Articles | Volume 21, issue 9
https://doi.org/10.5194/nhess-21-2753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
Landslide Research Group, Technical University of Munich, Munich, Germany
Markus Keuschnig
GEORESEARCH, Forschungsgesellschaft mbH, Puch, Austria
Ingo Hartmeyer
GEORESEARCH, Forschungsgesellschaft mbH, Puch, Austria
Robert Delleske
GEORESEARCH, Forschungsgesellschaft mbH, Puch, Austria
Michael Krautblatter
Landslide Research Group, Technical University of Munich, Munich, Germany
Related authors
No articles found.
Wolfgang Aumer, Ingo Hartmeyer, Carolyn-Monika Görres, Daniel Uteau, Maike Offer, and Stephan Peth
Earth Surf. Dynam., 13, 473–493, https://doi.org/10.5194/esurf-13-473-2025, https://doi.org/10.5194/esurf-13-473-2025, 2025
Short summary
Short summary
The summertime thaw depth of permanently frozen ground (active layer thickness, ALT) is of critical importance for natural hazard management (e.g., rock avalanches) and construction (foundation stability) in mountain permafrost regions. We report the first analytical heat transport model for simulating ALT based on near-surface temperature in permafrost rock walls. Our results show that the ALT will likely increase by more than 50 % by 2050 at 3000 m a.s.l. in the European Alps.
Benjamin Jacobs, Mohamed Ismael, Mostafa Ezzy, Markus Keuschnig, Alexander Mendler, Johanna Kieser, Michael Krautblatter, Christian U. Grosse, and Hany Helal
EGUsphere, https://doi.org/10.5194/egusphere-2025-2007, https://doi.org/10.5194/egusphere-2025-2007, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
The Mortuary Temple of Hatshepsut is one of the key heritage sites in Egypt but potentially threatened by rockfalls from a 100 m high limestone cliff. We transferred established monitoring techniques from mountainous (alpine) environments to this major cultural heritage site and test their performance in a historically sensitive desert environment. Our study shows the first event and impact analysis of rockfalls at the Temple of Hatshepsut, providing vital data towards future risk assessment.
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
Earth Surf. Dynam., 13, 295–314, https://doi.org/10.5194/esurf-13-295-2025, https://doi.org/10.5194/esurf-13-295-2025, 2025
Short summary
Short summary
Despite the critical role of water in alpine regions, its presence in bedrock is frequently neglected. This research examines the dynamics of water in fractures using 1 decade of measurements from a tunnel 50 m underground. We provide new insights into alpine groundwater dynamics, revealing that up to 800 L d-1 can flow in one fracture during extreme events. These quantities can saturate the fractures, enhance hydraulic conductivity, and generate pressures that destabilize slopes.
Samuel Weber, Jan Beutel, Michael Dietze, Alexander Bast, Robert Kenner, Marcia Phillips, Johannes Leinauer, Simon Mühlbauer, Felix Pfluger, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1151, https://doi.org/10.5194/egusphere-2025-1151, 2025
Short summary
Short summary
On 13 June 2023, a freestanding rock pillar on the Matterhorn Hörnligrat ridge collapsed after years of weakening. Our study explores how seasonal temperature changes and water infiltration into frozen rock contributed to its failure. By combining field data, lab tests, and modeling, we reveal how warming permafrost increases rockfall risks. Our findings highlight the need for multi-method monitoring and modeling to understand rock slope failure and its links to climate change.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
The Cryosphere, 19, 485–506, https://doi.org/10.5194/tc-19-485-2025, https://doi.org/10.5194/tc-19-485-2025, 2025
Short summary
Short summary
We present a unique long-term dataset of measurements of borehole temperature, repeated electrical resistivity tomography, and piezometric pressure to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subjected to enhanced pressurised water flow during the thaw period, resulting in push-like warming events and long-lasting rock temperature regime changes.
