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Abstract. While optical remote sensing has demonstrated its
capabilities for landslide detection and monitoring, spatial
and temporal demands for landslide early warning systems
(LEWSs) had not been met until recently. We introduce a
novel conceptual approach to structure and quantitatively as-
sess lead time for LEWSs. We analysed “time to warning”
as a sequence: (i) time to collect, (ii) time to process and (iii)
time to evaluate relevant optical data. The difference between
the time to warning and “forecasting window” (i.e. time from
hazard becoming predictable until event) is the lead time
for reactive measures. We tested digital image correlation
(DIC) of best-suited spatiotemporal techniques, i.e. 3 m res-
olution PlanetScope daily imagery and 0.16 m resolution un-
manned aerial system (UAS)-derived orthophotos to reveal
fast ground displacement and acceleration of a deep-seated,
complex alpine mass movement leading to massive debris
flow events. The time to warning for the UAS/PlanetScope
totals 31/21 h and is comprised of time to (i) collect – 12/14 h,
(ii) process – 17/5 h and (iii) evaluate – 2/2 h, which is well
below the forecasting window for recent benchmarks and fa-
cilitates a lead time for reactive measures. We show optical
remote sensing data can support LEWSs with a sufficiently
fast processing time, demonstrating the feasibility of optical
sensors for LEWSs.

1 Introduction

Landslides are a major natural hazard leading to human ca-
sualties and socio-economic impacts, mainly by causing in-
frastructure damage (Dikau et al., 1996; Hilker et al., 2009).

They are often triggered by earthquakes, intense short-period
or prolonged precipitation, and human activities (Hungr et
al., 2014; Froude and Petley, 2018). In a systematic review
Gariano and Guzzetti (2016) report that 80 % of the papers
examined show causal relationships between landslides and
climate change. The ongoing warming of the climate (IPCC,
2014) is likely to decrease slope stability and increase land-
slide activity (Huggel et al., 2012; Seneviratne et al., 2012),
which indicates a vital need to improve the ability to detect,
monitor and issue early warnings of landslides and thus to
reduce and mitigate landslide risk.

Early warning refers to a set of capacities for the timely
and effective provision of warning information through in-
stitutions, such that individuals, communities and organisa-
tions exposed to a hazard are able to take action with suf-
ficient time to reduce or avoid risk and prepare an effective
response (UNISDR, 2009). According to UNISDR (2006),
an effective early warning system consists of four elements:
(1) risk knowledge, the systematic data collection and risk
assessment; (2) the monitoring and warning service; (3) the
dissemination and communication of risk as well as early
warnings; and (4) the response capabilities on local and na-
tional levels. Lead time as defined in the context of land-
slide early warning systems (LEWSs) is the interval between
the issue of a warning (i.e. dissemination) and the forecasted
landslide onset (Pecoraro et al., 2019) and thus crucially de-
pends on time requirements in phases (1)–(3). The success
of an early warning system (EWS) therefore requires mea-
surable pre-failure motion (or slow slope displacement) to
allow for sufficient lead time for decisions on reactions and
countermeasures (Grasso, 2014; Hungr et al., 2014).
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While remote sensing has been established for early warn-
ings, remote sensing is not yet used for real early warnings of
the onset of landslides in steep alpine terrain (with a few ex-
ceptions), where geotechnical instruments are still preferred.
Exceptions include terrestrial InSAR (Pesci et al., 2011; Wal-
ter et al., 2020) and terrestrial laser scanning with high repeti-
tion rates. However, repeated UAS (unmanned aerial system)
and optical satellite (PlanetScope) images with high repeti-
tion rates have so far not been applied for landslide early
warning in steep alpine catchments. In this regard, knowl-
edge of sensor capabilities and limitations is essential, as it
determines which rates and magnitudes of pre-failure motion
can potentially be identified (Desrues et al., 2019). Our pro-
posed framework refers to mass movements in steep alpine
catchments with significant pre-failure motion over sufficient
time periods and thus excludes instantaneous events trig-
gered by processes such as heavy rainfalls or earthquakes.

This study presents a new concept to systematically eval-
uate remote sensing techniques to estimate and increase lead
time for landslide early warnings in these catchments. We do
not start from the perspective of available data; instead, we
define necessary time constraints to successfully employ re-
mote sensing data to provide early warnings. This approach
reduces to a small number the suitable remote sensing prod-
ucts with high temporal and spatial resolutions. With these
constraints, we investigated the application of data from
satellites and UASs to allow the assessment of the data, after
a spaceborne area-wide but low-resolution acquisition, into a
downscaled detailed image recording. In so doing, we anal-
ysed the capability of these different passive remote sensing
systems focusing on spatiotemporal capabilities for ground
motion detection and landslide evolution to provide early
warnings.

Recently, the spatial and temporal resolution of optical
satellite imagery has significantly improved (Scaioni et al.,
2014) and has allowed substantial advances in the defini-
tion of displacement rates and acceleration thresholds to ap-
proach requirements for early warning purposes. This is es-
sential since the spatial and temporal resolution determine
whether landslide monitoring is possible with the detection
of displacement rates and approximate acceleration thresh-
olds, both of which are lacking if information is based solely
on post-event studies (Reid et al., 2008; Calvello, 2017).
Landslide monitoring offers the potential to significantly ad-
vance LEWSs (Chae et al., 2017; Crosta et al., 2017). Previ-
ously, high-spatial-resolution satellite data were obtained at
the expense of a reduction in the revisit rates (Aubrecht et al.,
2017). Consequently, the return period between two images
increased, limiting ground displacement assessment and the
range of observable motion rates. The number of useful im-
ages was further reduced due to natural factors such as snow
cover, cloud cover and cloud shadows. High-resolution re-
mote sensing data were long restricted due to high costs and
data volume (Goodchild, 2011; Westoby et al., 2012). To-
day commercial very high resolution (VHR) optical satellites

Table 1. Overview of different optical multispectral remote sensors
with their corresponding resolution [m] and revisit rate [d]. The sen-
sors are categorised into commercial and free data policy. Source:
ESA (2020).

Sensor Temporal Spatial Free/
resolution [d] resolution [m] commercial

UAS flexible 0.08 Ff

WorldView-2 1.1 1.84 C
WorldView-3 <1 1.24 C
WorldView-4 <1 1.24 C
GeoEye-2 5 1.24 C
SkySat 1 1.5 C
GeoEye-1 3 1.64 C
Pléiades-1A/Pléiades-1B 1 2.0 (0.5)e C
PlanetScope 1 3.0/3.125b C/Fa

RapidEyec 5.5 5d F
Sentinel-2A/Sentinel-2B 5 10 F
Landsat 8 16 30 F

a Free quota via Planet’s Education and Research Program. b PlanetScope Ortho Scene product,
Level 3B/Ortho Tile product, Level 3A (Planet Labs, 2020b). c Reached end of life, March 2020,
archive data usable. d Ortho Tile Level 3A, 5 m (Planet Labs, 2020a). e Colour pansharpened, 0.5 m.
f Self-acquired.

exist, but tasked acquisitions make them inflexible and very
cost intensive, thus limiting research (Butler, 2014; Lucieer
et al., 2014). There is a vast spectrum of available remote
sensing data with a high spatiotemporal resolution (Table 1).
Complementary use of different remote sensing sources can
significantly improve landslide assessment as demonstrated
by Stumpf et al. (2018) and Bontemps et al. (2018), who
draw on archive data and utilise different sensor combina-
tions to analyse the evolution of ground motion.

The latest developments in Earth observation programmes
include both the new Copernicus Sentinel fleet operated by
ESA and a new generation of micro cube satellites, sent into
orbit in large numbers by Planet Labs, Inc. These micro cube
satellites, known as “Doves” as part of PlanetScope (from
now on referred to as PlanetScope satellites), and Sentinel-
2A and Sentinel-2B offer very high revisit rates of 1–5 d and
high spatial resolutions of 3 and 10 m, respectively (Table 1),
for multispectral imagery (Drusch et al., 2012; Butler, 2014;
Breger, 2017). These high spatiotemporal resolutions open
up unprecedented possibilities of studying a wide range of
landslide velocities and natural hazards through remote sens-
ing. Continuing data access is fostered by Planet Labs and
by Copernicus (via its open data policy) providing afford-
able or free data for research. Examples of landslide activity
studies employing multi-temporal datasets based on this ac-
cess to high-spatiotemporal-resolution data include Lacroix
et al. (2018), using Sentinel-2 scenes to detect motions of the
Harmalière landslide in France, and Mazzanti et al. (2020),
who applied a large stack of PlanetScope images for the ac-
tive Rattlesnake landslide, USA.

