Articles | Volume 21, issue 7
https://doi.org/10.5194/nhess-21-1983-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1983-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implementation of WRF-Hydro at two drainage basins in the region of Attica, Greece, for operational flood forecasting
Elissavet Galanaki
CORRESPONDING AUTHOR
National Observatory of Athens, Ioannou Metaxa & Vas. Pavlou,
15236 Penteli, Greece
Konstantinos Lagouvardos
National Observatory of Athens, Ioannou Metaxa & Vas. Pavlou,
15236 Penteli, Greece
Vassiliki Kotroni
National Observatory of Athens, Ioannou Metaxa & Vas. Pavlou,
15236 Penteli, Greece
Theodore Giannaros
National Observatory of Athens, Ioannou Metaxa & Vas. Pavlou,
15236 Penteli, Greece
Christos Giannaros
Frederick Research Center, 7 Filokyprou Street, 1036 Pallouriotisa,
Nicosia, Cyprus
National Observatory of Athens, Ioannou Metaxa & Vas. Pavlou,
15236 Penteli, Greece
Related authors
No articles found.
Konstantis Alexopoulos, Ian C. Willis, Hamish D. Pritchard, Giorgos Kyros, Vassiliki Kotroni, and Konstantinos Lagouvardos
EGUsphere, https://doi.org/10.5194/egusphere-2026-327, https://doi.org/10.5194/egusphere-2026-327, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Our research shows that Greece's highest mountains have lost half of their winter snow over the past four decades. Using a new model that reconstructs daily snow cover from satellite and climate data, we found a rapid and widespread decline driven mainly by rising temperatures. These changes fall outside the natural variability of the climate and highlight growing risks for water resources in Mediterranean mountain regions, due to snow droughts.
Emmanouil Flaounas, Silvio Davolio, Shira Raveh-Rubin, Florian Pantillon, Mario Marcello Miglietta, Miguel Angel Gaertner, Maria Hatzaki, Victor Homar, Samira Khodayar, Gerasimos Korres, Vassiliki Kotroni, Jonilda Kushta, Marco Reale, and Didier Ricard
Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, https://doi.org/10.5194/wcd-3-173-2022, 2022
Short summary
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
Cited articles
Alves, M., Nadeau, D. F., Music, B., Anctil, F., and Parajuli, A.: On the
performance of the Canadian Land Surface Scheme driven by the ERA5 reanalysis over the Canadian boreal forest, J. Hydrometeorol., 21, 1383–1404, 2020.
Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen, S., and Kunstmann, H.: Role of runoff-infiltration partitioning and resolved
overland flow on land-atmosphere feedbacks: a case-study with the WRF-Hydro
coupled modeling system for West Africa, J. Hydrometeorol., 17, 1489–1516,
https://doi.org/10.1175/JHM-D-15-0089.1, 2016.
Arnault, J., Rummler, T., Baur, F., Lerch, S., Wagner, S., Fersch, B., Zhang, Z., Kerandi, N., Keil, C., and Kunstmann, H.: Precipitation Sensitivity to the Uncertainty of Terrestrial Water Flow in WRF-Hydro: An Ensemble Analysis for Central Europe, J. Hydrometeorol., 19, 1007–1025, https://doi.org/10.1175/JHM-D-17-0042.1, 2018.
Avolio, E., Cavalcanti, O., Furnari, L., Senatore, A., and Mendicino, G.:
Brief communication: Preliminary hydro-meteorological analysis of the flash
flood of 20 August 2018 in Raganello Gorge, southern Italy, Nat. Hazards Earth Syst. Sci., 19, 1619–1627, https://doi.org/10.5194/nhess-19-1619-2019, 2019.
Bassett, R., Young, P. J., Blair, G. S., Samreen, F., and Simm, W.: A large ensemble approach to quantifying internal model variability within the WRF numerical model, J. Geophys. Res.-Atmos., 125, e2019JD031286, https://doi.org/10.1029/2019JD031286, 2020.
Camera, C., Bruggeman, A., Zittis, G., Sofokleous, I., and Arnault, J.:
Simulation of extreme rainfall and streamflow events in small Mediterranean
watersheds with a one-way-coupled atmospheric–hydrologic modelling system,
Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, 2020.