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
Earth Surf. Dynam., 13, 41–70, https://doi.org/10.5194/esurf-13-41-2025, https://doi.org/10.5194/esurf-13-41-2025, 2025
Short summary
Short summary
Our study explores permafrost–glacier interactions with a focus on their implications for preparing or triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold–warm dividing line in polythermal alpine glaciers, a widespread and currently under-explored phenomenon in alpine environments worldwide.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Ingo Hartmeyer and Jan-Christoph Otto
DEUQUA Spec. Pub., 5, 3–12, https://doi.org/10.5194/deuquasp-5-3-2024, https://doi.org/10.5194/deuquasp-5-3-2024, 2024
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Michael Krautblatter, Lutz Schirrmeister, and Josefine Lenz
Polarforschung, 89, 69–71, https://doi.org/10.5194/polf-89-69-2021, https://doi.org/10.5194/polf-89-69-2021, 2021
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
Cited articles
Anker, F., Fegerl, L., Hübl, J., Kaitna, R., Neumayer, F., and
Keuschnig, M.: Geschiebetransport in Gletscherbächen der Hohen Tauern:
Beispiel Obersulzbach, Wildbach- und Lawinenverbauung, 80, 86–96, 2016.
Aubrecht, C., Meier, P., and Taubenböck, H.: Speeding up the clock in
remote sensing: identifying the “black spots” in exposure dynamics by
capitalizing on the full spectrum of joint high spatial and temporal
resolution, Nat. Hazards, 86, 177–182,
https://doi.org/10.1007/s11069-015-1857-9, 2017.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R.,
Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P.,
Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre,
O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V.,
Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar,
T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and
Nieplova, E.: HISTALP – historical instrumental climatological surface time
series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46,
https://doi.org/10.1002/joc.1377, 2007.
Ayoub, F., Leprince, S., and Keene, L.: User's Guide to COSI-CORR
Co-registration of Optically Sensed Images and Correlation, California
Institute of Technology, Pasadena, CA 91125, USA, 38 pp., 2009.
Barla, G. and Paronuzzi, P.: The 1963 Vajont Landslide: 50th
Anniversary, Rock Mech. Rock Eng., 46, 1267–1270,
https://doi.org/10.1007/s00603-013-0483-7, 2013.
Barsi, Á., Kugler, Z., László, I., Szabó, G., and
Abdulmutalib, H. M.: ACCURACY DIMENSIONS IN REMOTE SENSING, Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 61–67,
https://doi.org/10.5194/isprs-archives-XLII-3-61-2018, 2018.
Batini, C., Blaschke, T., Lang, S., Albrecht, F., Abdulmutalib, H. M.,
Barsi, Á., Szabó, G., and Kugler, Z.: Data Quality in Remote
Sensing, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7,
447–453, https://doi.org/10.5194/isprs-archives-XLII-2-W7-447-2017, 2017.
Bickel, V., Manconi, A., and Amann, F.: Quantitative Assessment of Digital
Image Correlation Methods to Detect and Monitor Surface Displacements of
Large Slope Instabilities, Remote Sens., 10, 1–18, https://doi.org/10.3390/rs10060865, 2018.
Bontemps, N., Lacroix, P., and Doin, M.-P.: Inversion of deformation fields
time-series from optical images, and application to the long term kinematics
of slow-moving landslides in Peru, Remote Sens. Environ., 210,
144–158, https://doi.org/10.1016/j.rse.2018.02.023, 2018.
Bozzano, F., Mazzanti, P., and Moretto, S.: Discussion to: “Guidelines on
the use of inverse velocity method as a tool for setting alarm thresholds
and forecasting landslides and structure collapses” by Carlà, T., Intrieri, E., Di Traglia, F., Nolesini, T., Gigli, G., and Casagli, N., Landslides,
15, 1437–1441, https://doi.org/10.1007/s10346-018-0976-2, 2018.
Breger, P.: The Copernicus Full, Free and Open Data Policy, available at: https://www.ecmwf.int/sites/default/files/elibrary/2017/17104-copernicus-full-free-and-open-data-policy_0.pdf (last access: 30 August 2021), 2017.
Butler, D.: Many eyes on Earth, Nature, 505, 143–144,
https://doi.org/10.1038/505143a, 2014.
Calvello, M.: Early warning strategies to cope with landslide risk, Rivista
Italiana di Geotecnica, 2, 63–91, 2017.
