Articles | Volume 21, issue 9
https://doi.org/10.5194/nhess-21-2753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
Landslide Research Group, Technical University of Munich, Munich, Germany
Markus Keuschnig
GEORESEARCH, Forschungsgesellschaft mbH, Puch, Austria
Ingo Hartmeyer
GEORESEARCH, Forschungsgesellschaft mbH, Puch, Austria
Robert Delleske
GEORESEARCH, Forschungsgesellschaft mbH, Puch, Austria
Michael Krautblatter
Landslide Research Group, Technical University of Munich, Munich, Germany
Related authors
No articles found.
Johannes Leinauer, Michael Dietze, Sibylle Knapp, Riccardo Scandroglio, Maximilian Jokel, and Michael Krautblatter
Earth Surf. Dynam., 12, 1027–1048, https://doi.org/10.5194/esurf-12-1027-2024, https://doi.org/10.5194/esurf-12-1027-2024, 2024
Short summary
Short summary
Massive rock slope failures are a significant alpine hazard and change the Earth's surface. Therefore, we must understand what controls the preparation of such events. By correlating 4 years of slope displacements with meteorological and seismic data, we found that water from rain and snowmelt is the most important driver. Our approach is applicable to similar sites and indicates where future climatic changes, e.g. in rain intensity and frequency, may alter the preparation of slope failure.
Ingo Hartmeyer and Jan-Christoph Otto
DEUQUA Spec. Pub., 5, 3–12, https://doi.org/10.5194/deuquasp-5-3-2024, https://doi.org/10.5194/deuquasp-5-3-2024, 2024
Felix Pfluger, Samuel Weber, Joseph Steinhauser, Christian Zangerl, Christine Fey, Johannes Fürst, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-2509, https://doi.org/10.5194/egusphere-2024-2509, 2024
Short summary
Short summary
Our study explores permafrost-glaciers interactions with a foucs on its implication for preparing/triggering high-volume rock slope failures. Using the Bliggspitze rock slide as a case study, we demonstrate a new type of rock slope failure mechanism triggered by the uplift of the cold/warm dividing line in polythermal alpine glaciers, a widespread and currently underexplored phenomenon in alpine environments worldwide.
Riccardo Scandroglio, Samuel Weber, Till Rehm, and Michael Krautblatter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1512, https://doi.org/10.5194/egusphere-2024-1512, 2024
Short summary
Short summary
Recent studies confirm that mountain permafrost is reducing, but there is little information on the role of water. This study looks at ten years of weather data and water flow in 50m-deep rock fractures. We precisely quantify the timing and quantities of this flow with a model. For the first time, we estimate pressures generated by water inside rock fractures. Pressures from snowmelt and rain events threaten slope stability; therefore, monitoring water's presence in permafrost areas is crucial.
Maike Offer, Samuel Weber, Michael Krautblatter, Ingo Hartmeyer, and Markus Keuschnig
EGUsphere, https://doi.org/10.5194/egusphere-2024-893, https://doi.org/10.5194/egusphere-2024-893, 2024
Short summary
Short summary
We present a unique dataset of repeated electrical resistivity tomography and long-term borehole temperature measurements to investigate the complex seasonal water flow in permafrost rockwalls. Our joint analysis shows that permafrost rocks are subject to enhanced pressurised water flow during the melt period. In addition to slow thermal heat conduction, permafrost rocks are subject to push-like warming events, favouring accelerated permafrost degradation and reduced rockwall stability.
Wolfgang Aumer, Ingo Hartmeyer, Carolyn-Monika Görres, Daniel Uteau, and Stephan Peth
EGUsphere, https://doi.org/10.5194/egusphere-2023-3006, https://doi.org/10.5194/egusphere-2023-3006, 2024
Short summary
Short summary
The summertime thaw depth of permanently frozen ground (active layer thickness, ALT) is of critical importance for natural hazard management (e.g. rock avalanches), construction (foundation stability) and greenhouse gas emissions (decomposition rates) in permafrost regions. We presented the first analytical heat transport model for simulating ALT on borehole scale. Our results show that the ALT will likely increase by more than 50 % until 2050 at 3000 m a.s.l. in the European Alps.
Natalie Barbosa, Johannes Leinauer, Juilson Jubanski, Michael Dietze, Ulrich Münzer, Florian Siegert, and Michael Krautblatter
Earth Surf. Dynam., 12, 249–269, https://doi.org/10.5194/esurf-12-249-2024, https://doi.org/10.5194/esurf-12-249-2024, 2024
Short summary
Short summary
Massive sediment pulses in catchments are a key alpine multi-risk component. Combining high-resolution aerial imagery and seismic information, we decipher a multi-stage >130.000 m³ rockfall and subsequent sediment pulses over 4 years, reflecting sediment deposition up to 10 m, redistribution in the basin, and finally debouchure to the outlet. This study provides generic information on spatial and temporal patterns of massive sediment pulses in highly charged alpine catchments.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Shiva P. Pudasaini and Michael Krautblatter
Earth Surf. Dynam., 10, 165–189, https://doi.org/10.5194/esurf-10-165-2022, https://doi.org/10.5194/esurf-10-165-2022, 2022
Short summary
Short summary
We present the first physics-based general landslide velocity model incorporating internal deformation and external forces. Voellmy–inviscid Burgers' equations are specifications of the novel advective–dissipative system. Unified analytical solutions constitute a new foundation of landslide velocity, providing key information to instantly estimate impact forces and describe breaking waves and folding, revealing that landslide dynamics are architectured by advection and reigned by forcing.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Philipp Mamot, Samuel Weber, Saskia Eppinger, and Michael Krautblatter
Earth Surf. Dynam., 9, 1125–1151, https://doi.org/10.5194/esurf-9-1125-2021, https://doi.org/10.5194/esurf-9-1125-2021, 2021
Short summary
Short summary
The mechanical response of permafrost degradation on high-mountain rock slope stability has not been calculated in a numerical model yet. We present the first approach for a model with thermal and mechanical input data derived from laboratory and field work, and existing concepts. This is applied to a test site at the Zugspitze, Germany. A numerical sensitivity analysis provides the first critical stability thresholds related to the rock temperature, slope angle and fracture network orientation.
