Articles | Volume 21, issue 9
https://doi.org/10.5194/nhess-21-2811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Longitudinal survey data for diversifying temporal dynamics in flood risk modelling
Department of Earth Sciences, Uppsala University, Uppsala 752 36, Sweden
Centre of Natural Hazards and Disaster Science (CNDS), Uppsala 752 36, Sweden
Anna Scolobig
Environmental Governance and Territorial Development Institute, University of Geneva, Geneva 1205, Switzerland
Marco Borga
Department of Land, Environment, Agriculture and Forestry, University of Padua, Padua 351 22, Italy
Giuliano Di Baldassarre
Department of Earth Sciences, Uppsala University, Uppsala 752 36, Sweden
Centre of Natural Hazards and Disaster Science (CNDS), Uppsala 752 36, Sweden
Related authors
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
Francesco Marra, Eleonora Dallan, Marco Borga, Roberto Greco, and Thom Bogaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3378, https://doi.org/10.5194/egusphere-2025-3378, 2025
Short summary
Short summary
We highlight an important conceptual difference between the duration used in intensity-duration thresholds and the duration used in the intensity-duration-frequency curves that has been overlooked by the landslide literature so far.
Nathalia Correa-Sánchez, Xiaoli Guo Larsén, Giorgia Fosser, Eleonora Dallan, Marco Borga, and Francesco Marra
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-111, https://doi.org/10.5194/wes-2025-111, 2025
Preprint under review for WES
Short summary
Short summary
We examined the power spectra of wind speed in three convection-permitting models in central Europe and found these models have a better representation of wind variability characteristics than standard wind datasets like the New European Wind Atlas, due to different simulation approaches, providing more reliable extreme wind predictions.
Dina Vanessa Gomez Rave, Anna Scolobig, and Manuel del Jesus
EGUsphere, https://doi.org/10.5194/egusphere-2025-262, https://doi.org/10.5194/egusphere-2025-262, 2025
Short summary
Short summary
This study examines how preparedness strategies for compound flooding in coastal areas are evolving. These events arise from the interaction of drivers such as storm surges, heavy rainfall, and river discharge, amplifying risks for communities. The research highlights advancements in technical, environmental, and social approaches, alongside the role of governance and collaboration. By addressing these complexities, the study identifies pathways to foster resilience.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Giuliano Di Baldassarre, Elena Mondino, Maria Rusca, Emanuele Del Giudice, Johanna Mård, Elena Ridolfi, Anna Scolobig, and Elena Raffetti
Nat. Hazards Earth Syst. Sci., 21, 3439–3447, https://doi.org/10.5194/nhess-21-3439-2021, https://doi.org/10.5194/nhess-21-3439-2021, 2021
Short summary
Short summary
COVID-19 has affected humankind in an unprecedented way, and it has changed how people perceive multiple risks. In this paper, we compare public risk perceptions in Italy and Sweden in two different phases of the pandemic. We found that people are more worried about risks related to recently experienced events. This finding is in line with the availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind.
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Short summary
Riverine flood risk assessments require the identification of areas prone to potential flooding. We find that (topography-based) hydrogeomorphic floodplain maps can in many cases be useful for riverine flood risk assessments, particularly where hydrologic data are scarce. For 26 countries across the global south, we also demonstrate how dataset choice influences the estimated number of people living within flood-prone zones.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Cited articles
Alderman, H., Behrman, J., Watkins, S., Kohler, H.-P., and Maluccio, J. A.: Attrition in Longitudinal Household Survey Data, Demogr. Res., 5, 79–124, https://doi.org/10.4054/demres.2001.5.4, 2001.
Aldrete, G. S.: Floods of the Tiber in Ancient Rome, The
John Hopkins University Press, Baltimore, MD, 2007.
