Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3519-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stochastic system dynamics modelling for climate change water scarcity assessment of a reservoir in the Italian Alps
Institute for Earth Observation, Eurac Research, Viale Druso 1, 39100, Bolzano, Italy
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
Institute for Environment and Human Security (UNU-EHS), United Nations University, Platz der Vereinten Nationen 1, 53113 Bonn, Germany
Janez Sušnik
Land & Water Management, IHE Delft Institute for Water Education, 2601DA, Delft, the Netherlands
Stefan Schneiderbauer
Institute for Earth Observation, Eurac Research, Viale Druso 1, 39100, Bolzano, Italy
Institute for Environment and Human Security (UNU-EHS), United Nations University, Platz der Vereinten Nationen 1, 53113 Bonn, Germany
Department of Geography, University of the Free State, Bloemfontein, South Africa
Silvia Torresan
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100, Lecce, Italy
Andrea Critto
Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), via Augusto Imperatore 16, 73100, Lecce, Italy
Related authors
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Nicole van Maanen, Marleen de Ruiter, Wiebke Jäger, Veronica Casartelli, Roxana Ciurean, Noemi Padron, Anne Sophie Daloz, David Geurts, Stefania Gottardo, Stefan Hochrainer-Stigler, Abel López Diez, Jaime Díaz Pacheco, Pedro Dorta Antequera, Tamara Febles Arévalo, Sara García González, Raúl Hernández-Martín, Carmen Alvarez-Albelo, Juan José Diaz-Hernandez, Lin Ma, Letizia Monteleone, Karina Reiter, Tristian Stolte, Robert Šakić Trogrlić, Silvia Torresan, Sharon Tatman, David Romero Manrique de Lara, Yeray Hernández González, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-3075, https://doi.org/10.5194/egusphere-2025-3075, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Disaster risk management faces growing challenges from multiple, changing hazards. Interviews with stakeholders in five European regions reveal that climate change, urban growth, and socio-economic shifts increase vulnerability and exposure. Measures to reduce one risk can worsen others, highlighting the need for better coordination. The study calls for flexible, context-specific strategies that connect scientific risk assessments with real-world decision-making.
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
Davide Mauro Ferrario, Marcello Sanò, Margherita Maraschini, Andrea Critto, and Silvia Torresan
EGUsphere, https://doi.org/10.5194/egusphere-2025-670, https://doi.org/10.5194/egusphere-2025-670, 2025
Short summary
Short summary
This review explores how Machine Learning (ML) can advance multi-hazard and multi-risk going through four main themes: data processing, hazard prediction, risk assessment, and future climate scenarios. It shows how ML is widely used for Earth observations and climate data processing, with Deep Learning applied for hazard prediction and ensemble ML methods for risks, and how future research moving towards analysis of multi-hazard interactions, dynamic vulnerability and early warning systems.
Jess Delves, Kathrin Renner, Piero Campalani, Jesica Piñón, Stefan Schneiderbauer, Stefan Steger, Mateo Moreno, Maria Belen Benito Oterino, Eduardo Perez, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2024-3445, https://doi.org/10.5194/egusphere-2024-3445, 2025
Short summary
Short summary
This scientific paper presents a multi-hazard risk assessment for Burundi, focusing on flooding, torrential rains, landslides, earthquakes, and strong winds. The study identifies key risk hotspots with estimated economic losses of 92 million USD (2.5 % of GDP). Climate change projections indicate increased precipitation. The paper highlights data limitations and stresses the need for improved hazard models and the consideration of compounding risks in future assessments.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Cited articles
Alpine convention: Guidelines for Climate Change Adaptation at the local level in the Alps, Permanent Secretariat of the Alpine Convention,
Innsbruck, 44, 2013.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.:
Potential impacts of a warming climate on water availability in snow-dominated regions,
Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C.:
Fitting linear mixed-effects models using lme4,
J. Stat. Softw.,
67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015.
Bellin, A., Majone, B., Cainelli, O., Alberici, D., and Villa, F.:
A continuous coupled hydrological and water resources management model,
Environ. Model. Softw.,
75, 176–192, https://doi.org/10.1016/j.envsoft.2015.10.013, 2016.
Beniston, M. and Stoffel, M.:
Assessing the impacts of climatic change on mountain water resources,
Sci. Total Environ.,
493, 1129–1137, https://doi.org/10.1016/j.scitotenv.2013.11.122, 2014.
Brunner, M. I., Björnsen Gurung, A., Zappa, M., Zekollari, H., Farinotti, D., and Stähli, M.:
Present and future water scarcity in Switzerland: Potential for alleviation through reservoirs and lakes,
Sci. Total Environ.,
666, 1033–1047, https://doi.org/10.1016/j.scitotenv.2019.02.169, 2019.