Chae, B.-G., Park, H.-J., Catani, F., Simoni, A., and Berti, M.: Landslide
prediction, monitoring and early warning: a concise review of
state-of-the-art, Geosci. J., 21, 1033–1070,
https://doi.org/10.1007/s12303-017-0034-4, 2017.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N.,
and Crippa, B.: Persistent Scatterer Interferometry: A review,
ISPRS J. Photogramm., 115, 78–89,
https://doi.org/10.1016/j.isprsjprs.2015.10.011, 2016.
Crosta, G. B., Agliardi, F., Rivolta, C., Alberti, S., and Dei Cas, L.:
Long-term evolution and early warning strategies for complex rockslides by
real-time monitoring, Landslides, 14, 1615–1632,
https://doi.org/10.1007/s10346-017-0817-8, 2017.
Debella-Gilo, M.: Matching of repeat remote sensing images for precise
analysis of mass movements, PhD Thesis, Department of Geosciences Faculty of
Mathematics and Natural Sciences, University of Oslo, Oslo, 2011.
Debella-Gilo, M. and Kääb, A.: Sub-pixel precision image matching
for measuring surface displacements on mass movements using normalized
cross-correlation, Remote Sens. Environ., 115, 130–142, https://doi.org/10.1016/j.rse.2010.08.012, 2011.
Darvishi, M., Schlögel, R., Kofler, C., Cuozzo, G., Rutzinger, M.,
Zieher, T., Toschi, I., Remondino, F., Mejia-Aguilar, A., Thiebes, B., and
Bruzzone, L.: Sentinel-1 and Ground-Based Sensors for Continuous Monitoring
of the Corvara Landslide (South Tyrol, Italy), Remote Sens., 10, 1781,
https://doi.org/10.3390/rs10111781, 2018.
Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B.,
Grandjean, P., Pambrun, C., and Varel, E.: Remote-sensing techniques for
analysing landslide kinematics: a review,
B. Soc. Geol. Fr., 178, 89–100, https://doi.org/10.2113/gssgfbull.178.2.89, 2007.
Desrues, M., Lacroix, P., and Brenguier, O.: Satellite Pre-Failure Detection
and In Situ Monitoring of the Landslide of the Tunnel du Chambon, French
Alps, Geosciences, 9, 1–14, https://doi.org/10.3390/geosciences9070313, 2019.
Dikau, R., Brundsen, D., Schrott, L., and Ibsen, M.-L. (Eds.): Landslide
recognition: Identification, Moevement and Courses, Publication/International Association of Geomorphologists, no. 5, John Wiley & Sons,
New York, xii, 251, 1996.
Drusch, M., Bello, U. D., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto,
F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical
High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
ESA: eoPortal: Satellite Missions Database, available at: https://directory.eoportal.org/web/eoportal/satellite-missions/, last access: 4 December 2020.
Foumelis, M., Papadopoulou, T., Bally, P., Pacini, F., Provost, F., and
Patruno, J.: Monitoring Geohazards Using On-Demand And Systematic Services
On Esa's Geohazards Exploitation Platform, in: IGARSS 2019–2019 IEEE
International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019, 5457–5460, 2019.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate,
Earth-Sci. Rev., 162, 227–252,
https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
GeoResearch: Projekt Sattelkar.: Zwischenbericht 1: 2018, NP Hohe Tauern
Salzburg, Klimasensitive, hochalpine Kare, Nationalparks Austria, available at: https://www.data.gv.at/katalog/dataset/A5BF75E4-DAEC-5D02-C696-52A478A248AF (last access: 30 August 2021), 2018.
Giordan, D., Hayakawa, Y. S., Nex, F., and Tarolli, P.: Preface: The use of remotely piloted aircraft systems (RPAS) in monitoring applications and management of natural hazards, Nat. Hazards Earth Syst. Sci., 18, 3085–3087, https://doi.org/10.5194/nhess-18-3085-2018, 2018.
Goodchild, M. F.: Scale in GIS: An overview, Geomorphology, 130, 5–9,
https://doi.org/10.1016/j.geomorph.2010.10.004, 2011.
Grasso, V. F.: The State of Early Warning Systems, in: Reducing Disaster:
Early Warning Systems For Climate Change, edited by: Singh, A. and Zommers,
Z., Springer Netherlands, Dordrecht, 109–125, 2014.