As landslides tend to accelerate beyond the deformation
rate observable with radar systems before failure, we concen-
trate on optical image analysis (Moretto et al., 2016). One
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advantage of optical imagery is its temporally dense data
(Table 1) compared to open data radar systems with a sen-
sor repeat frequency of 6 d and revisit frequency of 3 d at
the Equator, about 2 d over Europe and less than 1 d at high
latitudes (Sentinel-1, ESA). Optical data allow direct visual
impressions from the multispectral representation of the ac-
quisition target and the option to employ these data for fur-
ther complementary and expert analyses. While active radar
systems overcome constraints posed by clouds and do not re-
quire daylight, data voids can be significant due to layover or
shadowing effects in steep mountainous areas (Mazzanti et
al., 2012; Plank et al., 2015; Moretto et al., 2016). Moreover,
north-/south-facing slopes are less suitable and thus limit the
range of investigation (Darvishi et al., 2018). In general, sen-
sor choice depends on the landslide motion rate with radar at
the lower and optical instruments at the upper motion range
(Crosetto et al., 2016; Moretto et al., 2017; Lacroix et al.,
2019).

However, a flexible, cost-effective alternative to space-
borne optical data is airborne optical images taken by UASs.
Freely selectable flight routes and acquisition dates enable
avoiding shadows from clouds and topographic obstacles as
well as unfavourable weather conditions and summertime
snow cover, all of which frequently impair satellite images
(Giordan et al., 2018; Lucieer et al., 2014). UAS-based sur-
veys provide accurate very high resolution (a few centime-
tres) orthoimages and digital elevation models (DEMs) of
relatively small areas, suitable for detailed, repeated analy-
ses and geomorphological applications (Westoby et al., 2012;
Turner et al., 2015).

In recent years, data provision for users has increased,
and today data hubs provide easy accessibility to rapid,
pre-processed imagery. Nonetheless, technological advances
can be misleading as they promise high-spatiotemporal-
resolution data availability, which frequently does not reflect
reality (Sudmanns et al., 2019). One key problem is the real-
istic net temporal data resolution which is often significantly
reduced due to technical issues, such as image errors and
non-existent data (i.e. data availability, completeness, relia-
bility). Other problems include data quality and accuracy in
terms of geometric, radiometric and spectral factors (Batini
et al., 2017; Barsi et al., 2018). Knowledge of the most useful
remote sensing data options is vital for complex, time-critical
analyses such as ground motion monitoring and landslide
early warning. Timely information extraction and interpreta-
tion are critical for landslide early warnings, yet few studies
have so far explicitly focused on time criticality and the in-
fluence of the net temporal resolution of remote sensing data.

In this investigation we both propose a conceptual ap-
proach to evaluating lead time as a time difference between
the “time to predict” and the “forecasting time” and as-
sess the suitability of UAS sensors (0.16 m) and PlanetScope
(3 m) imagery (the latter with temporal proximity to the UAS
acquisition) for LEWSs. For this we have chosen the Sat-
telkar, a steep, high alpine cirque located in the Hohe Tauern

Range, Austria (Anker et al., 2016). We estimate times for
the three steps: (i) collecting images, (ii) pre-processing and
motion derivation by digital image correlation (DIC), and
(iii) evaluating and visualising. The results from the Sat-
telkar site – and from historic landslide events – will be dis-
cussed in terms of usability and processing duration for crit-
ical data source selection which directly influences the fore-
casting window. Accordingly, we try to answer the following
research questions:

1. How can we evaluate lead time as a time difference be-
tween the time to predict and the forecasting time for
high-spatiotemporal-resolution sensors?

2. How can we quantify “time to warning” as a sequence
of (i) time to collect, (ii) time to process and (iii) time
to evaluate relevant optical data?

3. How can we practically derive profound time-to-
warning estimates as a sequence of (i), (ii) and (iii) from
UAS and PlanetScope high-spatiotemporal-resolution
sensors?

4. Are estimated times to warning significantly shorter
than the forecasting time for recent well-documented
examples and able to generate robust estimations of lead
time available to enable reactive measures and evacua-
tion?

2 Lead time – a conceptual approach

2.1 The conceptual approach

Natural processes and their developments constantly take
place independently, thus dictating the technical approaches
and methodologies researchers can and must apply within
a certain time period. For that reason, we hypothesise the
forecasting window texternal is externally controlled; conse-
quently the applicability of LEWS methods (tinternal) is re-
stricted because they must be shorter than texternal. This ap-
proach is the framework of our time concept (Fig. 1).

The forecasting window is started (texternal, dashed green
outline) following significant acceleration exceeding a set
displacement threshold, leading to a continuous process. Si-
multaneously with the forecasting window, time to warning
(twarning) starts (grey outline). Time to warning is divided
into a three-phase process to allow time estimations for a
comparative assessment of different types of remote sensing
data. This process consists of the phases (1) time to collect,
(2) time to process and (3) time to evaluate, each with their
individual durations. Confidence in the forecasted event in-
creases with time as process acceleration becomes more cer-
tain. Once a warning is released (orange box), the lead time
begins (tlead) and is terminated by the following release and
subsequent impact (red box). The lead time is the difference
between the forecasting window and the time to warning.
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Figure 1. The novel conceptual approach for lead time, time to
warning and the forecasting window for optical image analysis.

During the lead time, reaction time (treact) starts when appro-
priate countermeasures are taken to prepare for and reduce
risks ahead of the impending event and ends with the final
impact.

The time-to-warning period (twarning) is defined by the
time necessary to systematically collect data, analyse the
available information and evaluate it. Hence, the greater the
lead time, the more extensively countermeasures can be im-
plemented prior to the event. An imperative for an effective
EWS is that the required time to take appropriate mitigation
and response measures has to be within the lead time interval
(tlead) (Pecoraro et al., 2019) with tlead ≥ treact.

2.2 Practical implementation of multispectral data in
the concept

The time to warning consists of a three-phase process (see
Sect. 2.1 and Fig. 1) to allow rough time estimations for a
comparative assessment of different types of remote sensing
data. Nevertheless, to realise this temporal concept an estab-
lished operating system is required, which includes reference
data (DEM, previous results); experience from past fieldwork
and ready UAS flight plans with preparation for a UAS flight
campaign; satellite data access; experience in the single soft-
ware processing steps including final classification and visu-
alisation templates; and, if utilised for UASs, installed and
measured ground control points.

The first phase includes the collection of data starting from
the acquisition by the sensor, the data transfer, image pre-
processing and provision to the end user. The user selects im-
ages online from the data hub and downloads and organises
them. For a UAS campaign, the user must obtain flight per-
mits, check flight paths and conduct the UAS flight. The sec-
ond phase encompasses time to process for the complete data
handling from the downloaded data to final analysis-ready
image stacks in a GIS or corresponding software. These
preparatory steps may include image selection and renam-

ing, atmospheric correction, co-registration, resampling and
translation to other spatial resolutions and geographic projec-
tion systems, adjustments such as clipping, stacking of single
bands into one multispectral image or the division into sin-
gle bands, and calculation of hillshade from the DEM among
others, depending on the requirements. Following this prepa-
ration, the data are processed with the appropriate software
tools to derive ground motion, calculate total displacement
and derive surface changes, e.g. volume calculations or pro-
files. In the third and last phase, time to evaluate, the results
are compared to inventory data and, if available, ground truth
data, displacement results of other sensors or different spatial
resolutions, and different time interval variations to observe
changes in sensitivity to meteorological conditions. Addi-
tionally, filters may be applied to eliminate noise. Finally,
the results are analysed and evaluated. In each phase quality
management is carried out for data access and pre- and post-
processing. In time to collect, the images must be selected
manually prior to any download from the data hub, as its filter
tool options on cloud and scene coverage are of limited help.
Accordingly, the areal selection may be misleading as the
region of interest (RoI) might not be fully covered, though
the sought-after, smaller area of interest (AoI) is covered but
not returned from the request. Concerning cloud filters, first,
the filter refers to the RoI as a whole in terms of percent-
age of cloud coverage. The AoI can still be free of clouds
or else be the only area covered by clouds in the total RoI.
Therefore, an image is either not returned although usable or
returned but not useable. Second, clouds can create shadows
for which no filter is available. As a result, affected images
have to be manually removed by the user. Images which are
of low quality due to snow cover have to be discarded too.
These actions indirectly represent the first quality checks in
the collection phase. In the following processing phase, the
images in a GIS are checked for quality and accuracy. De-
pending on the data provider, some pre-processing such as
radiometric, atmospheric and/or geometric corrections may
be conducted. During this phase, additional user-based steps
will be checked if necessary. Finally, the results are compared
to other data (e.g. DEM, dGPS), are reviewed for their valid-
ity and may be supplemented by statistical evaluation.