Michael Krautblatter, Lutz Schirrmeister, and Josefine Lenz
Polarforschung, 89, 69–71, https://doi.org/10.5194/polf-89-69-2021, https://doi.org/10.5194/polf-89-69-2021, 2021
Ingo Hartmeyer, Robert Delleske, Markus Keuschnig, Michael Krautblatter, Andreas Lang, Lothar Schrott, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 729–751, https://doi.org/10.5194/esurf-8-729-2020, https://doi.org/10.5194/esurf-8-729-2020, 2020
Short summary
Short summary
Climate warming is causing significant ice surface lowering even in the uppermost parts of alpine glaciers. Using terrestrial lidar, we quantify rockfall in freshly exposed cirque walls. During 6-year monitoring (2011–2017), an extensive dataset was established and over 600 rockfall events identified. Drastically increased rockfall activity following ice retreat can clearly be observed as 60 % of the rockfall volume detached from less than 10 m above the glacier surface.
Ingo Hartmeyer, Markus Keuschnig, Robert Delleske, Michael Krautblatter, Andreas Lang, Lothar Schrott, Günther Prasicek, and Jan-Christoph Otto
Earth Surf. Dynam., 8, 753–768, https://doi.org/10.5194/esurf-8-753-2020, https://doi.org/10.5194/esurf-8-753-2020, 2020
Short summary
Short summary
Rockfall size and frequency in two deglaciating cirques in the Central Alps, Austria, is analysed based on 6-year rockwall monitoring with terrestrial lidar (2011–2017). The erosion rates derived from this dataset are very high due to a frequent occurrence of large rockfalls in freshly deglaciated areas. The results obtained are important for rockfall hazard assessments, as, in rockwalls affected by glacier retreat, historical rockfall patterns are not good predictors of future events.
Philipp Mamot, Samuel Weber, Maximilian Lanz, and Michael Krautblatter
The Cryosphere, 14, 1849–1855, https://doi.org/10.5194/tc-14-1849-2020, https://doi.org/10.5194/tc-14-1849-2020, 2020
Short summary
Short summary
A failure criterion for ice-filled rock joints is a prerequisite to accurately assess the stability of permafrost rock slopes. In 2018 a failure criterion was proposed based on limestone. Now, we tested the transferability to other rocks using mica schist and gneiss which provide the maximum expected deviation of lithological effects on the shear strength. We show that even for controversial rocks the failure criterion stays unaltered, suggesting that it is applicable to mostly all rock types.
Andreas Ewald, Ingo Hartmeyer, Markus Keuschnig, Andreas Lang, and Jan-Christoph Otto
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-42, https://doi.org/10.5194/tc-2019-42, 2019
Preprint withdrawn
Short summary
Short summary
Processes destabilising recently deglaciated rocks, driving cirque headwall retreat, and putting alpine infrastructure at risk are poorly understood due to scarce in situ data. We monitored fracture deformation at a cirque headwall in the Austria Alps. We found thermo-mechanical expansion and freeze-thaw action as dominant processes for deformation. Our results highlight the importance of liquid water in combination with subzero-temperatures on the destabilisation of glacier headwalls.
Philipp Mamot, Samuel Weber, Tanja Schröder, and Michael Krautblatter
The Cryosphere, 12, 3333–3353, https://doi.org/10.5194/tc-12-3333-2018, https://doi.org/10.5194/tc-12-3333-2018, 2018
Short summary
Short summary
Most of the observed failures in permafrost-affected alpine rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. We present a systematic study of the brittle shear failure of ice and rock–ice contacts along rock joints in a simulated depth ≤ 30 m and at temperatures from −10 to −0.5 °C. Warming and sudden reduction in rock overburden due to the detachment of an upper rock mass lead to a significant drop in shear resistance.
Wen Nie, Michael Krautblatter, Kerry Leith, Kurosch Thuro, and Judith Festl
Nat. Hazards Earth Syst. Sci., 17, 1595–1610, https://doi.org/10.5194/nhess-17-1595-2017, https://doi.org/10.5194/nhess-17-1595-2017, 2017
Short summary
Short summary
Deep-seated landslides are an important and widespread natural hazard within alpine regions and can have a massive impact on infrastructure. Pore water pressure plays an important role in determining the stability of hydro-triggered deep-seated landslides. Here we demonstrate a modified tank model for deep-seated landslides that includes snow and infiltration effects and can effectively predict changes in pore water pressure in alpine environments.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
Related subject area
Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
AscDAMs: advanced SLAM-based channel detection and mapping system
Shoreline and land use–land cover changes along the 2004-tsunami-affected South Andaman coast: understanding changing hazard susceptibility
Dynamical changes of seismic properties prior to, during, and after 2014–2015 Holuhraun Eruption, Iceland
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to Kathmandu Valley, Nepal
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
The World Wide Lightning Location Network (WWLLN) over Spain
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Review article: Physical Vulnerability Database for Critical Infrastructure Multi-Hazard Risk Assessments – A systematic review and data collection
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
A neural network model for automated prediction of avalanche danger level
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Comparison of machine learning techniques for reservoir outflow forecasting
Development of black ice prediction model using GIS-based multi-sensor model validation
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
Gridded flood depth estimates from satellite-derived inundations
ProbFire: a probabilistic fire early warning system for Indonesia
Index establishment and capability evaluation of space–air–ground remote sensing cooperation in geohazard emergency response
Brief communication: Monitoring a soft-rock coastal cliff using webcams and strain sensors
Multiscale analysis of surface roughness for the improvement of natural hazard modelling
EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds
Are sirens effective tools to alert the population in France?