Chen, F. and Dudhia, J.: Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system, Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Crossett, C. C., Betts, A. K., Dupigny-Giroux, L.-A. L., and Bomblies, A.:
Evaluation of Daily Precipitation from the ERA5 Global Reanalysis against
GHCN Observations in the Northeastern United States, Climate, 8, 148,
https://doi.org/10.3390/cli8120148, 2020.
Diakakis, M.: Rainfall thresholds for flood triggering: The case of Marathonas in Greece, Nat. Hazards, 60, 789–800, https://doi.org/10.1007/s11069-011-9904-7, 2012.
Diakakis, M., Katsetsiadou, K., and Pallikarakis, A.: Flood fatalities in Athens, Greece: 1880-2010, in: Bulletin of the Geological Society of Greece,
vol. XLVII 2013, Proceedings of the 13th International Congress, September 2013, Chania, 2013.
Doocy, S., Daniels, A., Murray, S., and Kirsch, T. D.: The human impact of floods: A historical review of events 1980–2009 and systematic literature
review, PLOS Curr. Disast., 2013, 1, https://doi.org/10.1371/currents.dis.f4deb457904936b07c09daa98ee8171a, 2013.
Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107, 1989.
Eltahir, E. A.: A soil moisture–rainfall feedback mechanism: 1. Theory and observations, Water Resour. Res., 34, 765–776, 1998.
Emmanouil, G., Vlachogiannis, D., and Sfetsos, A.: Exploring the ability of
the WRF-ARW atmospheric model to simulate different meteorological conditions in Greece, Atmos. Res., 247, 105–226, https://doi.org/10.1016/j.atmosres.2020.105226, 2020.
Falter, D., Schröter, K., Dung, N. V., Vorogushyn, S., Kreibich, H.,
Hundecha, Y., Apel, H., and Merz, B.: Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain, J. Hydrol., 524, 182–193, 2015.
Fersch, B., Senatore, A., Adler, B., Arnault, J., Mauder, M., Schneider, K., Völksch, I., and Kunstmann, H.: High-resolution fully coupled atmospheric–hydrological modeling: a cross-compartment regional water and energy cycle evaluation, Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, 2020.
Furnari, L., Mendicino, G., and Senatore, A.: Hydrometeorological Ensemble
Forecast of a Highly Localized Convective Event in the Mediterranean, Water, 12, 1545, https://doi.org/10.3390/w12061545, 2020.
Galanaki, E., Flaounas, E., Kotroni, V., Lagouvardos, K., and Argiriou, A.:
Lightning activity in the Mediterranean: quantification of cyclones contribution and relation to their intensity, Atmos. Sci. Lett., 17, 510–516, https://doi.org/10.1002/asl.685, 2016.
Galanaki, E., Lagouvardos, K., Kotroni, V., Flaounas, E., and Argiriou, A.:
Thunderstorm climatology in the Mediterranean using cloud-to-ground lightning observations, Atmos. Res., 207, 136–144, https://doi.org/10.1016/j.atmosres.2018.03.004, 2018.
Giannaros, C., Kotroni, V., Lagouvardos, K., Oikonomou, C., Haralambous, H., and Papagiannaki, K.: Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece), Water, 12, 2426, https://doi.org/10.3390/w12092426, 2020.
Giannaros, T., Melas, D., and Ziomas, I.: Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in
Greece, Renew. Energy, 102, 190–198, https://doi.org/10.1016/j.renene.2016.10.033, 2016.
Giannaros, C., Nenes, A., Giannaros, T. M., Kourtidis, K., and Melas, D.: A
comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece), Atmos. Res.,
201, 86–101, https://doi.org/10.1016/j.atmosres.2017.10.015, 2018.
Giannaros, C., Melas, D., and Giannaros, T. M.: On the short-term simulation
of heat waves in the Southeast Mediterranean: Sensitivity of the WRF model to various physics schemes, Atmos. Res., 218, 99–116,
https://doi.org/10.1016/j.atmosres.2018.11.015, 2019.