3 Study site

The Sattelkar is a steep, high alpine, deglaciated, west-
facing cirque at an altitude of between 2130–2730 m a.s.l.
in the Obersulzbach valley, Großvenedigergruppe, Austria
(Fig. 2a). Surrounded by a headwall of granitic gneiss, the
cirque infill is characterised by massive volumes of glacial
and periglacial debris as well as rockfall deposits (Fig. 2b,
c). Since 2003 surface changes have taken place as evi-
denced by a massive degradation of the vegetation cover and
the exposure and increased mobilisation of loose material.
A terrain analysis revealed that a deep-seated, retrogressive
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Figure 2. In August 2014, heavy ongoing precipitation triggered massive debris flow activity of 170 000 m3 in volume, of which approx-
imately 70 000 m3 derived from the catchment above 2000 m. A further 100 000 m3 was mobilised in the channel within the cone. The
consequence was that the river Obersulzbach was blocked, leading to a general flooding situation in the catchment and resulting in substan-
tial destruction in the middle and lower reaches (Fig. 3).

Figure 3. Obersulzbach valley, flood event September 2014. (a) Flooding situation in the Obersulzbach valley with the Sattelkar landslide
cone deposit (image centre). (b) Flood area at the valley mouth in Sulzau and Schaffau. The river Salzach is at the bottom of the image.
© Salzburger Nachrichten/Anton Kaindl.

movement in the debris cover of the cirque had been initi-
ated (Anker et al., 2016; GeoResearch, 2018). High water
(over)saturation is assumed to be causing the spreading and
sliding of the glacial and periglacial debris cover on the un-
derlying, glacially smoothed bedrock cirque floor, forming a
complex landslide (Hungr et al., 2014). Detailed aerial or-
thophoto analyses, witness reports and damage documenta-
tions indicate a steady increase in mass movement and debris
flow activity over the last decade (Anker et al., 2016).

The Sattelkar has been the focus of international research
projects such as PROJECT Sattelkar (GeoResearch, 2018)
and AlpSenseBench (TUM, 2020) since 2018. In 2015 pre-
liminary findings revealed a mass movement coverage of
130 000 m2 with approximately 1×106 m3 of debris and dis-
placement rates of more than 10 m yr−1. The debris consists
of boulders up to 10 m in diameter (Fig. 2c, d), allowing vi-

sual block tracking and delimiting the active process area.
High displacement was measured between 2012 and 2015
with up to 30 m yr−1.

In the Sattelkar cirque, several monitoring components are
installed to provide ongoing and long-term monitoring. Nine
permanent ground control points (GCPs) are measured with
a dGPS to provide stable and optimal conditions to derive or-
thophotos from highly accurate UAS images (GeoResearch,
2018). A total number of 15 near-surface temperature log-
gers (buried at 0.1 m depth) recorded annual mean tempera-
tures slightly above the freezing point (1–2 ◦C) in the period
2016 to 2019. Ground thermal conditions at depth react with
significant lag times to recent warming and therefore are pri-
marily determined by climatic conditions of the past (Noetzli
et al., 2019). Significantly cooler climatic conditions in pre-
vious decades and centuries (Auer et al., 2007) thus likely
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Figure 4. Acquisition dates of UAS and PlanetScope images within the investigated time period. Calculated interval I for UAS images
(13 July 2018–24 July 2019, 376 d) and interval Ib for PlanetScope images (19 July 2018–24 July 2019, 370 d) and interval II for UAS and
PlanetScope images (24 July–4 September 2019, 42 d). Note that the Ia PlanetScope interval was discarded.

contributed to the formation of (patchy) permafrost at the
Sattelkar cirque. Recent empirical–statistical modelling of
permafrost distribution in the Hohe Tauern Range confirms
possible permafrost presence at the study site (Schrott et al.,
2012).

The Sattelkar is a suitable case study as it is in the
early stages of the landslide development and thus fits best
to this conceptual approach. Here, processes take place on
timescales appropriate for long-term observation to provide
sufficient warning time. The active part of the cirque has ac-
celerated in recent years, allowing the analysis of EWS con-
cepts based on multispectral optical remote sensing data sup-
ported by complementary block tracking.

4 Materials and methods

4.1 Optical imagery

Optical satellite imagery is more appropriate for high-
deformation studies than radar applications are due to its high
spatial resolution as well as the short time span between ac-
quisitions (Delacourt et al., 2007). Although the west-facing
slope is favourable for the application of radar derivatives
(InSAR/DInSAR), the choice to use optical imagery is based
on the observed high displacement rates, which cause decor-
relation when using radar technologies as they are more sen-
sitive than optical technologies. Complex and/or large dis-
placement gradients make the phase ambiguity difficult to
solve for radar interferometry (Kääb et al., 2017). Revisit
times of current radar satellites (e.g. Sentinel-1) are longer
than those of optical satellites, and if time periods between
image acquisition become too long, ground motion may ac-
cumulate such that the displacement is too high to be mea-
sured. Several studies on displacements of faults and land-
slides have shown the potential of optical data to provide
detailed displacement measurements based on image corre-
lation techniques (DIC) (Leprince et al., 2007; Rosu et al.,
2015). A further advantage of optical images for geomor-
phological processes in steep terrain is their viewing geom-
etry (close to nadir) (Lacroix et al., 2019). Here we employ
DIC to compare the spatiotemporal resolution of multispec-
tral optical imagery (UAS and PlanetScope) and to assess its

suitability for early warning purposes. UAS images offer ex-
cellent spatial resolution and accuracy at the centimetre scale
(Turner et al., 2015) and complement large-scale satellite or
airborne acquisitions (Lucieer et al., 2014). PlanetScope im-
agery provides the highest temporal resolution among avail-
able sensors with daily acquisitions, guaranteed data avail-
ability, and free and open access for research purposes. In
this study the PlanetScope Analytic Ortho Scene SR (surface
reflectance) imagery (16 bit; geometric, sensor and radiomet-
ric corrections) was employed (Planet Labs, 2020b) and was
supported by the Planet Labs Education and Research Pro-
gram.

4.2 Data availability of PlanetScope

Research on the availability and usability of PlanetScope im-
agery was conducted on the Planet Explorer data hub for the
time span from the beginning of April to the end of October
in 2019, as during these months snow cover should be negli-
gible. Filter parameters were solely set for four-band Plan-
etScope Ortho Scene data and the Sattelkar AoI. In order
to obtain all available images, no filters (e.g. sun azimuth,
off-nadir angle) were applied. We defined four categories: (i)
meteorological constraints due to snow cover, cloud cover
and cloud shadow; (ii) image (coverage) errors made by
the provider, (iii) no data availability; and (iv) the remain-
der of usable data (Table 2). The output request was evalu-
ated according to the defined categories and was compared
to the provider’s guaranteed daily image provision, which
is comprised of 213 d for the time period (1 April–31 Oc-
tober 2019). We calculated percentages for the above cate-
gories based on days per month as well as a 7-month sum
and percentage average. The availability analysis did not in-
clude an examination of the data with regard to their spatial
usability in terms of their positional accuracy and/or image
shifts.

Unfavourable meteorological influences of cloud
cover/shadow and snow cover affected up to 32.3 %
and up to 33.3 %, respectively, on all 213 d; on average
14.5 % and 7 % of the days were not usable (Table 2). For
10 d in June snow influence had the greatest negative share
(33.3 %); for April there was 3 d of snow coverage, and
the months September and October each had 1 d of snow
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Table 2. PlanetScope four-band data availability and usability for Sattelkar AoI for April to October 2019.