UAV survey method to monitor and analyze geological hazards: the case study of the mud volcano of Villaggio Santa Barbara, Caltanissetta (Sicily)
CHILDA – Czech Historical Landslide Database
Review article: Detection of actionable tweets in crisis events
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Opportunities and risks of disaster data from social media: a systematic review of incident information
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Predicting power outages caused by extratropical storms
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
Responses to severe weather warnings and affective decision-making
The object-specific flood damage database HOWAS 21
A spaceborne SAR-based procedure to support the detection of landslides
GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran
Review article: The spatial dimension in the assessment of urban socio-economic vulnerability related to geohazards
Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
CCAF-DB: the Caribbean and Central American active fault database
Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain
Study on real-time correction of site amplification factor
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
Nat. Hazards Earth Syst. Sci., 24, 3075–3094, https://doi.org/10.5194/nhess-24-3075-2024, https://doi.org/10.5194/nhess-24-3075-2024, 2024
Short summary
Short summary
Harsh environments limit the use of drone, satellite, and simultaneous localization and mapping technology to obtain precise channel morphology data. We propose AscDAMs, which includes a deviation correction algorithm to reduce errors, a point cloud smoothing algorithm to diminish noise, and a cross-section extraction algorithm to quantitatively assess the morphology data. AscDAMs solves the problems and provides researchers with more reliable channel morphology data for further analysis.
Vikas Ghadamode, Aruna Kumari Kondarathi, Anand K. Pandey, and Kirti Srivastava
Nat. Hazards Earth Syst. Sci., 24, 3013–3033, https://doi.org/10.5194/nhess-24-3013-2024, https://doi.org/10.5194/nhess-24-3013-2024, 2024
Short summary
Short summary
In 2004-tsunami-affected South Andaman, tsunami wave propagation, arrival times, and run-up heights at 13 locations are computed to analyse pre- and post-tsunami shoreline and land use–land cover changes to understand the evolving hazard scenario. The LULC changes and dynamic shoreline changes are observed in zones 3, 4, and 5 owing to dynamic population changes, infrastructural growth, and gross state domestic product growth. Economic losses would increase 5-fold for a similar tsunami.
Maria R.P. Sudibyo, Eva P. S. Eibl, Sebastian Hainzl, and Matthias Ohrnberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1445, https://doi.org/10.5194/egusphere-2024-1445, 2024
Short summary
Short summary
We assessed the performance of Permutation Entropy (PE), Phase Permutation Entropy (PPE), and Instantaneous Frequency (IF), which are estimated from a single seismic station, to detect changes before, during and after the 2014/2015 Holuhraun eruption in Iceland. We show that these three parameters are sensitive to the pre-and eruptive processes. Finally, we discuss their potential and limitations in eruption monitoring.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-101, https://doi.org/10.5194/nhess-2024-101, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We describe a methodology to systematically gather evidence of the breadth of single natural hazards and their multi-hazard interrelationships in data-scarce urban settings. We apply this methodology to Kathmandu Valley, Nepal, where we find evidence of 21 single hazard types, and 83 multi-hazard interrelationships. This evidence is supplemented with multi-hazard scenarios developed by practitioner stakeholders engaged in disaster risk reduction research and practice in Kathmandu Valley.
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024, https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
Short summary
Early warning systems (EWSs) promise to decrease the vulnerability of self-constructed (informal) settlements. A living lab developed a partially functional prototype of an EWS for landslides in a Medellín neighborhood. The first findings indicate that technical aspects can be manageable, unlike social and political dynamics. A resilient EWS for informal settlements has to achieve sufficient social and technical redundancy to maintain basic functionality in a reduced-support scenario.
Enrique A. Navarro, Jorge A. Portí, Alfonso Salinas, Sergio Toledo-Redondo, Jaume Segura-García, Aida Castilla, Víctor Montagud-Camps, and Inmaculada Albert
EGUsphere, https://doi.org/10.5194/egusphere-2024-704, https://doi.org/10.5194/egusphere-2024-704, 2024
Short summary
Short summary
The Worldwide Lightning Location Network (WWLLN) operates a planetary distributed network of stations which detect lightning signals at a planetary scale. A detection efficiency of 38 % with a location accuracy between 2 and 3 km is obtained for the area of Spain by comparing data with those of the Meteorological Spanish Agency. The capability to resolve convective-storm cells generated in a Cut-off Low Pressure is also demonstrated in the west of Mediterranean sea.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149, https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites are also related to soil quality, and not necessarily to anomalous yields.
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024, https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Short summary
This study provided an opportunity to assess both the perception of the tsunami hazard and the knowledge of alerts in five municipalities located along the French Mediterranean coastlines. The age and location of the respondents explain several differences between the five municipalities surveyed – more so than gender or residence status. This study may help local authorities to develop future tsunami awareness actions and to identify more appropriate strategies to be applied in the short term.
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-208, https://doi.org/10.5194/nhess-2023-208, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Critical infrastructures (CI) are exposed to natural hazards, which may result in significant damage and burden society. The vulnerability is a key determinant for reducing these risks, yet crucial information is scattered in literature. Our study reviews over 1,250 fragility and vulnerability curves for CI assets, creating a unique publicly available physical vulnerability database that can directly be used for hazard risk assessments, including floods, earthquakes, windstorms and landslides.
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024, https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Short summary
Severe weather such as hail, lightning, and heavy rainfall can be hazardous to humans and property. Dual-polarization weather radars provide crucial information to forecast these events by detecting precipitation types. This study analyses the importance of dual-polarization data for predicting severe weather for 60 min using an existing deep learning model. The results indicate that including these variables improves the accuracy of predicting heavy rainfall and lightning.
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023, https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023, https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Short summary
Snow avalanches are a natural hazard that can cause danger to human lives. This threat can be reduced by accurate prediction of the danger levels. The development of mathematical models based on past data and present conditions can help to improve the accuracy of prediction. This research aims to develop a neural-network-based model for correlating complex relationships between the meteorological variables and the profile variables.
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023, https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Short summary
Landslides and ground deformation associated with the construction of a hydropower mega dam in the Santa Cruz River in Argentine Patagonia have been monitored using radar and optical satellite data, together with the analysis of technical reports. This allowed us to assess the integrity of the construction, providing a new and independent dataset. We have been able to identify ground deformation trends that put the construction works at risk.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023, https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Short summary
This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets including high-resolution building inventories, while also leveraging recent advances in machine-learning algorithms. For three out of the four recent earthquakes studied, the machine-learning framework is able to identify over 50 % or nearly half of the damaged buildings successfully.