Amponsah, W., Ayral, P.-A., Boudevillain, B., Bouvier, C., Braud, I., Brunet, P., Delrieu, G., Didon-Lescot, J.-F., Gaume, E., Lebouc, L., Marchi, L., Marra, F., Morin, E., Nord, G., Payrastre, O., Zoccatelli, D., and Borga, M.: Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods, Earth Syst. Sci. Data, 10, 1783–1794, https://doi.org/10.5194/essd-10-1783-2018, 2018.
Babcicky, P. and Seebauer, S.: The two faces of social capital in private flood mitigation: opposing effects on risk perception, self-efficacy and coping capacity, J. Risk Res., 20, 1017–1037, https://doi.org/10.1080/13669877.2016.1147489, 2017.
Barendrecht, M. H., Viglione, A., Kreibich, H., Merz, B., Vorogushyn, S., and Blöschl, G.: The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model, Water Resour. Res., 55, 1312–1336, https://doi.org/10.1029/2018WR024128, 2019.
Blair, P. and Buytaert, W.: Socio-hydrological modelling: a review asking “why, what and how?”, Hydrol. Earth Syst. Sci., 20, 443–478, https://doi.org/10.5194/hess-20-443-2016, 2016.
Bodoque, J. M., Díez-Herrero, A., Amerigo, M., García, J. A., and Olcina, J.: Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: A pre-post survey design, J. Hydrol., 568, 769–779, https://doi.org/10.1016/j.jhydrol.2018.11.007, 2019.
Borga, M., Comiti, F., Ruin, I., and Marra, F.: Forensic analysis of flash flood response, WIREs Water, 6, 1–9, https://doi.org/10.1002/wat2.1338, 2019.
Bubeck, P., Berghäuser, L., Hudson, P., and Thieken,
A. H.: Using Panel Data to Understand the Dynamics of Human Behavior
in Response to Flooding, Risk Anal., 40, 2340–2359, https://doi.org/10.1111/risa.13548, 2020.
Burby, R. J.: Hurricane Katrina and the Paradoxes of Government Disaster Policy: Bringing About Wise Governmental Decisions for Hazardous Areas, Ann. Am. Acad. Polit. SS., 604, 171–191, https://doi.org/10.1177/0002716205284676, 2006.
Calvo, R., Arcaya, M., Baum, C. F., Lowe, S. R., and Waters, M. C.: Happily Ever After? Pre-and-Post Disaster Determinants of Happiness Among Survivors of Hurricane Katrina, J. Happiness Stud., 16, 427–442, https://doi.org/10.1007/s10902-014-9516-5, 2015.
Checkland, P.: Soft Systems Methodology: A Thirty Year Retrospective, Syst. Res. Behav. Sci., 17, 11–58, https://doi.org/10.2307/254200, 2000.
Checkland, P. and Poulter, J.: Learning For Action: A
Short Definitive Account of Soft Systems Methodology, and its use
for Practitioners, Teachers and Students, John Wiley and Sons Ltd.,
Chichester, 2006.
Christensen, R. H. B. C.: ordinal: Regression Models for
Ordinal Data. R package version 2019.12-10,
available at: https://cran.r-project.org/package=ordinal (last access: 9 September 2021), 2019.
Cordellieri, P., Baralla, F., Ferlazzo, F., Sgalla, R., Piccardi, L., and Giannini, A. M.: Gender Effects in Young Road Users on Road Safety Attitudes, Behaviors and Risk Perception, Front. Psychol., 7, 1412, https://doi.org/10.3389/fpsyg.2016.01412, 2016.
Cvetković, V., Roder, G., Öcal, A., Tarolli, P., and Dragićević, S.: The Role of Gender in Preparedness and Response Behaviors towards Flood Risk in Serbia, Int. J. Env. Res. Pub. He., 15, 2761, https://doi.org/10.3390/ijerph15122761, 2018.
De Marchi, B.: Societal Vulnerability and Resilience in the COVID-19 Crisis, Cult. e Stud. Del Soc., 5, 163–174, 2020.
De Marchi, B. and Scolobig, A.: The views of experts and residents on social vulnerability to flash floods in an Alpine region of Italy, Disasters, 36, 316–337, https://doi.org/10.1111/j.1467-7717.2011.01252.x, 2012.
