurac Research, Bolzano, Italia, 2018.
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
This study combines outputs from multiple models with statistical assessments of past and future...
Altmetrics
Final-revised paper
Preprint