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023, https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Short summary
In Bangladesh, riverbank erosion occurs every year during the monsoon and affects thousands of households. Information on locations and extent of past erosion can help anticipate where erosion might occur in the upcoming monsoon season and to take preventive measures. In our study, we show how time series of radar satellite imagery can be used to retrieve information on past erosion events shortly after the monsoon season using a novel interactive online tool based on the Google Earth Engine.
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023, https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Short summary
Human activities across China show a similar trend in response to rains. However, urban resilience varies significantly by region. The northwestern arid region and the central underdeveloped areas are very fragile, and even low-intensity rains can trigger significant human activity anomalies. By contrast, even high-intensity rains might not affect residents in the southeast.
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022, https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022, https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Short summary
This study advances previous models through machine learning and multi-sensor-verified results. Using spatial and meteorological data from the study area (Suncheon–Wanju Highway in Gurye-gun), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with the geographic information system (m2). Based on the model results, multiple sensors were buried at four selected points in the study area, and the model was compared with sensor data.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022, https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
Short summary
The devastating effects of recurring drought conditions are mostly felt by pastoralists that rely on grass and shrubs as fodder for their animals. Using historical information from precipitation, soil moisture, and vegetation health data, we developed a model that can forecast vegetation condition and the probability of drought occurrence up till a 10-week lead time with an accuracy of 74 %. Our model can be adopted by policymakers and relief agencies for drought early warning and early action.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022, https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Short summary
The impact of drought may vary in a given region depending on whether it is dominated by trees, grasslands, or croplands. The differences in impact can also be the agro-ecological zones within the region. This paper proposes a hierarchical Bayesian model (HBM) for forecasting vegetation condition in spatially diverse areas. Compared to a non-hierarchical model, the HBM proved to be a more natural method for forecasting drought in areas with different land covers and
agro-ecological zones.
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022, https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Short summary
Landslide dams are secondary disasters caused by landslides, which can cause great damage to mountains. We have proposed a procedure to calculate the key parameters of these dams that uses only a single remote-sensing image and a pre-landslide DEM combined with landslide theory. The core of this study is a modeling problem. We have found the bridge between the theory of landslide dams and the requirements of disaster relief.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022, https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary
Short summary
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the urbanising city of Quito, Ecuador, which experiences earthquake, volcano, landslide, and flood hazards. We use satellite data to evaluate the use of greenspaces as safe spaces following an earthquake. We find disparities regarding access to and availability of greenspaces. The availability of greenspaces that could contribute to community resilience is high; however, many require official designation.
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022, https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
Short summary
The advent of new satellite technologies improves our ability to study floods. While the depth of water at flooded buildings is generally the most important variable for flood researchers, extracting this accurately from satellite data is challenging. The software tool presented here accomplishes this, and tests show the tool is more accurate than competing tools. This achievement unlocks more detailed studies of past floods and improves our ability to plan for and mitigate disasters.
Tadas Nikonovas, Allan Spessa, Stefan H. Doerr, Gareth D. Clay, and Symon Mezbahuddin
Nat. Hazards Earth Syst. Sci., 22, 303–322, https://doi.org/10.5194/nhess-22-303-2022, https://doi.org/10.5194/nhess-22-303-2022, 2022
Short summary
Short summary
Extreme fire episodes in Indonesia emit large amounts of greenhouse gasses and have negative effects on human health in the region. In this study we show that such burning events can be predicted several months in advance in large parts of Indonesia using existing seasonal climate forecasts and forest cover change datasets. A reliable early fire warning system would enable local agencies to prepare and mitigate the worst of the effects.
Yahong Liu and Jin Zhang
Nat. Hazards Earth Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-2022, https://doi.org/10.5194/nhess-22-227-2022, 2022
Short summary
Short summary
Through a comprehensive analysis of the current remote sensing technology resources, this paper establishes the database to realize the unified management of heterogeneous sensor resources and proposes a capability evaluation method of remote sensing cooperative technology in geohazard emergencies, providing a decision-making basis for the establishment of remote sensing cooperative observations in geohazard emergencies.
Diego Guenzi, Danilo Godone, Paolo Allasia, Nunzio Luciano Fazio, Michele Perrotti, and Piernicola Lollino
Nat. Hazards Earth Syst. Sci., 22, 207–212, https://doi.org/10.5194/nhess-22-207-2022, https://doi.org/10.5194/nhess-22-207-2022, 2022
Short summary
Short summary
In the Apulia region (southeastern Italy) we are monitoring a soft-rock coastal cliff using webcams and strain sensors. In this urban and touristic area, coastal recession is extremely rapid and rockfalls are very frequent. In our work we are using low-cost and open-source hardware and software, trying to correlate both meteorological information with measures obtained from crack meters and webcams, aiming to recognize potential precursor signals that could be triggered by instability phenomena.
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Johnny Douvinet, Anna Serra-Llobet, Esteban Bopp, and G. Mathias Kondolf
Nat. Hazards Earth Syst. Sci., 21, 2899–2920, https://doi.org/10.5194/nhess-21-2899-2021, https://doi.org/10.5194/nhess-21-2899-2021, 2021
Short summary
Short summary
This study proposes to combine results of research regarding the spatial inequalities due to the siren coverage, the political dilemma of siren activation, and the social problem of siren awareness and trust for people in France. Surveys were conducted using a range of complementary methods (GIS analysis, statistical analysis, questionnaires, interviews) through different scales. Results show that siren coverage in France is often determined by population density but not risks or disasters.
Fabio Brighenti, Francesco Carnemolla, Danilo Messina, and Giorgio De Guidi
Nat. Hazards Earth Syst. Sci., 21, 2881–2898, https://doi.org/10.5194/nhess-21-2881-2021, https://doi.org/10.5194/nhess-21-2881-2021, 2021
Short summary
Short summary
In this paper we propose a methodology to mitigate hazard in a natural environment in an urbanized context. The deformation of the ground is a precursor of paroxysms in mud volcanoes. Therefore, through the analysis of the deformation supported by a statistical approach, this methodology was tested to reduce the hazard around the mud volcano. In the future, the goal is that this dangerous area will become both a naturalistic heritage and a source of development for the community of the area.