Deeming, H.: Increasing resilience to storm surge
flooding: Risks, social networks and local champions, in:
Flood Risk Management: Research and Practice, edited by: Samuels,
P., Huntington, S., Allsop, W., and Harrop, J., CRC Press, London, 945–955, 2008.
Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., and Blöschl, G.: Socio-hydrology: conceptualising human-flood interactions, Hydrol. Earth Syst. Sci., 17, 3295–3303, https://doi.org/10.5194/hess-17-3295-2013, 2013.
Di Baldassarre, G., Brandimarte, L., and Beven, K.: The seventh facet of uncertainty: Wrong assumptions, unknowns and surprises in the dynamics of human–water systems, Hydrol. Sci. J., 61, 1748–1758, https://doi.org/10.1080/02626667.2015.1091460, 2016.
Di Baldassarre, G., Martinez, F., Kalantari, Z., and Viglione, A.: Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation, Earth Syst. Dynam., 8, 225–233, https://doi.org/10.5194/esd-8-225-2017, 2017.
Di Baldassarre, G., Kreibich, H., Vorogushyn, S., Aerts, J., Arnbjerg-Nielsen, K., Barendrecht, M., Bates, P., Borga, M., Botzen, W., Bubeck, P., De Marchi, B., Llasat, C., Mazzoleni, M., Molinari, D., Mondino, E., Mård, J., Petrucci, O., Scolobig, A., Viglione, A., and Ward, P. J.: Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection, Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, 2018a.
Di Baldassarre, G., Nohrstedt, D., Mård, J.,
Burchardt, S., Albin, C., Bondesson, S., Breinl, K., Deegan, F. M.,
Fuentes, D., Lopez, M. G., Granberg, M., Nyberg, L., Nyman, M. R.,
Rhodes, E., Troll, V., Young, S., Walch, C., and Parker, C. F.: An
Integrative Research Framework to Unravel the Interplay of Natural
Hazards and Vulnerabilities, Earth's Futur., 6,
305–310, https://doi.org/10.1002/2017EF000764, 2018b.
Di Baldassarre, G., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M., Kreibich, H., Konar, M., Mondino, E., Mård, J., Pande, S., Sanderson, M. R., Tian, F., Viglione, A., Wei, J., Wei, Y., Yu, D. J., Srinivasan, V., and Blöschl, G.: Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals, Water Resour. Res., 55, 6327–6355, https://doi.org/10.1029/2018WR023901, 2019.
Eurostat: Labour Force Survey, available at:
https://ec.europa.eu/eurostat/web/microdata/labour-force-survey,
last access: 12 November 2020.
Fanta, V., Šálek, M., and Sklenicka, P.: How long do floods throughout the millennium remain in the collective memory?, Nat. Commun., 10, 1–9, https://doi.org/10.1038/s41467-019-09102-3, 2019.
Fay-Ramirez, S., Antrobus, E., and Piquero, A. R.: Assessing the effect of the Queensland “Summer of Disasters” on perceptions of collective efficacy, Soc. Sci. Res., 54, 21–35, https://doi.org/10.1016/j.ssresearch.2015.06.017, 2015.
Fielding, J. L.: Inequalities in exposure and awareness of flood risk in England and Wales, Disasters, 36, 477–494, 2012.
Finucane, M. L., Slovic, P., Mertz, C. K., Flynn, J., and Satterfield, T. A.: Gender, race, and perceived risk: The “white male” effect, Health Risk Soc., 2, 159–172, https://doi.org/10.1080/713670162, 2010.
Folke, C., Hahn, T., Olsson, P., and Norberg, J.: Adaptive Governance of Social-Ecological Systems, Annu. Rev. Env. Resour., 30, 441–473, https://doi.org/10.1146/annurev.energy.30.050504.144511, 2005.
FORS: Swiss Household Panel | FORS,
available at: https://forscenter.ch/projects/swiss-household-panel/ (last access: 12
November 2020), n.d.