Month April May June July August September October 7-month 7-month
[%] [%] [%] [%] [%] [%] [%] sum avg [%]

Usable 0.0 0.0 20.0 22.6 9.7 13.3 9.7 23 10.7

Unusable

cloud cover/shadow 16.7 6.5 0.0 19.4 32.3 16.7 9.7 31 14.5
snow cover 10.0 0.0 33.3 0.0 0.0 3.3 3.2 15 7.0
image errors 23.3 25.8 16.7 12.9 29.0 20.0 19.4 45 21.0
no coverage/data voids 10.0 12.9 16.7 32.3 16.1 20.0 32.3 43 20.1

Not available no upload 40.0 54.8 13.3 9.7 12.9 26.7 25.8 56 26.2

coverage. Cloud cover/shadow exerted a higher impact on
data usability by 14.5 %. Problems on the part of Planet
Labs made many of the data unusable due to image errors:
between four and nine images per month were not usable
(21 %). On average for 26.2 % of the analysed time period
no image data were available. In this 7-month period, 43
images (20.1 %) had data voids or did not cover the AoI;
thus the overall usability is limited to about 11 %.

4.3 Data acquisition and processing

In line with the concept in Fig. 1 (Sect. 1), the following pro-
cessing steps are categorised and described.

1. tcollect. UAS data acquisition was preceded by detailed
flight route planning and checks of local weather and
snow conditions. UAS flights were carried out with a
DJI Phantom 4 UAS on 13 July 2018, 24 July 2019 and
4 September 2019 (see Table 3; Figs. 4, 6b, c).

For each acquisition, the total area was covered by four
flights which were started at different elevations (Ta-
ble 4). Flight planning was carried out with UgCS main-
taining a high overlap (front 80 %, side 70 %) and a tar-
get ground sampling distance (GSD) of 7 cm. The area
covered was approximately 3.4 km2, and with a flight
speed of about 8 m s−1 total flight time took 3.5 h. The
images were captured in RAW format. In the Planet
Explorer data hub, PlanetScope Ortho Scene data were
selected for usability; imagery affected by snow cover,
cloud cover, cloud shadow and partial AoI coverage was
discarded (Table 5).

2. tprocess. In phase two (time to process) the PlanetScope
images were visualised in QGIS. Thereafter, a sec-
ond selection (visually with the MapSwipe Tool plu-
gin) from the downloaded images was filtered for er-
rors of location, inter-tile shift and shifts in the individ-
ual bands which were previously not clearly discernible
in the online data hub. The final selection of images
was made based on the temporal proximity to the UAS
data to guarantee the best comparability. For acquisi-

tion set (1), there are two PlanetScope images (2 and
19 July 2018) which differed from the UAS acquisi-
tion date (13 July 2018) by 11 and 6 d, respectively. For
acquisition sets (2) and (3), PlanetScope and UAS ac-
quisition dates were identical (24 July and 4 Septem-
ber 2019). The acquired datasets were categorised into
chronological intervals I, Ia, Ib and II (see Fig. 4).

The UAS images in RAW format were modified us-
ing Adobe Exposure to improve contrast, highlights,
shadows and clarity. Thereafter, they were exported
as JPG files (compression 95 %) and processed with
PIX4Dmapper to a 0.08 m resolution and orthorectified
based on nine permanent ground control points (GCPs,
30× 30 cm). These were repeatedly (1000 measure-
ments/position) registered with the Trimble R5 dGPS
and corrected via the baseline data of the Austrian Po-
sitioning Service (APOS) provided by the BEV (Bun-
desamt für Eich- und Vermessungswesen). Horizontal
root-mean-squared errors (RMSEs) range from 0.05 to
0.10 m for vertical RMSE. These GCPs were employed
for georeferencing and further rectification of all UAS
surveys.

Next, the data were clipped to a common area of interest
(AoI) and resampled with GDAL and the cubic convo-
lution method to 0.16 m to enhance processing time and
increased reliability of image correlation. PlanetScope
Satellite images were co-registered in MATLAB rela-
tive to a reference image (https://gitlab.lrz.de/tobi.koch/
satelliteregistration.git, 25 February 2021). A feature
point detection step was applied to estimate a geometric
similarity transformation between the reference (mas-
ter) and all target (slave) image pairs excluding the AoI
with its terrain motion. Thereafter feature point outliers
were statistically removed (RANSAC) and the similar-
ity transformation of the slave images to the master im-
age was performed. After removing the outliers, more
than 500 feature matches were found for the entire im-
age pair dataset. The mean distance of transformed in-
lier feature points from the target image to their corre-
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sponding feature matches in the reference image ranged
between 0.6 and 0.8 pixels, confirming the high regis-
tration accuracy (see Fig. S14 in the Supplement). We
used digital image correlation (DIC) to measure the
displacement for the active landslide body of the Sat-
telkar and to assess the suitability of the PlanetScope
and UAS data. This method employs optical and ele-
vation data and calculates the distance between an im-
age pair, based on the spatial distance of the highest
correlation peaks between an initial search and a fi-
nal reference window. The result provides displacement
and ground deformation in 2D on a sub-pixel level.
COSI-Corr (Co-registration of Optically Sensed Images
and Correlation), widely used software in landslide and
earthquake studies, was used for sub-pixel image cor-
relation (Stumpf, 2013; Lacroix et al., 2015; Rosu et
al., 2015; Bozzano et al., 2018). COSI-Corr is an open-
source software add-on developed by Caltech (Leprince
et al., 2007), for ENVI Classic. There are two corre-
lators: in the frequency domain based on an FFT (fast
Fourier transformation) algorithm and a statistical one.
Applying the more accurate frequential correlator en-
gine, recommended for optical images, different param-
eter combinations of window sizes, direction step sizes
and robustness iterations were tested. Parameter settings
include the initial window size for the estimation of the
pixelwise displacement between the images and the fi-
nal window size for sub-pixel displacement computa-
tion in x, y; a direction step in x, y between the sliding
windows; and several robustness iterations (Table 6).
We utilised recommended window sizes as suggested
by Leprince et al. (2007) and Bickel et al. (2018). Step
size one showed good results while keeping the original
spatial resolution for the output; robustness iterations of
two to four were sufficient for our purposes. Initial and
final window sizes were systematically tested (see Ta-
ble 6). For computing, a state-of-the-art power station
was employed (AMD Ryzen 9 3950X 16-core proces-
sor, 3.70 GHz, 128 GB RAM).

The results of each correlation computation return a
signal-to-noise ratio (SNR) map and displacement fields
in east–west and north–south directions. These results
were exported from ENVI Classic as GTiff files, and
the total displacement was then calculated with QGIS.

3. tevaluate. In the last phase (time to evaluate) the results of
various parameter settings were compared in QGIS and
ArcGIS along with different combinations of visualisa-
tion. Displacement below a 4 m threshold was discarded
from the PlanetScope datasets due to aberrant values
(noise, outliers). The threshold definition was defined
on (i) the value distribution in both the total displace-
ment and the corresponding SNR result and (ii) a visual
comparison of the maps for the total displacement and
the SNR. This definition allowed us to identify outliers

Table 3. Acquisition dates of UAS and PlanetScope images, in
chronological order.

Acquisition set UAS PlanetScope

(1) 13 July 2018 2 July 2018 (a),
19 July 2018 (b)

(2) 24 July 2019 24 July 2019

(3) 4 September 2019 4 September 2019

and unlikely displacement. Apart from this threshold no
other filters were employed, and we kept the output raw
(see Fig. S13, for raw DIC on PlanetScope). Very few
inconsistencies were present in the UAS-derived dis-
placement results, which were accepted without mod-
ification.

Additional analyses were performed to estimate the DIC
outputs of both the UAS orthophotos and PlanetScope
satellite imagery. Visual tracking of 36 single blocks,
identifiable in the UAS orthophoto series, allowed de-
riving direction and amount of movement; this sup-
ported the confirmation process for (i) the total displace-
ment and (ii) the results of automated and manual track-
ing. In the next section we present this approach only for
time interval II.

5 Results

In Sect. 5.1 we present ground motion results from DIC for
the original input resolution for (i) the UAS, 0.16 m input
resolution, and (ii) PlanetScope, 3 m input resolution, based
on parameters in Table 6. In Sect. 5.2 DIC results for the
UAS, 0.16 m, are analysed with regard to displacement of vi-
sual single block tracking. Finally, in Sect. 5.3 required times
for tcollection, tprocessing and tevaluation for each sensor are pre-
sented.