Michal Bíl, Pavel Raška, Lukáš Dolák, and Jan Kubeček
Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021, https://doi.org/10.5194/nhess-21-2581-2021, 2021
Short summary
Short summary
The online landslide database CHILDA (Czech Historical Landslide Database) summarises information about landslides which occurred in the area of Czechia (the Czech Republic). The database is freely accessible via the https://childa.cz/ website. It includes 699 records (spanning the period of 1132–1989). Overall, 55 % of all recorded landslide events occurred only within 15 years of the extreme landslide incidence.
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021, https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Short summary
For many decades, natural disasters have been monitored by trained analysts using multiple satellite images to observe landscape change. This approach is incredibly useful, but our new tool, HazMapper, offers researchers and the scientifically curious public a web-accessible
cloud-based tool to perform similar analysis. We intend for the tool to both be used in scientific research and provide rapid response to global natural disasters like landslides, wildfires, and volcanic eruptions.
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021, https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary
Short summary
In this paper, we study when social media is an adequate source to find metadata about incidents that cannot be acquired by traditional means. We identify six major use cases: impact assessment and verification of model predictions, narrative generation, recruiting citizen volunteers, supporting weakly institutionalized areas, narrowing surveillance areas, and reporting triggers for periodical surveillance.
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021, https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary
Short summary
We trained a recurrent neural network model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging.
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627, https://doi.org/10.5194/nhess-21-607-2021, https://doi.org/10.5194/nhess-21-607-2021, 2021
Short summary
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86, https://doi.org/10.5194/nhess-21-73-2021, https://doi.org/10.5194/nhess-21-73-2021, 2021
Short summary
Short summary
This paper aims to provide a quantitative evaluation of three remotely sensed fire datasets which have recently emerged as an important resource to improve our understanding of fire regimes. Our findings suggest that remotely sensed fire datasets can be used to proxy variations in fire activity on monthly and annual timescales; however, caution is advised when drawing information from smaller fires (< 100 ha) across the Mediterranean region.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Mohammad Malakootian and Majid Nozari
Nat. Hazards Earth Syst. Sci., 20, 2351–2363, https://doi.org/10.5194/nhess-20-2351-2020, https://doi.org/10.5194/nhess-20-2351-2020, 2020
Short summary
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
Diana Contreras, Alondra Chamorro, and Sean Wilkinson
Nat. Hazards Earth Syst. Sci., 20, 1663–1687, https://doi.org/10.5194/nhess-20-1663-2020, https://doi.org/10.5194/nhess-20-1663-2020, 2020
Short summary
Short summary
The socio-economic condition of the population determines their vulnerability to earthquakes, tsunamis, volcanic eruptions, landslides, soil erosion and land degradation. This condition is estimated mainly from population censuses. The lack to access to basic services, proximity to hazard zones, poverty and population density highly influence the vulnerability of communities. Mapping the location of this vulnerable population makes it possible to prevent and mitigate their risk.
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
Richard Styron, Julio García-Pelaez, and Marco Pagani
Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, https://doi.org/10.5194/nhess-20-831-2020, 2020
Short summary
Short summary
The Caribbean and Central American region is both tectonically active and densely populated, leading to a large population that is exposed to earthquake hazards. Until now, no comprehensive fault data covering the region have been available. We present a new public fault database for Central America and the Caribbean that synthesizes published studies with new mapping from remote sensing to provide fault sources for the CCARA seismic hazard and risk analysis project and to aid future research.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Quancai Xie, Qiang Ma, Jingfa Zhang, and Haiying Yu
Nat. Hazards Earth Syst. Sci., 19, 2827–2839, https://doi.org/10.5194/nhess-19-2827-2019, https://doi.org/10.5194/nhess-19-2827-2019, 2019
Short summary
Short summary
This paper evaluates a new method for modeling the site amplification factor. Through implementing this method and making simulations for different cases, we find that this method shows better performance than the previous method and JMA report. We better understand the advantages and disadvantages of this method, although there are some problems that need to be considered carefully and solved; it shows good potential to be used in future earthquake early warning systems.
Cited articles
Anker, F., Fegerl, L., Hübl, J., Kaitna, R., Neumayer, F., and
Keuschnig, M.: Geschiebetransport in Gletscherbächen der Hohen Tauern:
Beispiel Obersulzbach, Wildbach- und Lawinenverbauung, 80, 86–96, 2016.
Aubrecht, C., Meier, P., and Taubenböck, H.: Speeding up the clock in
remote sensing: identifying the “black spots” in exposure dynamics by
capitalizing on the full spectrum of joint high spatial and temporal
resolution, Nat. Hazards, 86, 177–182,
https://doi.org/10.1007/s11069-015-1857-9, 2017.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R.,
Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P.,
Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre,
O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V.,
Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar,
T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and
Nieplova, E.: HISTALP – historical instrumental climatological surface time
series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46,
https://doi.org/10.1002/joc.1377, 2007.
Ayoub, F., Leprince, S., and Keene, L.: User's Guide to COSI-CORR
Co-registration of Optically Sensed Images and Correlation, California
Institute of Technology, Pasadena, CA 91125, USA, 38 pp., 2009.
Barla, G. and Paronuzzi, P.: The 1963 Vajont Landslide: 50th
Anniversary, Rock Mech. Rock Eng., 46, 1267–1270,
https://doi.org/10.1007/s00603-013-0483-7, 2013.
Barsi, Á., Kugler, Z., László, I., Szabó, G., and
Abdulmutalib, H. M.: ACCURACY DIMENSIONS IN REMOTE SENSING, Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 61–67,
https://doi.org/10.5194/isprs-archives-XLII-3-61-2018, 2018.
Batini, C., Blaschke, T., Lang, S., Albrecht, F., Abdulmutalib, H. M.,
Barsi, Á., Szabó, G., and Kugler, Z.: Data Quality in Remote
Sensing, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7,
447–453, https://doi.org/10.5194/isprs-archives-XLII-2-W7-447-2017, 2017.