Bucchignani, E., Montesarchio, M., Zollo, A. L., and Mercogliano, P.:
High-resolution climate simulations with COSMO-CLM over Italy: Performance evaluation and climate projections for the 21st century,
Int. J. Climatol.,
36, 735–756, https://doi.org/10.1002/joc.4379, 2016.
Chiogna, G., Skrobanek, P., Narany, T. S., Ludwig, R., and Stumpp, C.:
Effects of the 2017 drought on isotopic and geochemical gradients in the Adige catchment, Italy,
Sci. Total Environ.,
645, 924–936, https://doi.org/10.1016/j.scitotenv.2018.07.176, 2018.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.:
An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets,
J. Geophys. Res.-Atmos.,
123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Davies, E. and Simonovic, S. P.:
Global water resources modeling with an integrated model of the social-economic-environmental system,
Adv. Water Resour.,
34, 684–700, https://doi.org/10.1016/j.advwatres.2011.02.010, 2011.
Davies, E. G. R. and Simonovic, S. P.:
An Integrated System Dynamics Model for Analyzing Behaviour of the Social-Economic-Climatic System: Model Description and Model Use Guide,
Department of Civil and Environmental Engineering, The University of Western Ontario, London, Ontario, Canada, 2008.
Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I. E., Garcia, M., van Oel, P. R., Breinl, K., and Van Loon, A.:
Water shortages worsened by reservoir effects,
Nat. Sustain.,
1, 617–622, https://doi.org/10.1038/s41893-018-0159-0, 2018.
Duggan, J.:
System Dynamics Modeling with R,
Springer International Publishing, Switzerland, https://doi.org/10.1007/978-3-319-34043-2, 2016.
Duran-Encalada, J. A., Paucar-Caceres, A., Bandala, E. R., and Wright, G. H.:
The impact of global climate change on water quantity and quality: A system dynamics approach to the US-Mexican transborder region,
Eur. J. Oper. Res.,
256, 567–581, https://doi.org/10.1016/j.ejor.2016.06.016, 2017.
Etter, S., Addor, N., Huss, M., and Finger, D.:
Climate change impacts on future snow, ice and rain runoff in a Swiss mountain catchment using multi-dataset calibration,
J. Hydrol. Reg. Stud.,
13, 222–239, https://doi.org/10.1016/j.ejrh.2017.08.005, 2017.
European Commission:
Commission Staff working document Evaluation of the EU Strategy on adaptation to climate change Accompanying – Accompanying the document Report from the Commission to the European Parliament and the Council on the implementation of the EU Strategy on adapt, SWD(2018) 460 Final, European Commission,
Brussels, 1–65, 2018.
European Commission:
Forging a climate-resilient Europe – the new EU Strategy on Adaptation to Climate Change, European Commission,
Brussels, 2021.
European Parliament and Council: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, OJ L 327, 22.12.2000, European Parliament and Council, Brussels, 1–73, available at: http://data.europa.eu/eli/dir/2000/60/oj (last access: 16 November 2021), 2000.
Farinotti, D., Usselmann, S., Huss, M., Bauder, A., and Funk, M.:
Runoff evolution in the Swiss Alps: Projections for selected high-alpine catchments based on ENSEMBLES scenarios,
Hydrol. Process.,
26, 1909–1924, https://doi.org/10.1002/hyp.8276, 2012.
Ford, A.:
Statistical Screening Analysis of System Dynamics Models,
Island Press, Washington, USA, 2005.
Ford, A.:
Modelling the Environment: An Introduction to System Dynamics Modeling of Environmental Systems, 2nd edn.,
Isl. Press, Washington, 400, 2010.
Forrester, J. W.:
World dynamics,
Wright-Allen Press, Cambridge, Massachusetts, 1971.
Fuhrer, J., Smith, P., and Gobiet, A.:
Implications of climate change scenarios for agriculture in alpine regions – A case study in the Swiss Rhone catchment,
Sci. Total Environ.,
493, 1232–1241, https://doi.org/10.1016/j.scitotenv.2013.06.038, 2014.
Gaudard, L., Romerio, F., Dalla Valle, F., Gorret, R., Maran, S., Ravazzani, G., Stoffel, M., and Volonterio, M.:
Climate change impacts on hydropower in the Swiss and Italian Alps,
Sci. Total Environ.,
493, 1211–1221, https://doi.org/10.1016/j.scitotenv.2013.10.012, 2014.
