Articles | Volume 21, issue 7
https://doi.org/10.5194/nhess-21-2163-2021
https://doi.org/10.5194/nhess-21-2163-2021
Invited perspectives
 | Highlight paper
 | 
15 Jul 2021
Invited perspectives | Highlight paper |  | 15 Jul 2021

Invited perspectives: The ECMWF strategy 2021–2030 challenges in the area of natural hazards

Florian Pappenberger, Florence Rabier, and Fabio Venuti

Related authors

Advances in Land Surface Model-based Forecasting: A Comparison of LSTM, Gradient Boosting, and Feedforward Neural Networks as Prognostic State Emulators in a Case Study with ECLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2081,https://doi.org/10.5194/egusphere-2024-2081, 2024
Short summary
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022,https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Characteristics of Heatwaves in Africa: Morocco 2000 and South Africa 2015/16
Chloe Brimicombe, Claudia Di Napoli, Rosalind Cornforth, Florian Pappenberger, Celia Petty, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-242,https://doi.org/10.5194/nhess-2021-242, 2021
Revised manuscript not accepted
Short summary
OpenIFS@home version 1: a citizen science project for ensemble weather and climate forecasting
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021,https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
GloFAS-ERA5 operational global river discharge reanalysis 1979–present
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020,https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
GTDI: a game-theory-based integrated drought index implying hazard-causing and hazard-bearing impact change
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci., 24, 3479–3495, https://doi.org/10.5194/nhess-24-3479-2024,https://doi.org/10.5194/nhess-24-3479-2024, 2024
Short summary
Insurance loss model vs. meteorological loss index – how comparable are their loss estimates for European windstorms?
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 24, 3445–3460, https://doi.org/10.5194/nhess-24-3445-2024,https://doi.org/10.5194/nhess-24-3445-2024, 2024
Short summary
Intense rains in Israel associated with the train effect
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci., 24, 3267–3277, https://doi.org/10.5194/nhess-24-3267-2024,https://doi.org/10.5194/nhess-24-3267-2024, 2024
Short summary
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Andrew Brown, Andrew Dowdy, and Todd P. Lane
Nat. Hazards Earth Syst. Sci., 24, 3225–3243, https://doi.org/10.5194/nhess-24-3225-2024,https://doi.org/10.5194/nhess-24-3225-2024, 2024
Short summary
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024,https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary

Cited articles

Di Napoli, C., Barnard, C., Prudhomme, C., Cloke, H. L., and Pappenberger, F.: ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis, Geosci. Data J., 8, 2–10, https://doi.org/10.1002/gdj3.102, 2020. 
Düben, P., Modigliani, U., Geer, A., Siemen, S., Pappenberger, F., Bauer, P., Brown, A., Palkovic, M., Raoult, B., Wedi, N., and Baousis, V: Machine learning at ECMWF: A roadmap for the next 10 years, ECMWF Technical memorandum 878, https://doi.org/10.21957/ge7ckgm, 2021. 
Ebert, E., Brown, B., Göber, M., Haiden, T., Mittermaier, M., Nurmi, P., Wilson, L., Jackson, S., Johnston, P., and Schuster, D.: The WMO challenge to develop and demonstrate the best new user-oriented forecast verification metric, Meteorol. Z., 27, 435–440, https://doi.org/10.1127/metz/2018/0892, 2018. 
ECMWF: The ECMWF Strategy 2021–2030, available at: https://www.ecmwf.int/en/about/what-we-do/strategy, last access: 22 January 2021a. 
ECMWF: Monitoring of the observing system, available at: https://www.ecmwf.int/en/forecasts/quality-our-forecasts/monitoring-observing-system, last access: 13 July 2021b. 
Short summary
The European Centre for Medium-Range Weather Forecasts mission is to deliver high-quality global medium‐range (3–15 d ahead of time) weather forecasts and monitoring of the Earth system. We have published a new strategy, and in this paper we discuss what this means for forecasting and monitoring natural hazards.
Altmetrics
Final-revised paper
Preprint