Guerriero, L., Di Martire, D., Calcaterra, D., and Francioni, M.: Digital
Image Correlation of Google Earth Images for Earth's Surface Displacement
Estimation, Remote Sens., 12, https://doi.org/10.3390/rs12213518, 2020.
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009.
Huggel, C., Clague, J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?,
Earth Surf. Proc. Land., 37, 77–91, https://doi.org/10.1002/esp.2223, 2012.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
IPCC (Ed.): Climate change 2014: Synthesis report: Synthesis Report.
Contribution of Working Groups I, II and III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on
Climate Change, Geneva, Switzerland, 151 pp., 2014.
Kääb, A., Altena, B., and Mascaro, J.: Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation, Nat. Hazards Earth Syst. Sci., 17, 627–639, https://doi.org/10.5194/nhess-17-627-2017, 2017.
Lacroix, P., Pham, M. Q., and Araujo, G.: MuDsLIdeS: Monitoring and
Detection of Landslides from optical Images time-Series, Executive Summary,
ESA-Alcantara initiative No 15/P26., n.d.
Lacroix, P., Berthier, E., and Taipe Maquerhua, E.: Earthquake-driven
acceleration of slow-moving landslides in the Colca valley, Peru, detected
from Pléiades images, Remote Sens. Environ., 165, 148–158,
https://doi.org/10.1016/j.rse.2015.05.010, 2015.
Lacroix, P., Bièvre, G., Pathier, E., Kniess, U., and Jongmans, D.: Use
of Sentinel-2 images for the detection of precursory motions before
landslide failures, Remote Sens. Environ., 215, 507–516,
https://doi.org/10.1016/j.rse.2018.03.042, 2018.
Lacroix, P., Araujo, G., Hollingsworth, J., and Taipe, E.: Self-Entrainment
Motion of a Slow-Moving Landslide Inferred From Landsat-8 Time Series, J.
Geophys. Res.-Earth, 124, 1201–1216,
https://doi.org/10.1029/2018JF004920, 2019.
Leprince, S.: Monitoring Earth Surface Dynamics with Optical Imagery, PhD
Thesis, California Institute of Technology, https://doi.org/10.7907/ZMTV-GV90, 2008.
Leprince, S., Barbot, S., Ayoub, F., and Avouac, J.-P.: Automatic and
Precise Orthorectification, Coregistration, and Subpixel Correlation of
Satellite Images, Application to Ground Deformation Measurements, IEEE
Trans. Geosci. Remote Sensing, 45, 1529–1558,
https://doi.org/10.1109/TGRS.2006.888937, 2007.
Leprince, S., Berthier, E., Ayoub, F., Delacourt, C., and Avouac, J.-P.:
Monitoring Earth Surface Dynamics With Optical Imagery, Eos, 89, 1–12, https://doi.org/10.1029/2008EO010001, 2008.
Loew, S., Gschwind, S., Gischig, V., Keller-Signer, A., and Valenti, G.:
Monitoring and early warning of the 2012 Preonzo catastrophic rockslope
failure, Landslides, 14, 141–154,
https://doi.org/10.1007/s10346-016-0701-y, 2017.
Lucieer, A., Jong, S. de, and Turner, D.: Mapping landslide displacements
using Structure from Motion (SfM) and image correlation of multi-temporal
UAV photography, Prog. Phys. Geog., 38, 97–116,
https://doi.org/10.1177/0309133313515293, 2014.
Mazzanti, P., Rocca, A., Bozzano, F., Cossu, R., and Floris, M.: Landslides
Forecasting Analysis By Displacement Time Series Derived From Satellite
INSAR Data: Preliminary Results, in: FRINGE 2011 Workshop: SP-697, Frascati,
Italy, 19–23 September 2011, 2012.
Mazzanti, P., Caporossi, P., and Muzi, R.: Sliding Time Master Digital Image
Correlation Analyses of CubeSat Images for landslide Monitoring: The
Rattlesnake Hills Landslide (USA), Remote Sens., 12, 592,
https://doi.org/10.3390/rs12040592, 2020.