Bickel, V., Manconi, A., and Amann, F.: Quantitative Assessment of Digital
Image Correlation Methods to Detect and Monitor Surface Displacements of
Large Slope Instabilities, Remote Sens., 10, 1–18, https://doi.org/10.3390/rs10060865, 2018.
Bontemps, N., Lacroix, P., and Doin, M.-P.: Inversion of deformation fields
time-series from optical images, and application to the long term kinematics
of slow-moving landslides in Peru, Remote Sens. Environ., 210,
144–158, https://doi.org/10.1016/j.rse.2018.02.023, 2018.
Bozzano, F., Mazzanti, P., and Moretto, S.: Discussion to: “Guidelines on
the use of inverse velocity method as a tool for setting alarm thresholds
and forecasting landslides and structure collapses” by Carlà, T., Intrieri, E., Di Traglia, F., Nolesini, T., Gigli, G., and Casagli, N., Landslides,
15, 1437–1441, https://doi.org/10.1007/s10346-018-0976-2, 2018.
Breger, P.: The Copernicus Full, Free and Open Data Policy, available at: https://www.ecmwf.int/sites/default/files/elibrary/2017/17104-copernicus-full-free-and-open-data-policy_0.pdf (last access: 30 August 2021), 2017.
Butler, D.: Many eyes on Earth, Nature, 505, 143–144,
https://doi.org/10.1038/505143a, 2014.
Calvello, M.: Early warning strategies to cope with landslide risk, Rivista
Italiana di Geotecnica, 2, 63–91, 2017.
Chae, B.-G., Park, H.-J., Catani, F., Simoni, A., and Berti, M.: Landslide
prediction, monitoring and early warning: a concise review of
state-of-the-art, Geosci. J., 21, 1033–1070,
https://doi.org/10.1007/s12303-017-0034-4, 2017.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N.,
and Crippa, B.: Persistent Scatterer Interferometry: A review,
ISPRS J. Photogramm., 115, 78–89,
https://doi.org/10.1016/j.isprsjprs.2015.10.011, 2016.
Crosta, G. B., Agliardi, F., Rivolta, C., Alberti, S., and Dei Cas, L.:
Long-term evolution and early warning strategies for complex rockslides by
real-time monitoring, Landslides, 14, 1615–1632,
https://doi.org/10.1007/s10346-017-0817-8, 2017.
Debella-Gilo, M.: Matching of repeat remote sensing images for precise
analysis of mass movements, PhD Thesis, Department of Geosciences Faculty of
Mathematics and Natural Sciences, University of Oslo, Oslo, 2011.
Debella-Gilo, M. and Kääb, A.: Sub-pixel precision image matching
for measuring surface displacements on mass movements using normalized
cross-correlation, Remote Sens. Environ., 115, 130–142, https://doi.org/10.1016/j.rse.2010.08.012, 2011.
Darvishi, M., Schlögel, R., Kofler, C., Cuozzo, G., Rutzinger, M.,
Zieher, T., Toschi, I., Remondino, F., Mejia-Aguilar, A., Thiebes, B., and
Bruzzone, L.: Sentinel-1 and Ground-Based Sensors for Continuous Monitoring
of the Corvara Landslide (South Tyrol, Italy), Remote Sens., 10, 1781,
https://doi.org/10.3390/rs10111781, 2018.
Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B.,
Grandjean, P., Pambrun, C., and Varel, E.: Remote-sensing techniques for
analysing landslide kinematics: a review,
B. Soc. Geol. Fr., 178, 89–100, https://doi.org/10.2113/gssgfbull.178.2.89, 2007.
Desrues, M., Lacroix, P., and Brenguier, O.: Satellite Pre-Failure Detection
and In Situ Monitoring of the Landslide of the Tunnel du Chambon, French
Alps, Geosciences, 9, 1–14, https://doi.org/10.3390/geosciences9070313, 2019.
Dikau, R., Brundsen, D., Schrott, L., and Ibsen, M.-L. (Eds.): Landslide
recognition: Identification, Moevement and Courses, Publication/International Association of Geomorphologists, no. 5, John Wiley & Sons,
New York, xii, 251, 1996.
Drusch, M., Bello, U. D., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto,
F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical
High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
ESA: eoPortal: Satellite Missions Database, available at: https://directory.eoportal.org/web/eoportal/satellite-missions/, last access: 4 December 2020.
Foumelis, M., Papadopoulou, T., Bally, P., Pacini, F., Provost, F., and
Patruno, J.: Monitoring Geohazards Using On-Demand And Systematic Services
On Esa's Geohazards Exploitation Platform, in: IGARSS 2019–2019 IEEE
International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019, 5457–5460, 2019.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate,
Earth-Sci. Rev., 162, 227–252,
https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
GeoResearch: Projekt Sattelkar.: Zwischenbericht 1: 2018, NP Hohe Tauern
Salzburg, Klimasensitive, hochalpine Kare, Nationalparks Austria, available at: https://www.data.gv.at/katalog/dataset/A5BF75E4-DAEC-5D02-C696-52A478A248AF (last access: 30 August 2021), 2018.
Giordan, D., Hayakawa, Y. S., Nex, F., and Tarolli, P.: Preface: The use of remotely piloted aircraft systems (RPAS) in monitoring applications and management of natural hazards, Nat. Hazards Earth Syst. Sci., 18, 3085–3087, https://doi.org/10.5194/nhess-18-3085-2018, 2018.
Goodchild, M. F.: Scale in GIS: An overview, Geomorphology, 130, 5–9,
https://doi.org/10.1016/j.geomorph.2010.10.004, 2011.
Grasso, V. F.: The State of Early Warning Systems, in: Reducing Disaster:
Early Warning Systems For Climate Change, edited by: Singh, A. and Zommers,
Z., Springer Netherlands, Dordrecht, 109–125, 2014.
Guerriero, L., Di Martire, D., Calcaterra, D., and Francioni, M.: Digital
Image Correlation of Google Earth Images for Earth's Surface Displacement
Estimation, Remote Sens., 12, https://doi.org/10.3390/rs12213518, 2020.