Gohari, A., Mirchi, A., and Madani, K.:
System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran,
Water Resour. Manag.,
31, 1413–1434, https://doi.org/10.1007/s11269-017-1575-z, 2017.
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., and Kumar, R.:
Revisiting the recent European droughts from a long-term perspective,
Sci. Rep.-UK,
8, 1–11, https://doi.org/10.1038/s41598-018-27464-4, 2018.
Hastie, T., Tibshirani, R., and Friedman, J.:
The Elements of Statistical Learning,
Springer, New York, https://doi.org/10.1007/978-0-387-84858-7, 2009.
Hendrickx, F. and Sauquet, E.:
Impact du changement climatique sur la gestion de l'eau dans le bassin de l'Ariége,
Hydrol. Sci. J.,
58, 976–993, https://doi.org/10.1080/02626667.2013.788790, 2013.
Hollander, M. and Wolfe, D. A.:
Nonparametric statistical methods,
Wiley, New York, 1973.
Huss, M. and Hock, R.:
Global-scale hydrological response to future glacier mass loss,
Nat. Clim. Change, 8,
135–140, https://doi.org/10.1038/s41558-017-0049-x, 2018.
IPCC:
Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp., 2014.
IPCC:
Global Warming of 1.5 ∘C. An IPCC Special Report on the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,
Geneva, Switzerland, 32 pp., 2018.
Kohavi, R.:
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,
Int. Joint Conf. Artif., 14, 1137–1145, Montreal, Quebec, Canada, 1995.
Kohler, T., Wehrli, A., and Jurek, M.:
Mountains and climate change: A global concern, Sustainable Mountain Development Series,
edited by: Centre for Development and Environment, Swiss Agency for Development and Cooperation, and Geographica Bernensia, Bern, Switzerland, 2014.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
La Jeunesse, I., Cirelli, C., Aubin, D., Larrue, C., Sellami, H., Afifi, S., Bellin, A., Benabdallah, S., Bird, D. N., Deidda, R., Dettori, M., Engin, G., Herrmann, F., Ludwig, R., Mabrouk, B., Majone, B., Paniconi, C., and Soddu, A.:
Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale,
Sci. Total Environ.,
543, 981–996, https://doi.org/10.1016/j.scitotenv.2015.04.062, 2016.
Majone, B., Villa, F., Deidda, R., and Bellin, A.:
Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region,
Sci. Total Environ.,
543, 965–980, https://doi.org/10.1016/j.scitotenv.2015.05.009, 2016.
Malard, J. J., Inam, A., Hassanzadeh, E., Adamowski, J., Tuy, H. A., and Melgar-Quiñonez, H.:
Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models,
Environ. Model. Softw.,
96, 410–420, https://doi.org/10.1016/j.envsoft.2017.06.053, 2017.
Maraun, D.:
Bias Correcting Climate Change Simulations – a Critical Review,
Curr. Clim. Chang. Reports,
2, 211–220, https://doi.org/10.1007/s40641-016-0050-x, 2016.
Masia, S., Sušnik, J., Marras, S., Mereu, S., Spano, D., and Trabucco, A.:
Assessment of Irrigated Agriculture Vulnerability under Climate Change in Southern Italy,
Water,
10, 209, https://doi.org/10.3390/w10020209, 2018.
Meadows, D. H., Meadows, D. L., Randers, J., and Behrens, W. W.:
The limits to growth,
Universe Books, New York, 2018.
Mehran, A., AghaKouchak, A., Nakhjiri, N., Stewardson, M. J., Peel, M. C., Phillips, T. J., Wada, Y., and Ravalico, J. K.:
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability,
Sci. Rep.-UK,
7, 1–9, https://doi.org/10.1038/s41598-017-06765-0, 2017.
Menk, L., Neuwirth, C., and Kienberger, S.:
Mapping the Structure of Social Vulnerability Systems for Malaria in East Africa,
Sustainability,
12, 5112, https://doi.org/10.3390/su12125112, 2020.
Mereu, S., Sušnik, J., Trabucco, A., Daccache, A., Vamvakeridou-Lyroudia, L., Renoldi, S., Virdis, A., Savić, D., and Assimacopoulos, D.:
Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia,
Sci. Total Environ.,
543, 1028–1038, https://doi.org/10.1016/j.scitotenv.2015.04.066, 2016.
Montesarchio, M., Manzi, M. P., Cattaneo, L., and Mercogliano, P.:
Performance Evaluation of a Regional Simulation with COSMO-CLM in the Alpine Space,
SSRN Electron. J.,
(July), CMCC Research Paper No. 137, https://doi.org/10.2139/ssrn.2195316, 2013.