Moretto, S., Bozzano, F., Esposito, C., and Mazzanti, P.: Lesson learned
from the pre-collapse time series of displacement of the Preonzo landslide
(Switzerland), ROL, 41, 247–250, https://doi.org/10.3301/ROL.2016.140,
2016.
Moretto, S., Bozzano, F., Esposito, C., Mazzanti, P., and Rocca, A.:
Assessment of Landslide Pre-Failure Monitoring and Forecasting Using
Satellite SAR Interferometry, Geosciences, 7, 1–16,
https://doi.org/10.3390/geosciences7020036, 2017.
Noetzli, J., Pellet, C., and Staub, B.: Permafrost in Switzerland 2014/2015
to 2017/2018: Glaciological Report Permafrost No. 16–19 of the Cryospheric
Commission of the Swiss Academy of Sciences, Swiss Permafrost Monitoring
Network (PERMOS), https://doi.org/10.13093/PERMOS-REP-2019-16-19, 2019.
Pecoraro, G., Calvello, M., and Piciullo, L.: Monitoring strategies for
local landslide early warning systems, Landslides, 16, 213–231,
https://doi.org/10.1007/s10346-018-1068-z, 2019.
Pesci, A., Giordano, T., Casula, G., Loddo, F., Martino, P. de, Dolce, M.,
Obrizzo, F., and Pingue, F.: Multitemporal laser scanner-based observation
of the Mt. Vesuvius crater: Characterization of overall geometry and
recognition of landslide events, ISPRS J. Photogramm., 66, 327–336, https://doi.org/10.1016/j.isprsjprs.2010.12.002,
2011.
Petley, D. N. and Petley, D. J.: On the initiation of large rockslides:
perspectives from a new analysis of the Vaiont movement record, in:
Landslides from Massive Rock Slope Failure, edited by: Evans, S. G.,
Scarascia-Mugnozza, G., Strom, A., and Hermanns, R. L., Springer
Netherlands, Dordrecht, 77–84, 2006.
Planet Labs: RapidEye Constellation to be Retired in 2020,
available at: https://www.planet.com/pulse/rapideye-constellation-to-be-retired-in-2020/, last access: 23 February 2020a.
Planet Labs: Planet Imagery Product Specification:
PLANETSCOPE & RAPIDEYE, available at: https://earth.esa.int/eogateway/documents/20142/37627/Planet-combined-imagery-product-specs-2020.pdf, last access: June 2020b.
Plank, S., Krautblatter, M., and Thuro, K.: Feasibility Assessment of
Landslide Monitoring by Means of SAR Interferometry: A Case Study in the
Ötztal Alps, Austria, in: Engineering Geology for Society and Territory:
Volume 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J.,
Azzam, R., Wasowski, J., and Sciarra, N., Springer International Publishing,
Cham, 375–378, https://doi.org/10.1007/978-3-319-09057-3_58,
2015.
Reid, M. E., Baum, R. L., LaHusen, R. G., and Ellis, W. L.: Capturing
landslide dynamics and hydrologic triggers using near-real-time monitoring,
in: Landslides and engineered slopes: From the past to the future, edited
by: Chen, Z., Zhang, J.-M., Ho, K., Wu, F.-Q., and Li, Z.-K., CRC Press,
Boca Raton, Florida, 2008.
Rosu, A.-M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., and Klinger,
Y.: Measurement of ground displacement from optical satellite image
correlation using the free open-source software MicMac, ISPRS J. Photogramm., 100, 48–59,
https://doi.org/10.1016/j.isprsjprs.2014.03.002, 2015.
Sättele, M., Krautblatter, M., Bründl, M., and Straub, D.:
Forecasting rock slope failure: how reliable and effective are warning
systems?, Landslides, 13, 737–750,
https://doi.org/10.1007/s10346-015-0605-2, 2016.
Scaioni, M., Longoni, L., Melillo, V., and Papini, M.: Remote Sensing for
Landslide Investigations: An Overview of Recent Achievements and
Perspectives, Remote Sens., 6, 9600–9652,
https://doi.org/10.3390/rs6109600, 2014.