5.1 Total displacements

Figure 5a and b show the total displacements derived from
UAS orthophotos at a 0.16 m resolution for time intervals
I and II (see Table 6). Apart from several minor displace-
ment patches, no motion is visible outside the active body in
either period. Time interval I (376 d) (Fig. 5a) shows mean
displacement values from 6 to 14 m for a coherent area in
the eastern half of the lobe from the centre (c) to the east-
ern boundary of the active area. The highest displacement
rates (up to 20 m) are observed within small high-velocity
clusters in the northwest section (d). Lower velocities oc-
cur along the southern boundary (e,f ), ranging from zero
to 6 m with smooth transitions. Ambiguous, small-scale pat-
terns with highly variable displacement rates are present in
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Table 4. UAS flight plans.

Flight plan Length of Flight time Passes No. of GSD Altitude start Highest flight Lowest terrain
parts flight path [km] [min] images [cm] point [m] position [m] point [m]

Top 6.8 17 6 121 7 2630 3120 2365
Middle 7.5 19 6 135 7 2200 2682 1820
Low 1 7.3 17 6 130 7 1768 2115 1620
Low 2 5.6 14 6 81 7 1768 2110 1620

Total 27.2 67 24 467 7 3120 1620

Table 5. PlanetScope Ortho Scene data.

Acquisition date Acquisition Identifier Incidence
time (local) angle [◦]

2 July 2018 11:34 20180702_093434_0f3f_3B_AnalyticMS_SR 2.18E−01
19 July 2018 11:35 20180719_093512_0f3f_3B_AnalyticMS_SR 2.36E−01
24 July 2019 11:42 20190724_094200_1014_3B_AnalyticMS_SR 5.57E+00
4 September 2019 11:36 20190904_093632_0e20_3B_AnalyticMS_SR 4.24E+00

the western half (a) and along the northern boundary (b). No
motion is detected along the western fringe (i.e. at the land-
slide head) which is 20 m in width. South of the landslide (g)
there is a small patch of minor displacement with continu-
ous (up to 3.5 m) and ambiguous signals. Furthermore, we
observed small-scale patterns of ambiguous signals in the
east (j ) and in the west of the active area in the drainage
channels (h,i).

Time interval II (42 d) (Fig. 5b) shows great similarity to
time interval I with ambiguous signals in the same areas such
as the drainage channels (h, i) and within the western half of
the active area (b). In contrast to interval I (Fig. 5a), within
the active area a homogenous higher-velocity patch (up to
6 m) near the landslide head is evident (a). In the eastern half
large homogenous patches extend from the landslide cen-
tre (c) to the root zone (d), showing coherent displacement
values of zero to 4 m. During this shorter time interval II, no
displacement is detected along the southeastern boundary (e)
and for large parts of the root zone (f ) previously covered
in I. Similarly to I, the landslide head has a 20 m rim free of
signal (see also x and y in Fig. 6). In the central part of the
lobe (c) total displacements are significantly reduced.

Figure 5c and d demonstrate total displacement for similar
time intervals to those of the UAS (see Table 3 and Fig. 4).
For interval Ib (370 d) (Fig. 5c) wide fringes with no motion
were detected around an actively moving core area, which
consists of small-scale clusters with variable total displace-
ment in the western part, coherent high velocities in the mid-
dle and coherent low velocities east of this core area. Out-
side the landslide, northeast and immediately south (j ), high-
velocity patches are observed.

In interval II (42 d) (Fig. 5d) the detected displacement is
restricted to the western half of the landslide (a) and shows

the same significant fringes with no motion as in I. Compared
to interval I the motion pattern of this core area is more ho-
mogeneous with increasing displacement towards the east.
Outside the active area several patches show medium to high
total displacement, the largest of which is located 300 m
northwest of the landslide (i).

5.2 Single block tracking

Figure 6a illustrates the total displacement derived from the
UAS data at a high resolution (0.16 m) for interval II (42 d).
UAS orthoimages were used to manually measure single
block displacement for 36 clearly identifiable boulders on
the landslide surface. Block displacements of 1 m are visi-
ble in the eastern part (f ), whereas DIC does not reveal any
displacement below 1 m. Boulder tracks longer than 2 m in
the central and western part of the landslide are reflected by
DIC-derived displacement values. Near the front a 6 m dis-
placement of one block (a) is represented in the DIC result.
The highest values (6, 10 and 16 m) were observed in re-
gions where DIC delivered ambiguous, small-scale patterns
of highly variable displacements. Displacement vectors show
consistent bearings in the downslope direction of the land-
slide motion for homogeneous areas of the DIC result (a, c,
d); there are short vectors with chaotic bearings in areas of
ambiguous patterns (b), some of which are pointing upslope.
The vectors show no displacement in stable areas outside the
active area and where no DIC signal is returned.

5.3 Time required for collection, processing and
evaluation

In Sect. 2 we introduced a novel concept to extend lead time,
consisting of three phases within the warning time window
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Table 6. COSI-Corr input parameters for intervals of the UAS and PlanetScope.

Sensor Input interval Initial window Final window Robustness Step size
resolution [px] [px] iteration

UAS I: 13 July 2018–24 July 2019 128× 128 32× 32 2 1× 1
(0.16 m) II: 24 July–4 September 2019
PlanetScope Ib: 19 July 2018–24 July 2019 64× 64 32× 32 4 1× 1
(3.0 m) II: 24 July–4 September 2019

Table 7. Relevant dates for historic failures of Vajont (ITA), Preonzo (CH) and the Sattelkar (AUT). Time period in italics–bold used for
Fig. 8. Time intervals in days (∼ for rough estimations) and years in square brackets; sum of days based on the first day of the month if only
month as reference is available from the literature (Petley and Petley, 2006; Anker et al., 2016; Sättele et al., 2016; Loew et al., 2017). When
only the month is given, dates are in the format month/year; when the day is also given, dates are in the format day.month.year. Further
explanation is in the text.

(see Fig. 1). This concept is based on DIC results; thus ev-
ery step comprised in each phase has been previously under-
taken. On this basis, knowledge of required time for a further
process iteration of the three phases is given.

The time required for collection, processing and evalua-
tion of UAS and PlanetScope data is estimated and summed
in Fig. 7. Planet Labs specifies 12 h from image acquisition to
the provision in the data hub, which includes to a large extent
data pre-processing (Planet Labs, 2020b). Adding 2 h for the
selection, ordering and download process, we assume that
the time required for the collection phase is approximately
the same for both sensors, with 14 h for PlanetScope and 12 h
for the UAS. With regard to the time needed for the process-
ing phase, the sensors differ with the UAS requiring 17 h and
PlanetScope 5 h. Time for the evaluation phase is estimated
to be about 2 h. In sum, twarning for the UAS is approximately
31 h compared to 21 h for PlanetScope.

6 Discussion

To systematically analyse the predictive power of the UAS
and PlanetScope data, we will (i) evaluate ambiguous sig-
nals, error sources and output performance; (ii) assess ob-
tainable temporal and spatial resolutions; and (iii) derive a
systemic estimate of the minimum obtainable warning times.

6.1 Error sources and output performance

To evaluate error sources and output performance, we com-
pared results of digital image correlation results from optical
data with (i) high-resolution UAS orthophotos, (ii) mapped
mass movement boundaries and (iii) visual block tracking for

UAS orthophotos. The approximately 1-year evaluation pe-
riod encompassed all seasons; hence freezing–thawing con-
ditions and a wide range of meteorological influences, e.g.
thunderstorms and heavy rainfall, are included. The two in-
vestigated time intervals are I/Ib and II, covering 376/370
and 42 d (typical high alpine summer season), respectively
(Fig. 4). Interval II exclusively covers (high alpine) summer
conditions, with negligible to no contribution from freezing
conditions. As these inclusion periods are inconsistent, the
amount of total displacement cannot be directly compared;
however the relative motion patterns can be. Accordingly, we
can confirm the suggested parameter settings of earlier stud-
ies on window sizes, steps and robustness iterations (Ayoub
et al., 2009; Bickel et al., 2018).