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009.
Huggel, C., Clague, J., and Korup, O.: Is climate change responsible for
changing landslide activity in high mountains?,
Earth Surf. Proc. Land., 37, 77–91, https://doi.org/10.1002/esp.2223, 2012.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
IPCC (Ed.): Climate change 2014: Synthesis report: Synthesis Report.
Contribution of Working Groups I, II and III to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on
Climate Change, Geneva, Switzerland, 151 pp., 2014.
Kääb, A., Altena, B., and Mascaro, J.: Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation, Nat. Hazards Earth Syst. Sci., 17, 627–639, https://doi.org/10.5194/nhess-17-627-2017, 2017.
Lacroix, P., Pham, M. Q., and Araujo, G.: MuDsLIdeS: Monitoring and
Detection of Landslides from optical Images time-Series, Executive Summary,
ESA-Alcantara initiative No 15/P26., n.d.
Lacroix, P., Berthier, E., and Taipe Maquerhua, E.: Earthquake-driven
acceleration of slow-moving landslides in the Colca valley, Peru, detected
from Pléiades images, Remote Sens. Environ., 165, 148–158,
https://doi.org/10.1016/j.rse.2015.05.010, 2015.
Lacroix, P., Bièvre, G., Pathier, E., Kniess, U., and Jongmans, D.: Use
of Sentinel-2 images for the detection of precursory motions before
landslide failures, Remote Sens. Environ., 215, 507–516,
https://doi.org/10.1016/j.rse.2018.03.042, 2018.
Lacroix, P., Araujo, G., Hollingsworth, J., and Taipe, E.: Self-Entrainment
Motion of a Slow-Moving Landslide Inferred From Landsat-8 Time Series, J.
Geophys. Res.-Earth, 124, 1201–1216,
https://doi.org/10.1029/2018JF004920, 2019.
Leprince, S.: Monitoring Earth Surface Dynamics with Optical Imagery, PhD
Thesis, California Institute of Technology, https://doi.org/10.7907/ZMTV-GV90, 2008.
Leprince, S., Barbot, S., Ayoub, F., and Avouac, J.-P.: Automatic and
Precise Orthorectification, Coregistration, and Subpixel Correlation of
Satellite Images, Application to Ground Deformation Measurements, IEEE
Trans. Geosci. Remote Sensing, 45, 1529–1558,
https://doi.org/10.1109/TGRS.2006.888937, 2007.
Leprince, S., Berthier, E., Ayoub, F., Delacourt, C., and Avouac, J.-P.:
Monitoring Earth Surface Dynamics With Optical Imagery, Eos, 89, 1–12, https://doi.org/10.1029/2008EO010001, 2008.
Loew, S., Gschwind, S., Gischig, V., Keller-Signer, A., and Valenti, G.:
Monitoring and early warning of the 2012 Preonzo catastrophic rockslope
failure, Landslides, 14, 141–154,
https://doi.org/10.1007/s10346-016-0701-y, 2017.
Lucieer, A., Jong, S. de, and Turner, D.: Mapping landslide displacements
using Structure from Motion (SfM) and image correlation of multi-temporal
UAV photography, Prog. Phys. Geog., 38, 97–116,
https://doi.org/10.1177/0309133313515293, 2014.
Mazzanti, P., Rocca, A., Bozzano, F., Cossu, R., and Floris, M.: Landslides
Forecasting Analysis By Displacement Time Series Derived From Satellite
INSAR Data: Preliminary Results, in: FRINGE 2011 Workshop: SP-697, Frascati,
Italy, 19–23 September 2011, 2012.
Mazzanti, P., Caporossi, P., and Muzi, R.: Sliding Time Master Digital Image
Correlation Analyses of CubeSat Images for landslide Monitoring: The
Rattlesnake Hills Landslide (USA), Remote Sens., 12, 592,
https://doi.org/10.3390/rs12040592, 2020.
Moretto, S., Bozzano, F., Esposito, C., and Mazzanti, P.: Lesson learned
from the pre-collapse time series of displacement of the Preonzo landslide
(Switzerland), ROL, 41, 247–250, https://doi.org/10.3301/ROL.2016.140,
2016.
Moretto, S., Bozzano, F., Esposito, C., Mazzanti, P., and Rocca, A.:
Assessment of Landslide Pre-Failure Monitoring and Forecasting Using
Satellite SAR Interferometry, Geosciences, 7, 1–16,
https://doi.org/10.3390/geosciences7020036, 2017.
Noetzli, J., Pellet, C., and Staub, B.: Permafrost in Switzerland 2014/2015
to 2017/2018: Glaciological Report Permafrost No. 16–19 of the Cryospheric
Commission of the Swiss Academy of Sciences, Swiss Permafrost Monitoring
Network (PERMOS), https://doi.org/10.13093/PERMOS-REP-2019-16-19, 2019.
Pecoraro, G., Calvello, M., and Piciullo, L.: Monitoring strategies for
local landslide early warning systems, Landslides, 16, 213–231,
https://doi.org/10.1007/s10346-018-1068-z, 2019.
Pesci, A., Giordano, T., Casula, G., Loddo, F., Martino, P. de, Dolce, M.,
Obrizzo, F., and Pingue, F.: Multitemporal laser scanner-based observation
of the Mt. Vesuvius crater: Characterization of overall geometry and
recognition of landslide events, ISPRS J. Photogramm., 66, 327–336, https://doi.org/10.1016/j.isprsjprs.2010.12.002,
2011.
Petley, D. N. and Petley, D. J.: On the initiation of large rockslides:
perspectives from a new analysis of the Vaiont movement record, in:
Landslides from Massive Rock Slope Failure, edited by: Evans, S. G.,
Scarascia-Mugnozza, G., Strom, A., and Hermanns, R. L., Springer
Netherlands, Dordrecht, 77–84, 2006.
Planet Labs: RapidEye Constellation to be Retired in 2020,
available at: https://www.planet.com/pulse/rapideye-constellation-to-be-retired-in-2020/, last access: 23 February 2020a.
