Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3519-2021
https://doi.org/10.5194/nhess-21-3519-2021
Research article
 | 
19 Nov 2021
Research article |  | 19 Nov 2021

Stochastic system dynamics modelling for climate change water scarcity assessment of a reservoir in the Italian Alps

Stefano Terzi, Janez Sušnik, Stefan Schneiderbauer, Silvia Torresan, and Andrea Critto

Related authors

More intense heatwaves under drier conditions: a compound event analysis in the Adige River basin (Eastern Italian Alps)
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347,https://doi.org/10.5194/egusphere-2025-1347, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023,https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
An inventory of Alpine drought impact reports to explore past droughts in a mountain region
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021,https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Unravelling the capacity–action gap in flood risk adaptation
Annika Schubert, Anne von Streit, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 25, 1621–1653, https://doi.org/10.5194/nhess-25-1621-2025,https://doi.org/10.5194/nhess-25-1621-2025, 2025
Short summary
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
Nat. Hazards Earth Syst. Sci., 25, 1573–1596, https://doi.org/10.5194/nhess-25-1573-2025,https://doi.org/10.5194/nhess-25-1573-2025, 2025
Short summary
Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025,https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Modeling Regional Production Capacity Loss Rates Considering Response Bias: Insights from a Questionnaire Survey on Zhengzhou Flood
Lijiao Yang, Yan Luo, Zilong Li, and Xinyu Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3923,https://doi.org/10.5194/egusphere-2024-3923, 2025
Short summary
Warnings based on risk matrices: a coherent framework with consistent evaluation
Robert J. Taggart and David J. Wilke
EGUsphere, https://doi.org/10.5194/egusphere-2025-323,https://doi.org/10.5194/egusphere-2025-323, 2025
Short summary

Cited articles

Alpine convention: Guidelines for Climate Change Adaptation at the local level in the Alps, Permanent Secretariat of the Alpine Convention, Innsbruck, 44, 2013. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C.: Fitting linear mixed-effects models using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. 
Bellin, A., Majone, B., Cainelli, O., Alberici, D., and Villa, F.: A continuous coupled hydrological and water resources management model, Environ. Model. Softw., 75, 176–192, https://doi.org/10.1016/j.envsoft.2015.10.013, 2016. 
Beniston, M. and Stoffel, M.: Assessing the impacts of climatic change on mountain water resources, Sci. Total Environ., 493, 1129–1137, https://doi.org/10.1016/j.scitotenv.2013.11.122, 2014. 
Download
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
Share
Altmetrics
Final-revised paper
Preprint