In terms of the mass movement boundary, the total dis-
placement derived from the DIC of the UAS data generally
matches the field-mapped landslide boundary for both inter-
vals (I, II) (Fig. 5a, b) and is supported by the absence of sig-
nificant noise outside the AoI. Mapped boulder trajectories
for interval II (see Fig. 6) are consistent with the calculated
total displacement and thus confirm COSI-Corr as a reliable
DIC tool to derive ground motion for this study site and UAS
orthophotos as suitable input data. Nevertheless, there are
several areas with ambiguous signals. Here we follow Lep-
rince et al. (2007) describing a correlation loss as “decorre-
lation” with signal-to-noise values that are low/null (i.e. no
convergence of the correlation algorithm) and/or large off-
sets, which are either unrealistic in nature or beyond the
valid matching window distance. Decorrelation in our under-
standing exhibits a salt-and-pepper appearance in the DIC
result with random displacement vectors, related to inconsis-
tently tracked features. The software is not able to find the
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Figure 5. Results of DIC total displacement of orthoimages for the UAS for (a) and (b) at a 0.16 m resolution and PlanetScope (c) and (d) at
a 3 m resolution. Time intervals for UAS image pair (a) I (13 July 2018–24 July 2019, 376 d) and (b) II (24 July–4 September 2019, 42 d)
and for PlanetScope (c) Ib (19 July 2018–24 July 2019, 370 d) and (d) II (24 July–4 September 2019, 42 d). Explanation of inconsistently
tracked features (a) a and b and (b) b and the northwestern landslide head are described in Sect. 5.2. The solid black line represents the
boundary of the active landslide based on field mapping. Background: hillshade of lidar DEM, 1 m resolution (© SAGIS).

corresponding, correlated surface pattern, leading to a misfit
(i.e. misrepresentation) and/or mismatch (i.e. blunders) of the
matching windows and finally resulting in noise (Debella-
Gilo, 2011; Guerriero et al., 2020). Nevertheless, this decor-
relation signal is still a valuable observation that might be
related to surface processes and not only to erroneous limita-
tions of the DIC method. There are four main reasons that
might cause these effects: (i) significant temporal change
of the surface, i.e. revolving and/or rotational deformation;
(ii) high displacements exceeding the matching window size
being smaller than the offset; (iii) land cover changes such
as snow cover, vegetation cover and alluvial processes; and
(iv) changes related to illumination (e.g. shadow) or im-
age errors (e.g. orthorectification, shifts in individual bands)
(Leprince, 2008; Debella-Gilo, 2011; Lucieer et al., 2014;
Stumpf et al., 2016). In our study, the decorrelated salt-and-
pepper areas include to a large degree the landslide head (a),
the drainage channel (h) (Fig. 5a, b), a larger patch south
of the active area boundary (g) (Fig. 5a), and some smaller
patches in little depressions (g) (Fig. 5a) and (j ) (Fig. 5a, b).
The patches j and east of j are identified as snow fields in
the orthophotos and the noise results from decorrelation. In
Fig. 5a, the large southern patch (g) shows clear displace-

ment values for the rear part and decorrelation for the front
region resulting from morphological changes within the im-
age pair of interval I (see Fig. S12). This is due to a gain of
between 1 and 2 m for an area of about 250 m2. The decor-
relation in the drainage channel (h) could stem from mas-
sive changes in pixel values, similarly to the decorrelation on
the basis of alluvial processes, as described by Leprince et
al. (2007). Decorrelations in the areas with the fastest ground
motions also lead to high pixel changes (Stumpf et al., 2016):
these are observable in the active landslide area within the
lobe, where large areas of decorrelation may be explained by
high displacements in the leading landslide head (a) with re-
detected, hence correlated, pixels in the trailing areas (c, d, e,
f ). These findings can be transferred to the landslide interior
area (a, b) and the frontal western regions and the northern
margin (b). The observation is confirmed by geomorpholog-
ical mapping (see Fig. S11) and measured boulder block tra-
jectories from the orthophotos (Fig. 6a). Several patches of
correlation (c, f ) with corresponding boulder trajectories of
up to 4 m (34.8 m yr−1) (d) can be detected in the rear areas.
A correlated patch with a 16 m (34.8 m yr−1) trajectory (a)
is located in the flow direction behind the foremost boulder.
In this case the method was able to partially capture the dis-
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Figure 6. (a) Displacement derived from UAS data at a 0.16 m resolution for interval II (24 July–4 September 2019, 42 d) combined with
boulder trajectories (in metres) manually measured in the UAS orthophotos in the same time period. Displacement vectors show landslide
flow (black). Origin of inconsistently tracked features (a) for b and the northwestern landslide head are described in Sect. 5.2. The solid black
line represents the boundary of the active landslide based on field mapping. Background: UAS hillshade, 24 July 2019 (0.08 m), orientation
−3◦ from north. UAS orthophotos at a 0.16 m resolution for the master (b) and slave image (c) of the corresponding time interval.

placement as the distinct boulder block supported the detec-
tion, which probably led to correlation. Similarly there is an-
other example with a trajectory of 10 m (86.9 m yr−1) outside
a homogeneous correlated area. This leads to the assumption
that for the calculated time period, with 63 pixels or more
at a resolution of 0.16 m, no pixel matching is possible and
probably reached the correlation capacity due to the too-high
displacement. With a correlation window smaller than the
displacement, the algorithm cannot capture the displacement
(Stumpf et al., 2016). However field observations provide ev-
idence that the rock masses are deforming, and the surface
is altering due to the high mobility and rotational behaviour
of some boulder blocks. This leads to changed pixel values
and spectral characteristics of the block surface and the sur-
rounding area, which can also result in poor correlations and
even random errors and mismatches (Debella-Gilo and Kääb,
2011). This finding is similar to observations in a rock glacier
study by Debella-Gilo and Kääb (2011). Similar results were

observed by Lucieer et al. (2014), who described a loss of
recognisable surface patterns if revolving and rotational dis-
placements occur, causing decorrelation and noise as output.
These results show that with COSI-Corr and UAS orthopho-
tos of 0.16 m, it is possible to detect the total displacement
of the landslide in both extent and internal process behaviour
even in this steep, heterogeneous terrain. Nevertheless, high
displacement rates and rotational surface behaviour in the
cirque limit the DIC method. A decrease in the time inter-
val for this particular highly mobile study site would likely
reveal an enhanced correlation since for shorter time periods
the total displacement decreases and surface changes are re-
duced, which can be controlled by shortening the temporal
baseline (Debella-Gilo and Kääb, 2011). In sum, though the
results contain heterogeneous, noisy, decorrelated areas, the
combination with homogeneous displacement areas still of-
fers valuable insights into this and other internal landslide
structures and complex behaviours.
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Figure 7. Time to warning is composed of three phases: time to
collect, to process and to deliver. Time to warning (subsequent to
acceleration) is 21 h for PlanetScope and 31 h for the UAS. Thus,
any hazard process that takes longer than 21/31 h to prepare the re-
lease and impact can be forecasted.

6.2 Comparison of temporal and spatial resolution

We compared the COSI-Corr total displacement results of
PlanetScope (Ib and II; Fig. 5c, d) and UAS images (I and
II; Figs. 5a, b and 6a) for the same time periods at different
spatial resolutions (see Table 6). For the PlanetScope DIC re-
sult the main part of the landslide is detected, and its area is
generally consistent with the results of the UAS DIC, which
is additionally confirmed by boulder trajectories. The frontal
part (a) reveals correlation signals (I and II), while for the
same time intervals and parts, the UAS DIC results show a
decorrelation (Ib and II). The correlation is likely to be at-
tributable to the coarser spatial resolution of 3 m PlanetScope
input data and hence a smaller number of pixels to be cap-
tured at this site with the DIC method. Similar texture of
rock clast surfaces could lead to false positives resulting in
correlation as patches appear to be similar in matching win-
dows. However, in contrast to the UAS result (Fig. 5a, b), the
outcome on a large scale fails to detect the entire actual ac-
tive area (b and f ) as well as its internal motion behaviour.
Nevertheless, for the visualisation and analysis of the Plan-
etScope results, the range of total displacements had to be
restricted to values equal to and greater than 4 m due to noise
and outliers over large areas, as applied and described by
Bontemps et al. (2018). Even then, noise and several mis-
represented displacement patches are observed for i and j