Fothergill, A.: The Stigma of Charity: Gender, Class, and Disaster Assistance, Sociol. Quart., 44, 659–680, https://doi.org/10.1111/j.1533-8525.2003.tb00530.x, 2003.
Galasso, V., Pons, V., Profeta, P., Becher, M., Brouard,
S., and Foucault, M.: Gender differences in COVID-19 attitudes and
behavior: Panel evidence from eight countries, P. Natl. Acad. Sci. USA, https://doi.org/10.1073/pnas.2012520117, 2020.
Ginexi, E. M., Weihs, K., Simmens, S. J., and Hoyt, D. R.: Natural disaster and depression: A prospective investigation of reactions to the 1993 Midwest Floods, Am. J. Commun. Psychol., 28, 495–518, https://doi.org/10.1023/A:1005188515149, 2000.
Green, C. H., Tunstall, S. M., and Fordham, M. H.: The risks from flooding: Which risks and whose perception?, Disasters, 15, 227–236, 1991.
Grothmann, T. and Reusswig, F.: People at risk of flooding: Why some residents take precautionary action while others do not, Nat. Hazards, 38, 101–120, https://doi.org/10.1007/s11069-005-8604-6, 2006.
Haer, T., Botzen, W. J. W., and Aerts, J. C. J. H.:
Advancing disaster policies by integrating dynamic adaptive
behaviour in risk assessments using an agent-based modelling
approach, Environ. Res. Lett., 14, 1–9,
https://doi.org/10.1088/1748-9326/ab0770, 2019.
Hanak, E., Lund, J., Dinar, A., Gray, B., Howitt, R.,
Mount, J., Moyle, P., and Thompson, B.: Managing California's Water:
From Conflict to Reconciliation – Ellen Hanak – Google Books, Public
Policy Institute of California, available at:
https://books.google.se/books?hl=en&lr=&id=90hLp8aGrgIC&oi=fnd&pg=PR10&dq=Hanak+et+al.,+2011&ots=IHUGWNGP9R&sig=70cbgHX3bi8hiB7UETDgTaJHwgM&redir_esc=y#v=onepage&q = Hanak et al.%2C 2011&f = false (last access: 9 September 2021), 2011.
Hernán, M. A. and Robins, J. M. Causal Inference: What If, available at: https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/ (last access: 9 September 2021), 2020.
Hoffmann, S., Feldmann, U., Bach, P. M., Binz, C., Farrelly, M., Frantzeskaki, N., Hiessl, H., Inauen, J., Larsen, T. A., Lienert, J., Londong, J., Lüthi, C., Maurer, M., Mitchell, C., Morgenroth, E., Nelson, K. L., Scholten, L., Truffer, B., and Udert, K. M.: A Research Agenda for the Future of Urban Water Management: Exploring the Potential of Nongrid, Small-Grid, and Hybrid Solutions, Environ. Sci. Technol., 54, 5312–5322, https://doi.org/10.1021/acs.est.9b05222, 2020.
Hudson, P., Thieken, A. H., and Bubeck, P.: The challenges of longitudinal surveys in the flood risk domain, J. Risk Res., 23, 642–663, https://doi.org/10.1080/13669877.2019.1617339, 2020.
Kallis, G. and Norgaard, R. B.: Coevolutionary ecological economics, Ecol. Econ., 69, 690–699, https://doi.org/10.1016/j.ecolecon.2009.09.017, 2010.
Kaniasty, K. and Norris, F. H.: Longitudinal linkages between perceived social support and posttraumatic stress symptoms: Sequential roles of social causation and social selection, J. Trauma. Stress, 21, 274–281, https://doi.org/10.1002/jts.20334, 2008.
Kates, R. W., Colten, C. E., Laska, S., and Leatherman, S. P.: Reconstruction of New Orleans after Hurricane Katrina: A research perspective, P. Natl. Acad. Sci. USA, 103, 14653–14660, https://doi.org/10.1073/pnas.0605726103, 2006.