Planet Labs: Planet Imagery Product Specification:
PLANETSCOPE & RAPIDEYE, available at: https://earth.esa.int/eogateway/documents/20142/37627/Planet-combined-imagery-product-specs-2020.pdf, last access: June 2020b.
Plank, S., Krautblatter, M., and Thuro, K.: Feasibility Assessment of
Landslide Monitoring by Means of SAR Interferometry: A Case Study in the
Ötztal Alps, Austria, in: Engineering Geology for Society and Territory:
Volume 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J.,
Azzam, R., Wasowski, J., and Sciarra, N., Springer International Publishing,
Cham, 375–378, https://doi.org/10.1007/978-3-319-09057-3_58,
2015.
Reid, M. E., Baum, R. L., LaHusen, R. G., and Ellis, W. L.: Capturing
landslide dynamics and hydrologic triggers using near-real-time monitoring,
in: Landslides and engineered slopes: From the past to the future, edited
by: Chen, Z., Zhang, J.-M., Ho, K., Wu, F.-Q., and Li, Z.-K., CRC Press,
Boca Raton, Florida, 2008.
Rosu, A.-M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., and Klinger,
Y.: Measurement of ground displacement from optical satellite image
correlation using the free open-source software MicMac, ISPRS J. Photogramm., 100, 48–59,
https://doi.org/10.1016/j.isprsjprs.2014.03.002, 2015.
Sättele, M., Krautblatter, M., Bründl, M., and Straub, D.:
Forecasting rock slope failure: how reliable and effective are warning
systems?, Landslides, 13, 737–750,
https://doi.org/10.1007/s10346-015-0605-2, 2016.
Scaioni, M., Longoni, L., Melillo, V., and Papini, M.: Remote Sensing for
Landslide Investigations: An Overview of Recent Achievements and
Perspectives, Remote Sens., 6, 9600–9652,
https://doi.org/10.3390/rs6109600, 2014.
Schrott, L., Otto, J.-C., and Keller, F.: Modelling alpine permafrost
distribution in the Hohe Tauern region, Austria, Austrian J. Earth Sc., 105, 169–183, 2012.
Semenza, E. and Ghirotti, M.: History of the 1963 Vaiont slide: The
importance of geological factors, B. Eng. Geol. Environ., 59, 87–97, https://doi.org/10.1007/s100640000067, 2000.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander,
L. V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D.,
Della-Marta, P. M., Gerber, M., Gong, S., Goswami, B. N., Hemer, M., Huggel,
C., van den Hurk, B., Kharin, V. V., Kitoh, A., Tank, A. M. K., Li, G.,
Mason, S., McGuire, W., van Oldenborgh, G. J., Orlowsky, B., Smith, S.,
Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., and Zwiers, F. W.:
Changes in Climate Extremes and their Impacts on the Natural Physical
Environment, in: Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation: A Special Report of Working Groups I and
II of the Intergovernmental Panel on Climate Change, edited by: Field, C.
B., Barros, V., Stocker, T. F., and Dahe, Q., Cambridge University Press,
Cambridge, 109–230, https://doi.org/10.1017/CBO9781139177245.006, 2012.
Stumpf, A.: Landslide recognition and monitoring with remotely sense data
from passive optical sensors, Dissertation, University of Strasbourg,
Strasbourg, 2013.
Stumpf, A., Malet, J.-P., Puissant, A., and Travelletti, J.: Monitoring of
Earth Surface Motion and Geomorphologic Processes by Optical Image
Correlation: Chapter 5, in: Land Surface Remote Sensing: Environment and
Risks, edited by: Baghdadi, N. and Zribi, F. M., ISTE Press – Elsevier,
147–190, https://doi.org/10.1016/B978-1-78548-105-5.50005-0, 2016.
Stumpf, A., Michéa, D., and Malet, J.-P.: Improved Co-Registration of
Sentinel-2 and Landsat-8 Imagery for Earth Surface Motion Measurements,
Remote Sensing, 10, 160, https://doi.org/10.3390/rs10020160, 2018.
Sudmanns, M., Tiede, D., Lang, S., Bergstedt, H., Trost, G., Augustin, H.,
Baraldi, A., and Blaschke, T.: Big Earth data: disruptive changes in Earth
observation data management and analysis?, Int. J. Digit. Earth, 123, 1–19, https://doi.org/10.1080/17538947.2019.1585976,
2019.
TUM: AlpSenseBench: Alpine remote sensing of climate-induced natural
hazards, available at: https://www.bgu.tum.de/landslides/alpsensebench/projekt/, last
access: 22 September 2020.
Turner, D., Lucieer, A., and Jong, S. de: Time Series Analysis of Landslide
Dynamics Using an Unmanned Aerial Vehicle (UAV), Remote Sens., 7,
1736–1757, https://doi.org/10.3390/rs70201736, 2015.
UNISDR: UNISDR Terminology on Disaster Risk Reduction, United Nations Office
for Disaster Risk Reduction, Geneva, Switzerland, 2009.
UNISDR: Basics of early warning, Platform for the Promotion of Early
Warning, available at: https://www.unisdr.org/2006/ppew/whats-ew/basics-ew.htm (last access: 3 April 2020), 2006.
Volat, M., Lacroix, P., Bontemps, N., and Doin, M.-P.: Introducing “TIO”:
Optical imagery time series analysis on the Geohazards Exploitation
Platform, in: MDIS ForM@Ter 2017, Besse en Chandesse, 20 October 2017, 2017.
Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., Preux, A. de,
Huss, M., Tognacca, C., Clinton, J., Diehl, T., and Bonanomi, Y.: Direct
observations of a three million cubic meter rock-slope collapse with almost
immediate initiation of ensuing debris flows, Geomorphology, 351, 106933,
https://doi.org/10.1016/j.geomorph.2019.106933, 2020.
Westoby, M. J.,
Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M.:
“Structure-from-Motion” photogrammetry: A low-cost, effective tool for
geoscience applications, Geomorphology, 179, 300–314,
https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Multispectral remote sensing imagery enables landslide detection and monitoring, but its...
Altmetrics
Final-revised paper
Preprint