Schrott, L., Otto, J.-C., and Keller, F.: Modelling alpine permafrost
distribution in the Hohe Tauern region, Austria, Austrian J. Earth Sc., 105, 169–183, 2012.
Semenza, E. and Ghirotti, M.: History of the 1963 Vaiont slide: The
importance of geological factors, B. Eng. Geol. Environ., 59, 87–97, https://doi.org/10.1007/s100640000067, 2000.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander,
L. V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D.,
Della-Marta, P. M., Gerber, M., Gong, S., Goswami, B. N., Hemer, M., Huggel,
C., van den Hurk, B., Kharin, V. V., Kitoh, A., Tank, A. M. K., Li, G.,
Mason, S., McGuire, W., van Oldenborgh, G. J., Orlowsky, B., Smith, S.,
Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., and Zwiers, F. W.:
Changes in Climate Extremes and their Impacts on the Natural Physical
Environment, in: Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation: A Special Report of Working Groups I and
II of the Intergovernmental Panel on Climate Change, edited by: Field, C.
B., Barros, V., Stocker, T. F., and Dahe, Q., Cambridge University Press,
Cambridge, 109–230, https://doi.org/10.1017/CBO9781139177245.006, 2012.
Stumpf, A.: Landslide recognition and monitoring with remotely sense data
from passive optical sensors, Dissertation, University of Strasbourg,
Strasbourg, 2013.
Stumpf, A., Malet, J.-P., Puissant, A., and Travelletti, J.: Monitoring of
Earth Surface Motion and Geomorphologic Processes by Optical Image
Correlation: Chapter 5, in: Land Surface Remote Sensing: Environment and
Risks, edited by: Baghdadi, N. and Zribi, F. M., ISTE Press – Elsevier,
147–190, https://doi.org/10.1016/B978-1-78548-105-5.50005-0, 2016.
Stumpf, A., Michéa, D., and Malet, J.-P.: Improved Co-Registration of
Sentinel-2 and Landsat-8 Imagery for Earth Surface Motion Measurements,
Remote Sensing, 10, 160, https://doi.org/10.3390/rs10020160, 2018.
Sudmanns, M., Tiede, D., Lang, S., Bergstedt, H., Trost, G., Augustin, H.,
Baraldi, A., and Blaschke, T.: Big Earth data: disruptive changes in Earth
observation data management and analysis?, Int. J. Digit. Earth, 123, 1–19, https://doi.org/10.1080/17538947.2019.1585976,
2019.
TUM: AlpSenseBench: Alpine remote sensing of climate-induced natural
hazards, available at: https://www.bgu.tum.de/landslides/alpsensebench/projekt/, last
access: 22 September 2020.
Turner, D., Lucieer, A., and Jong, S. de: Time Series Analysis of Landslide
Dynamics Using an Unmanned Aerial Vehicle (UAV), Remote Sens., 7,
1736–1757, https://doi.org/10.3390/rs70201736, 2015.
UNISDR: UNISDR Terminology on Disaster Risk Reduction, United Nations Office
for Disaster Risk Reduction, Geneva, Switzerland, 2009.
UNISDR: Basics of early warning, Platform for the Promotion of Early
Warning, available at: https://www.unisdr.org/2006/ppew/whats-ew/basics-ew.htm (last access: 3 April 2020), 2006.
Volat, M., Lacroix, P., Bontemps, N., and Doin, M.-P.: Introducing “TIO”:
Optical imagery time series analysis on the Geohazards Exploitation
Platform, in: MDIS ForM@Ter 2017, Besse en Chandesse, 20 October 2017, 2017.
Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., Preux, A. de,
Huss, M., Tognacca, C., Clinton, J., Diehl, T., and Bonanomi, Y.: Direct
observations of a three million cubic meter rock-slope collapse with almost
immediate initiation of ensuing debris flows, Geomorphology, 351, 106933,
https://doi.org/10.1016/j.geomorph.2019.106933, 2020.
Westoby, M. J.,
Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.:
“Structure-from-Motion” photogrammetry: A low-cost, effective tool for
geoscience applications, Geomorphology, 179, 300–314,
https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Multispectral remote sensing imagery enables landslide detection and monitoring, but its...
Altmetrics
Final-revised paper
Preprint