Kellens, W., Terpstra, T., and De Maeyer, P.: Perception and Communication of Flood Risks: A Systematic Review of Empirical Research, Risk Anal., 33, 24–49, https://doi.org/10.1111/j.1539-6924.2012.01844.x, 2013.
Kienzler, S., Pech, I., Kreibich, H., Müller, M., and Thieken, A. H.: After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011, Nat. Hazards Earth Syst. Sci., 15, 505–526, https://doi.org/10.5194/nhess-15-505-2015, 2015.
Kim, Y., Park, I., and Kang, S.: Age and Gender Differences in Health Risk Perception, Cent. Eur. J. Publ. Heal., 26, 54–59, https://doi.org/10.21101/cejph.a4920, 2018.
Kreibich, H. and Thieken, A. H.: Coping with floods in the city of Dresden, Germany, Nat. Hazards, 51, 423–436, https://doi.org/10.1007/s11069-007-9200-8, 2009.
Kreibich, H., Thieken, A. H., Petrow, Th., Müller, M.,
and Merz, B.: Flood loss reduction of private households due to
building precautionary measures – lessons learned from the Elbe
flood in August 2002, Nat. Hazards Earth Syst. Sci., 5, 117–126,
https://doi.org/10.5194/nhess-5-117-2005, 2005.
Lin, K. H. E., Lee, H. C., and Lin, T. H.: How does resilience matter? An empirical verification of the relationships between resilience and vulnerability, Nat. Hazards, 88, 1229–1250, https://doi.org/10.1007/s11069-017-2916-1, 2017.
Lindell, M. K. and Perry, R. W.: Household Adjustment To Earthquake Hazard – A Review of Research, Environ. Behav., 32, 461–501, 2000.
Little, R. J. A. and Rubin, D. B.: Statistical Analysis
with Missing Data, Wiley Series in Probability and Statistics, 3rd
edition, Wiley, Hoboken, NJ, 2019.
Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke,
C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J.,
Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider,
S. H., and Taylor, W. W.: Complexity of coupled human and natural
systems, Science, 317, 1513–1516, https://doi.org/10.1126/science.1144004, 2007.
Liu, J. J. W., Reed, M., and Girard, T. A.: Advancing resilience: An integrative, multi-system model of resilience, Pers. Indiv. Differ., 111, 111–118, https://doi.org/10.1016/j.paid.2017.02.007, 2017.
Ludy, J. and Kondolf, G. M.: Flood risk perception in lands “protected” by 100 year levees, Nat. Hazards, 61, 829–842, https://doi.org/10.1007/s11069-011-0072-6, 2012.
Metz, B., Davidson, O., Bosch, P., Dave, R., and Meyer,
L.: Mitigation of Climate Change, in: Fourth Assessment Report of
the IPCC, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511546013, 2007.
Michaelis, T., Brandimarte, L., and Mazzoleni, M.: Capturing flood-risk dynamics with a coupled agent-based and hydraulic modelling framework, Hydrol. Sci. J., 65, 1458–1473, https://doi.org/10.1080/02626667.2020.1750617, 2020.
Mileti, D. S. and O'Brien, P.: Public response to aftershock warnings, Colorado State University, Fort Collins, CO,
1993.
Mondino, E., Scolobig, A., Borga, M., Albrecht, F., Mård, J., Weyrich, P., and Di Baldassarre, G.: Exploring changes in hydrogeological risk awareness and preparedness over time: a case study in northeastern Italy, Hydrol. Sci. J., 65, 1049–1059, https://doi.org/10.1080/02626667.2020.1729361, 2020a.
Mondino, E., Scolobig, A., Borga, M., and Di Baldassarre, G.: The Role of Experience and Different Sources of Knowledge in Shaping Flood Risk Awareness, Water, 12, 2130, https://doi.org/10.3390/w12082130, 2020b.