and in the northeast image corner (Fig. 5). We can identify
several reasons for these large clusters of high motion val-
ues. Massive cloud and snow coverage hampered the first
images of both interval Ib (19 July 2018) (Fig. 5c) and in-
terval II (24 July 2019) (Fig. 5d), leading to a 20 m fringe
of false displacements in the northeastern part of the image.
Minor snow fields as visible in the images from 24 July 2019
for both the UAS and PlanetScope likely explain the big

cluster of incorrect displacements southeast of the lobe (j );
nonetheless, in the satellite image they are smaller than the
resulting DIC displacement. High cloud coverage in two in-
put images with large areas of white pixels may exert an in-
fluence leading to high gains due to sensor saturation (Lep-
rince, 2008). Illumination changes in interval II (Fig. 5d) may
cause unrealistic displacements outside the boundary with
slightly darker colours due to shadows in the first satellite
image (24 July 2019), and large parts within the second im-
age (4 September 2019) are also in the shade. A comparison
of the acquisition times and true sun zenith, e.g. for the sec-
ond image, reveals a difference of 1 h 34 min between the
image acquisition at 11:36 LT (local time) and the true local
solar time at 13:10 LT. As the study site is located in a high
alpine terrain with a west-facing cirque, at this time of day
there are shadows of considerable length which have a sig-
nificant influence on the result of digital image correlations.
One clear advantage of the UAS images is that their acqui-
sition is plannable according to the best illumination condi-
tions with the sun at its zenith. Moreover, the UAS flight path
as well as the system itself remained the same for all three
acquisitions, while PlanetScope employs various satellites.

Despite different input resolutions and time intervals (Ib
vs. I and II vs. II; see Table 3) with different sensors
(UAS, PlanetScope), there is a similarity for the landslide
head which indicates that the displacement is restricted to a
smaller area than the previously demarcated boundary, based
on our field investigations. This is clearer for the time interval
I (376/370 d) (Fig. 5a vs. c) as for the longer temporal base-
line the total displacement accumulation is higher and thus
better captured by COSI-Corr for PlanetScope with a 3 m
resolution. Due to the shorter interval II (42 d) (Fig. 5b vs.
d) with less accumulated total displacement, the rear of the
landslide is not represented; no signal is shown as the total
displacement for PlanetScope was restricted to values above
4 m. Values below 4 m had to be discarded for PlanetScope
DIC results as they were lost in noise; i.e. for the entire DIC
results there is total displacement of between 0 and 4 m (see
Fig. S13). Hence, when applying a minimum threshold of
4 m, the satellite image detects large parts of the main active
core area, but widths of 50–80 m from the boundary show no
displacement. However, large false clusters of high total dis-
placement are within the PlanetScope result for interval I for
j and the northeast image corner (Fig. 5c) and interval II for
i (Fig. 5d).

Measured ground motion of block tracking and Plan-
etScope results indicate and support existing high ground
motions. In addition there are morphologically significant
volumetric turnovers with areas of large gains and losses of
±5 m (see Fig. S11). These observations might explain the
resulting decorrelation at the finer resolution of 0.16 m for
the landslide head: the matching window is smaller than the
offset and texture surface changes are too complex to be re-
detected, i.e. matched, and thus correlated, leading to decor-
relation and noise. Homogeneous correlated patches are at
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the front of the landslide body for the shorter time inter-
val; there may have been some displacement just below the
detection threshold for this high ground motion, or some
boulders and their surroundings might have been matched,
or both may apply (Fig. 6a, a). In this case for the com-
plex ground motion with high-spatial-resolution data, the
previous assumption based on a shorter time interval likely
leads to improved detection of inherent process behaviour
(see Sect. 6.1). Generally, with high-resolution images, such
as those of UASs, we recommend first calculating displace-
ments based on a coarser input resolution (1–3 m) to exam-
ine the overall situation and detect changes and second cal-
culating displacements at a finer resolution in order to focus
on relevant details of the AoI. With regard to PlanetScope
data, a 3 m resolution seems to be in a good spatial range to
assess ground displacements even of this steep and hetero-
geneous study site with its high motion. Nonetheless, con-
straints such as illumination due to early daytime acquisi-
tions leading to shadows and meteorological influences by
clouds, cloud shadows and snow decrease the quality of the
satellite images and reduce their applicability. Sensor satu-
ration, shadow length, size and direction as well as changes
in snow, cloud or vegetation cover impose limitations (Dela-
court et al., 2007; Leprince et al., 2008) and accord with our
observations. The authors identify additional limitations such
as radiometric noise, sensor aliasing, human-made changes
and co-registration errors (Leprince et al., 2008). All these
limitations have a negative impact on the input image, which
leads to impaired DIC calculations and results and (partially
or wholly) inaccurate analysis of the displacement. These
limitations might have played a role in our results. In our
experience, the usability of the DIC result may be influenced
by the input image quality. This restricts the application of
PlanetScope images to a certain degree. They can be em-
ployed as input data to detect displacements, but as there are
in the present setting too many signals of false-positive dis-
placements, which can be discarded solely on the basis of
field evidence, these data are currently of limited use. They
should be handled with caution, and we recommend combin-
ing them with complementary data and ground truth.

6.3 Estimating time to warning

Early warning is essentially defined as being earlier than the
event and thus puts high external time constraints on obser-
vation and decision. The time window between the detection
of an accelerating movement and preparing for final failure
and the final failure itself is determined by the environment.
Therefore, two sensors with the highest-available spatiotem-
poral resolution were evaluated and compared with regard
to their applicability to the early warning of landslides. We
made rough assumptions and assessed the time needed for
the phases of time (i) to collect, (ii) to process and (iii) to
evaluate relevant data (summarised in the time-to-warning
window; see Fig. 7).

Despite different underlying technologies, the time re-
quired for the collection phase is approximately the same
for both sensors. For the UAS, we estimated about 12 h
under ideal circumstances, while for PlanetScope we esti-
mated 12 h (Planet Labs, 2020b) plus 2 h for image selec-
tion, download and initial analysis, adding up to 14 h in to-
tal (see Sect. 5.3). In the second phase, time to process, de-
riving orthophotos from raw UAS images is time consum-
ing. The subsequent DIC calculations demand significantly
more processing time for the UAS images than for lower-
resolution PlanetScope images. The final phase, time to de-
liver, takes about 2 h for each sensor. In our case study, the
estimated time to warning (twarning) was 10 h longer for the
UAS approach (31 h) in comparison to the PlanetScope ap-
proach (21 h). These time calculations are based on ideal en-
vironmental conditions and data availability. Assuming good
conditions exist to conduct the UAS flight and no constraints
limit the utilisation of satellite images, in theory a daily de-
ployment is possible. In reality, unfavourable weather condi-
tions and cloud and snow cover as well as limited data avail-
ability will increase the actual twarning significantly. From the
available images in the Planet Data hub (besides other exclu-
sions) meteorological influences reduced for April–October
2019 the usability to 14.5 % and 7 % for cloud cover and
snow cover, respectively (Table 2). The flexibility of a UAS
can serve as a practical remote sensing tool for the investiga-
tion of ground motion behaviour in a spatiotemporal context.
Nonetheless, weather influences can make a UAS flight im-
possible or impractical as the result might be useless. De-
pending on the level of illumination, the same may apply
for satellite images. Regardless of any meteorological con-
straints, the promised daily availability by PlanetScope is
unrealistic, due to data gaps and provider issues; our study
showed that for the Sattelkar from April to October 2019
only 11 % of the captured images during this time were us-
able. Hence, PlanetScope data have a temporal availability
that is similar to Sentinel-1 with a 6 d revisit time. In time-
critical early warning scenarios, when time is running out,
all available even partly usable images will be utilised and
fieldwork may be conducted, even if the prevailing condi-
tions are suboptimal but will increase data availability. The
comparison of two selected remote sensing options demon-
strates that comprehensive knowledge of the available remote
sensing data sources and their respective time requirements
can substantially reduce the time to warning (twarning) and
extend the lead time (tlead).