Neuwirth, C., Hofer, B., and Peck, A.:
Spatiotemporal processes and their implementation in Spatial System Dynamics models,
J. Spat. Sci.,
60, 277–288, https://doi.org/10.1080/14498596.2015.997316, 2015.
Permanent Secretariat of the Alpine Convention:
Water and water management issues – Report on the State of the Alps Alpine Signals – Special Edition 2,
Permanent Secretariat of the Alpine Convention, Innsbruck, 2009.
Pham, H. V., Sperotto, A., Torresan, S., Acuña, V., Jorda-Capdevila, D., Rianna, G., Marcomini, A., and Critto, A.: Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale, Ecosyst. Serv., 40, 101045, https://doi.org/10.1016/J.ECOSER.2019.101045, 2019.
Provincia Autonoma di Trento:
PGUAP – Piano Generale di Utilizzazione delle Acque Pubbliche Trento,
Trento, 2006.
Provincia Autonoma di Trento:
Provincia Autonoma di Trento – Agenzia provinciale per le risorse idriche e l'energia,
available at: http://www.energia.provincia.tn.it/ (lasst access: 6 July 2021), 2018.
R Core Development Team:
A language and environment for statistical computing,
Vienna, Austria, 1, 2019.
Ranzani, A., Bonato, M., Patro, E. R., Gaudard, L., and De Michele, C.:
Hydropower future: Between climate change, renewable deployment, carbon and fuel prices,
Water (Switzerland),
10, 1–17, https://doi.org/10.3390/w10091197, 2018.
Rockel, B. and Geyer, B.:
The performance of the regional climate model CLM in different climate regions, based on the example of precipitation,
Meteorol. Z.,
17, 487–498, https://doi.org/10.1127/0941-2948/2008/0297, 2008.
Ronco, P., Zennaro, F., Torresan, S., Critto, A., Santini, M., Trabucco, A., Zollo, A. L., Galluccio, G., and Marcomini, A.:
A risk assessment framework for irrigated agriculture under climate change,
Adv. Water Resour.,
110, 562–578, https://doi.org/10.1016/j.advwatres.2017.08.003, 2017.
Sahin, O. and Mohamed, S.:
Coastal vulnerability to sea-level rise: A spatial-temporal assessment framework,
Nat. Hazards,
70, 395–414, https://doi.org/10.1007/s11069-013-0818-4, 2014.
Simonovic, S. P.:
Systems Approach to Management of Disasters: Methods and Applications,
Wiley, Hoboken, New Jersey, 2001.
Simonovic, S. P.:
Systems approach to management of disasters: methods and applications,
J. Integr. Disaster Risk Manag.,
5, 70–83, https://doi.org/10.5595/idrim.2015.0099, 2015.
Solander, K. C., Reager, J. T., Thomas, B. F., David, C. H., and Famiglietti, J. S.:
Simulating human water regulation: The development of an optimal complexity, climate-adaptive reservoir management model for an LSM,
J. Hydrometeorol.,
17, 725–744, https://doi.org/10.1175/JHM-D-15-0056.1, 2016.
Stave, K.:
Participatory system dynamics modeling for sustainable environmental management: Observations from four cases,
Sustainability,
2, 2762–2784, https://doi.org/10.3390/su2092762, 2010.
Stephan, R., Erfurt, M., Terzi, S., Žun, M., Kristan, B., Haslinger, K., and Stahl, K.: An inventory of Alpine drought impact reports to explore past droughts in a mountain region, Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, 2021.
Sterman, J. D.:
Business Dynamics Systems Thinking and Modeling for a Complex World,
Mc Graw Hill, New York, United States, 2000.
Sušnik, J., Vamvakeridou-Lyroudia, L. S., Savić, D. A., and Kapelan, Z.:
Integrated modelling of a coupled water-agricultural system using system dynamics,
J. Water Clim. Change,
4, 209–231, https://doi.org/10.2166/wcc.2013.069, 2013.
Sušnik, J., Chew, C., Domingo, X., Mereu, S., Trabucco, A., Evans, B., Vamvakeridou-Lyroudia, L., Savić, D. A., Laspidou, C., and Brouwer, F.:
Multi-stakeholder development of a serious game to explore the water-energy-food-land-climate nexus: The SIM4NEXUS approach,
Water (Switzerland),
10, 139, https://doi.org/10.3390/w10020139, 2018.
Tashman, L. J.:
Out-of Sample Tests of Forecasting Accuracy: A Tutorial and Review,
Int. J. Forecasting,
16, 437–450, 2000.