Mondino, E., Scolobig, A., Borga, M., and Di Baldassarre,
G.: Longitudinal data to explore changes in flood risk awareness and
preparedness, Zenodo [data set], https://doi.org/10.5281/zenodo.4286099, 2021.
Osberghaus, D.: The effect of flood experience on
household mitigation – Evidence from longitudinal and insurance data, Global Environ. Chang., 43, 126–136, https://doi.org/10.1016/j.gloenvcha.2017.02.003, 2017.
Osberghaus, D. and Hinrichs, H.: The Effectiveness of a
Large-Scale Flood Risk Awareness Campaign: Evidence from Two Panel
Data Sets, Risk Anal., 41,
944–957, https://doi.org/10.1111/risa.13601, 2020.
Ostrom, E.: A general framework for analyzing sustainability of social-ecological systems, Science, 325, 419–422, https://doi.org/10.1126/science.1172133, 2009.
Payne, G. and Payne, J.: Longitudinal and Cross-sectional
Studies, in: Key Concepts in Social Research, SAGE
Publications, London, 144–148, https://doi.org/10.4135/9781849209397, 2011.
Redman, C. L., Grove, J. M., and Kuby, L. H.: Integrating social science into the Long-Term Ecological Research (LTER) Network: Social dimensions of ecological change and ecological dimensions of social change, Ecosystems, 7, 161–171, https://doi.org/10.1007/s10021-003-0215-z, 2004.
Ridolfi, E., Mondino, E., and Di Baldassarre, G.: Hydrological risk: modeling flood memory and human proximity to rivers, Hydrol. Res., 52, 241–252, https://doi.org/10.2166/nh.2020.195, 2020.
Rogers, R. W. and Prentice-Dunn, S.: Protection
motivation theory, in: Handbook of Health Behavior Research. I:
Personal and Social Determinants, edited by: Gochman, D. S.,
Plenum, New York, NY,
113–132, 1997.
Saltelli, A. and Funtowicz, S.: Evidence-based policy at
the end of the Cartesian dream. The case of mathematical modelling,
in: Science philosophy and sustainability: The end of the Cartesian
dream, edited by: Pereira, Â. and Funtowicz, S., Routledge, London, 147–162, 2015.
Salvati, P., Bianchi, C., Fiorucci, F., Giostrella, P., Marchesini, I., and Guzzetti, F.: Perception of flood and landslide risk in Italy: a preliminary analysis, Nat. Hazards Earth Syst. Sci., 14, 2589–2603, https://doi.org/10.5194/nhess-14-2589-2014, 2014.
Schlüter, M., McAllister, R. R. J., Arlinghaus, R., Bunnefeld, N., Eisenack, K., Hölker, F., Milner-Gulland, E. J., Müller, B., Nicholson, E., Quaas, M., and Stöven, M.: New horizons for managing the environment: A review of coupled social-ecological systems modeling, Nat. Resour. Model., 25, 219–272, https://doi.org/10.1111/j.1939-7445.2011.00108.x, 2012.
Scolobig, A. and De Marchi, B.: Dilemmas in land use
planning in flood prone areas, in: Flood Risk Management: Research
and Practice, edited by: Samuels, P., Huntington, S., Allsop, W.,
and Harrop, J., Taylor & Francis Group, London, 2009.
Seebauer, S. and Babcicky, P.: (Almost) all Quiet Over
One and a Half Years: A Longitudinal Study on Causality Between Key
Determinants of Private Flood Mitigation, Risk Anal.,
41, 958–975, https://doi.org/10.1111/risa.13598, 2020.
Siegrist, M.: The Necessity for Longitudinal Studies in Risk Perception Research, Risk Anal., 33, 50–51, https://doi.org/10.1111/j.1539-6924.2012.01941.x, 2013.
Siegrist, M.: Longitudinal Studies on Risk Research, Risk Anal., 34, 1376–1377, https://doi.org/10.1111/risa.12249, 2014.
Sivapalan, M.: Debates-Perspectives on socio-hydrology: Changing water systems and the “tyranny of small problems”-Socio-hydrology, Water Resour. Res., 51, 4795–4805, https://doi.org/10.1002/2015WR017080, 2015.
Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A new science of people and water, Hydrol. Process., 26, 1270–1276, https://doi.org/10.1002/hyp.8426, 2012.
Spence, A., Poortinga, W., Butler, C., and Pidgeon, N. F.: Perceptions of climate change and willingness to save energy related to flood experience, Nat. Clim. Chang., 1, 46–49, https://doi.org/10.1038/nclimate1059, 2011.
Stockemer, D.: Quantitative Methods for the Social
Sciences – A Practical Introduction with Examples in SPSS and
Stata, 1st edition, Springer International Publishing,
Cham, https://doi.org/10.1007/978-3-319-99118-4, 2019.
Terpstra, T.: Emotions, Trust, and Perceived Risk: Affective and Cognitive Routes to Flood Preparedness Behavior, Risk Anal., 31, 1658–1675, https://doi.org/10.1111/j.1539-6924.2011.01616.x, 2011.
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., and Schröter, K.: The flood of June 2013 in Germany: how much do we know about its impacts?, Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, 2016.
Tobin, G. A.: The Levee Love Affair: A Stormy Relationship?, J. Am. Water Resour. As., 31, 359–367, https://doi.org/10.1111/j.1752-1688.1995.tb04025.x, 1995.
Tversky, A. and Kahneman, D.: Availability: A heuristic for judging frequency and probability, Cognitive Psychol., 5, 207–232, https://doi.org/10.1016/0010-0285(73)90033-9, 1973.
van Buuren, S.: Flexible Imputation of Missing Data, 2nd
edition, Chapman & Hall/CRC, London, available at: https://books.google.se/books?id=lzb3DwAAQBAJ&source = gbs_navlinks_s (last access: 9 September 2021), 2018.
van Duinen, R., Filatova, T., Geurts, P., and van der Veen, A.: Empirical Analysis of Farmers' Drought Risk Perception: Objective Factors, Personal Circumstances, and Social Influence, Risk Anal., 35, 741–755, https://doi.org/10.1111/risa.12299, 2015.
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A., and Blöschl, G.: Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82, https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014.
Wachinger, G. and Renn, O.: Risk perception and natural
hazards, in: CapHaz-Net WP3 Report, available at:
https://giam.zrc-sazu.si/sites/default/files/caphaz-net_wp3_risk-perception2.pdf
(last access: 9 September 2021),
2010.
Wachinger, G., Renn, O., Begg, C., and Kuhlicke, C.: The risk perception paradox – Implications for governance and communication of natural hazards, Risk Anal., 33, 1049–1065, https://doi.org/10.1111/j.1539-6924.2012.01942.x, 2013.
Weyrich, P., Mondino, E., Borga, M., Di Baldassarre, G., Patt, A., and Scolobig, A.: A flood-risk-oriented, dynamic protection motivation framework to explain risk reduction behaviours, Nat. Hazards Earth Syst. Sci., 20, 287–298, https://doi.org/10.5194/nhess-20-287-2020, 2020.
White, G. F.: Human adjustiment to flooding: A
geographical approach to the flood problem in the United States, The
University of Chicago, Chicago, Illinois, https://doi.org/10.1146/annurev.energy.30.050504.144352, 1945.
Yee, J. L. and Niemeier, D.: Advantages and
Disadvantages: Longitudinal vs. Repeated Cross-Section Surveys, United States. Federal Highway Administration, available at:
https://rosap.ntl.bts.gov/view/dot/13793 (last access: 9 September 2021), 1996.
Short summary
Survey data collected over time can provide new insights on how different people respond to floods and can be used in models to study the complex coevolution of human–water systems. We present two methods to collect such data, and we compare the respective results. Risk awareness decreases only for women, while preparedness takes different trajectories depending on the damage suffered. These results support a more diverse representation of society in flood risk modelling and risk management.
Survey data collected over time can provide new insights on how different people respond to...
Altmetrics
Final-revised paper
Preprint