Significant observations of the temporal evolution of his-
toric landslides are presented in Table 7 and described below.
These include (i) the Preonzo rock slope failure, Switzerland
(Sättele et al., 2016; Loew et al., 2017); (ii) the Vajont rock
slide, Italy (Petley and Petley, 2006); and (iii) the Sattelkar
complex slide, Austria (Anker et al., 2016). These landslides
have specific evolution histories, e.g. Preonzo (2002 and
2010), with early observed crack developments, increased
movement and minor events (Sättele et al., 2016); the Sat-
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telkar, with large volume mass wasting processes since 2005
and a debris slide event in 2014 (see Sect. 3) (Anker et al.,
2016); and Vajont, with ductile failures in 1960 and 1962 and
a transition from ductile to brittle behaviour in 1963 (Petley
and Petley, 2006; Barla and Paronuzzi, 2013).

Figure 8 is the extension of our concept (see Sect. 1,
Fig. 1) systematically supplemented with our estimated time
to warning (UAS, PlanetScope) and compared to the few data
series pre-dating larger slope failures.

Following a significant acceleration, the forecasting win-
dow is opened and twarning starts, which is composed of
phases (i) time to collect, (ii) time to process and (iii) time to
evaluate. To ascertain a significant acceleration, one further
observation is required. Hence, one complete cycle of the
three phases, previous analyses and processing iterations are
given. Our analysis showed that the UAS and PlanetScope
can approach times as short as 31/21 h; as a result tlead is in-
creased, and so is treact.

Assuming both sensors reliably estimate ground motion,
solely based on their time requirement, this concept was
applied to the temporal development of historic landslide
events, thus from measured increased displacements and/or
massive accelerations to the final event (Table 7). On this
basis we simplified the graph and what we defined as “sig-
nificant acceleration” using dates of observations such as in-
creased crack opening (Vajont), critical displacement (Pre-
onzo) and the beginning of active ground motion (Sattelkar).
Therefore, the opening of twarning and forecasting window are
concrete observations of the particular site, independent of
any intensity described by the corresponding authors, and al-
lows more freedom for temporal evaluations without going
into detail.

For the Preonzo case, the entire 2012 spring period was
characterised by high displacement rates. We defined 1 May
2012, when geologists operating the warning system in-
formed local authorities and assembled a crisis team, as the
onset or “increased movement” and 15 May 2012 with a
rock mass detachment of 300 000 m3 as the impact (Sät-
tele et al., 2016), in total approximately 15 d. For Vajont,
the 1 / velocity plot by Petley and Petley (2006) (based on
data from Semenza and Ghirotti, 2000) shows an increase
in movement at about day 60 along with a transition from a
linear to an asymptotic trend at approximately day 30, de-
fined as a transition from ductile to brittle. Therefore, we as-
sumed a 30 d forecasting window for twarning and tlead until
the impact of the hazardous event on 9 October 1963. How-
ever, note that velocities of about 35 mm d−1 are still low
and at the minimum of the displacement recognition capabil-
ity for the digital image correlation method. For the Sattelkar
site, the observed mass displacement increase is presumed to
have started in 2005 with the 170 000 m3 debris flow event on
31 July 2014 as the impact, thus a window of about 3498 d
(Anker et al., 2016).

Even for the Preonzo event, with its short forecasting win-
dow of 15 d, the ground motion assessment based on the eval-

uated optical remote sensing images would have been pos-
sible under the assumption of reasonably good UAS flying
conditions and the provision of usable PlanetScope images.
For twarning there is enough temporal leeway to repeat at least
three to four successive measurements comprising the three
phases. However, as single accelerations are possible in very
short time intervals of less than 2 d, it is impossible to cap-
ture these accelerations by means of optical remote sensing
methods, given a time requirement of 31 h for the UAS and
21 h for PlanetScope. Nevertheless, this comparison shows
that for larger and long-preparing slope failures the techni-
cal twarning may well be shorter than the forecasting win-
dow starting at the time at which the process becomes pre-
dictable. For this type of slope failure, recent developments
such as ESA’s Geohazards Exploitation Platform (GEP), de-
veloped and operated by Terradue, support on-demand ser-
vices such as the Thematic Exploitation Platforms (TEPs)
and have the potential to decrease twarning: the ESA service
provides an archive of Copernicus Sentinel-1 and Sentinel-
2, Pléiades, and SPOT 6 and SPOT 7 data and access to
cloud-computing resources to support large-scale geohazard
mapping and monitoring (Volat et al., 2017; Foumelis et al.,
2019; Lacroix et al., n.d.). Therefore, the time-critical phases
of time to collect and time to process, which in our example
are attributed to the larger share of the total time requirement
for twarning, could be significantly reduced as the data are
directly accessible through high-performance cloud comput-
ing. What remains is the third phase, time to evaluate, where
a relatively short time is required; thus tlead is extended.

7 Conclusions and outlook

This paper presents an innovative concept to compare the
lead time for landslide early warnings of two optical remote
sensing systems. We tested this temporal concept by apply-
ing UAS and PlanetScope images of temporal proximity as
these are currently the sensors with the best spatiotemporal
resolution. We assessed the sensors’ capability to identify
hotspots and to recognise behaviour by delineating ground
motion employing digital image correlation (DIC). In so do-
ing, knowing the necessary processing time enabled us to es-
timate the time requirement and finally to incorporate it into
the concept to evaluate sensors with regard to ongoing land-
slide processes of the Sattelkar as well as historic landslide
events.

Our findings derived from DIC for this steep, high alpine
case study show that high-resolution UAS data (0.16 m) can
be employed to identify and demarcate the main landslide
process and reveal its heterogeneous motion behaviour as
confirmed by single block tracking. Thus, validated total dis-
placement ranges from 1–4 m and is up to 14 m for 42 d.
PlanetScope Ortho Scene data (3 m) can detect the displace-
ment of the landslide central core; however, they cannot
accurately represent its extent and internal behaviour. The
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Figure 8. Conceptual approach with estimated twarning for the UAS and PlanetScope. Phases of collection, processing and evaluation (indi-
cated as arrows of relative length in orange, blue and green, respectively) (see phases in Figs. 1 and 7) with their total duration time (dashed
grey arrows). In twarning, one additional observation requires in sum 31 h for UAS and 21 h for PlanetScope data. Above, major landslides
are compared from the onset or displacement detection (solid line) (Petley and Petley, 2006; Anker et al., 2016; Sättele et al., 2016).

signal-to-noise ratio, including multiple false-positive dis-
placements, complicates the detection of hotspots at least in
this very steep and heterogeneous alpine terrain.

Coarse temporal data resolutions, such as in the case study
investigated here, represent an important restriction on the
use of optical remote sensing data for landslide early warn-
ing applications. Acceleration (and the resulting failure) over
short periods of time will likely go unnoticed due to large
data acquisition intervals. However, for prolonged accelera-
tion periods, such as observed at the Sattelkar slide and many
other relevant hazard sites, the chosen data sources have been
demonstrated to represent a formidable early warning ap-
proach capable of contributing to an improved risk analysis
and evaluation in steep, high alpine regions.

With regard to the temporal aspect for early warning pur-
poses, PlanetScope satellite images require less time com-
pared to the UAS for the time phases of collection, process-
ing and analysing. As a consequence, when time is of the
essence, the UAS acquisition cannot compete with the high
frequency of PlanetScope daily revisit rates. In general, both
are limited in their use as they are passive optical sensors
dependent on favourable weather conditions. Nevertheless,
with a realistic value of 10 % usable data for our study site,
PlanetScope cannot provide daily data as promised.

To conclude, in methodological terms DIC is a reliable
tool to derive total displacement of gravitational mass move-
ments even for steep terrain. Given the high reliability of
UAS data, its temporal resolution is the key in future attempts
to overcome decorrelation due to high ground motions. In ad-
dition, a slightly coarser resolution reduces the time needed
for total processing and enhances correlation while maintain-

ing spatial accuracy and reliability. PlanetScope is especially
interesting as a complementary sensor when UAS employ-
ment is restricted, e.g. at inaccessible and/or dangerous sites
or for areas too extensive to be covered. For continuous mon-
itoring and early warning, the warning time window could
be shortened by on-site drone ports with autonomous acqui-
sition flights and automatic processing. Our systematic eval-
uation of the sensor capability can be applied to other optical
remote sensing sensors, and the same is true for our con-
ceptual approach which extends the lead time. Future studies
should focus on the applicability of complementary optical
data to confirm the detection of landslide displacement and
adjust UAS output resolution as this significantly increases
the validity of DIC internal ground motion behaviour.
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