Taylor, T. R. B., Ford, D. N., and Ford, A.:
Improving model understanding using statistical screening,
Syst. Dynam. Rev.,
26, 73–87, https://doi.org/10.1002/sdr.428, 2009.
Terna:
Dati generali, Terna Group, 1–9,
available at: https://download.terna.it/terna/1-DATI GENERALI_8d8e26126475683.pdf (last access: 24 March 2021), 2019.
Terzi, S.: Ste-rzi/SGiustina_future_SDM: S.Giustina outflow and volume data analysis (v1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.5701950, 2021.
Terzi, S., Torresan, S., Schneiderbauer, S., Critto, A., Zebisch, M., and Marcomini, A.:
Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation,
J. Environ. Manage.,
232, 759–771, https://doi.org/10.1016/j.jenvman.2018.11.100, 2019.
Teutschbein, C. and Seibert, J.:
Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,
J. Hydrol.,
456–457, 12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
United Nations:
The Future We Want: Outcome document of the United Nations Conference on Sustainable Development, United Nations, Rio de Janeiro, Brasil, 2012.
van den Heuvel, L., Blicharska, M., Masia, S., Sušnik, J., and Teutschbein, C.:
Ecosystem services in the Swedish water–energy–food–land–climate nexus: Anthropogenic pressures and physical interactions,
Ecosyst. Serv.,
44, 101141, https://doi.org/10.1016/j.ecoser.2020.101141, 2020.
Varma, S. and Simon, R.:
Bias in error estimation when using cross-validation for model selection,
BMC Bioinformatics,
7, 1–8, https://doi.org/10.1186/1471-2105-7-91, 2006.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.:
Mountains of the world, water towers for humanity: Typology, mapping, and global significance,
Water Resour. Res.,
43, 1–13, https://doi.org/10.1029/2006WR005653, 2007.
Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I., López-Moreno, J. I., Lorentz, S., Schädler, B., Schreier, H., Schwaiger, K., Vuille, M., and Woods, R.: Climate change and mountain water resources: overview and recommendations for research, management and policy, Hydrol. Earth Syst. Sci., 15, 471–504, https://doi.org/10.5194/hess-15-471-2011, 2011.
Vogt, J. V., Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., and Barbosa, P.:
Drought Risk Assessment and Management. A conceptual framework,
EUR 29464 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-97469-4, doi:10.2760/057223, JRC113937, 2018.
Wever, N., Comola, F., Bavay, M., and Lehning, M.: Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment, Hydrol. Earth Syst. Sci., 21, 4053–4071, https://doi.org/10.5194/hess-21-4053-2017, 2017.
Wood, S. and Scheipl, F.:
gamm4: Generalized Additive Mixed Models Using mgcv and lme4,
R package version 0.2-6, available at: https://CRAN.R-project.org/package=gamm4 (last access: 7 August 2021), 2020.
Wood, S. N.:
Generalized Additive Models: An Introduction with R, second edn., Taylor and Francis, Boca Raton, Florida,
1–476, https://doi.org/10.1201/9781315370279, 2017.
Xu, D., Song, A., Tong, H., Ren, H., Hu, Y., and Shao, Q.:
A spatial system dynamic model for regional desertification simulation – A case study of Ordos, China,
Environ. Model. Softw.,
83, 179–192, https://doi.org/10.1016/j.envsoft.2016.05.017, 2016.
Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y., and Wilkes, A.:
The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods,
Conserv. Biol.,
23, 520–530, https://doi.org/10.1111/j.1523-1739.2009.01237.x, 2009.
Yilmaz, K. K., Gupta, H. V., and Wagener, T.:
A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model,
Water Resour. Res.,
44, 1–18, https://doi.org/10.1029/2007WR006716, 2008.
Zebisch, M., Vaccaro, R., Niedrist, G., Schneiderbauer, S., Streifeneder, T., Weiss, M., Troi, A., Renner, K., Pedoth, L., Baumgartner, B., and V, B.:
Rapporto sul clima – Alto Adige 2018, Eurach Research,
Eurac Research, Bolzano, Italia, 2018.
Short summary
This study combines outputs from multiple models with statistical assessments of past and future water availability and demand for the Santa Giustina reservoir (Autonomous Province of Trento, Italy). Considering future climate change scenarios, results show high reductions for stored volume and turbined water, with increasing frequency, duration and severity. These results call for the need to adapt to reductions in water availability and effects on the Santa Giustina reservoir management.
This study combines outputs from multiple models with statistical assessments of past and future...
Altmetrics
Final-revised paper
Preprint