Giannaros, C., Kotroni, V., Lagouvardos, K., Giannaros, T. M., and Pikridas, C.: Assessing the Impact of GNSS ZTD Data Assimilation into the WRF Modeling System during High-Impact Rainfall Events over Greece, Remote Sens., 12, 383, https://doi.org/10.3390/rs12030383, 2020.
Givati, A. and Sapir, G.: Simulating 1 % Probability Hydrograph at the Ayalon Basin Using the HEC-HMS, Special Hydrological Report, Israel Hydrological Service, Jerusalem, Israel, 2014.
Givati, A., Gochis, D., Rummler, T., and Kunstmann, H.: Comparing one-way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the mediterranean region, Hydrology. 3, 19, https://doi.org/10.3390/hydrology3020019, 2016.
Gochis, D., Yu, W., and Yates, D.: The WRF-Hydro model technical description and user's guide, version 3.0, NCAR Technical Document, 120 pp., available at: https://ral.ucar.edu/sites/default/files/public/images/project/WRF_Hydro_User_Guide_v3.0.pdf
(last access: 28 December 2019), 2015.
Gochis, D. J. and Chen, F.: Hydrological Enhancements to the Community Noah Land Surface Model (No. NCAR/TN-454+STR), University Corporation for Atmospheric Research, https://doi.org/10.5065/D60P0X00, 2003.
Gochis, D. J., Yu, W., and Yates, D. N.: The WRF-Hydro Model Technical
Description and User's Guide, Version 1.0, NCAR Technical Document, NCAR,
Boulder, Colorado, 120 pp., available at:
http://www.ral.ucar.edu/projects/wrf_hydro/ (last access: 28 December 2019), 2013.
Hauck C., Barthlott, C., Krauss, L., and Kalthoff, N.: Soil moisture variability and its influence on convective precipitation over complex terrain, Q. J. Roy. Meteorol. Soc., 137, 42–56, 2011.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF Newsletter 147, ECMWF, available at:
https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
(last access: 28 December 2019), 2016.
Hong, S. Y. and Lim, J. O.: The WRF Single-Moment 6-ClassMicrophysics Scheme (WSM6), J. Korean Meteorol. Soc., 42, 129–151, 2006.
Janjic, Z. I.: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model, NCEP Office Note No. 437, National Oceanic and Atmospheric Administration, USA, p. 61, available at: https://repository.library.noaa.gov/view/noaa/11409 (last access: 28 December 2019), 2002.
Julien, P., Saghafian, B., and Ogden, F.: Raster-based hydrological modeling of spatially-varied surface runoff, Water Resour. Bull., 31, 523–536, 1995.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale
models: the Kain-Fritsch scheme, in: vol. 46, The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., Am. Meteorol. Soc., 165–170, 1992.
Kandilioti, G. and Makropoulos, C.: Preliminary flood risk assessment: the case of Athens, Nat. Hazards, 61, 441–468, https://doi.org/10.1007/s11069-011-9930-5, 2012.
Karympalis, E., Gaki-Papanastasiou, K., and Maroukian, M.: Contribution of
geomorphological features of the darinage network of Megalo rema (Rafina)
and human interference in occurrence of flood events, Bull. Geol. Soc. Greece, 38, 171–181, https://doi.org/10.12681/bgsg.18436, 2005.
Kerandi, N., Arnault, J., Laux, P., Wagner, S., Kitheka, J., and Kunstmann, H.: Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin, Theor. Appl. Climatol., 131, 1337, https://doi.org/10.1007/s00704-017-2050-8, 2018.
Krajewski, W. F., Ceynar, D., Demir, I., Goska, R., Kruger, A., Langel, C.,
Mantilla, R., Niemeier, J., Quintero, F., Seo, B., Small, S. J., Weber, L. J., and Young, N. C.: Real-Time Flood Forecasting and Information System for the State of Iowa, B. Am. Meteorol. Soc., 98, 539–554,
https://doi.org/10.1175/BAMS-D-15-00243.1, 2017.
Lagouvardos, K., Kotroni, V., Dobricic, S., Nickovic, S., and Kallos, G.: The storm of October 21–22, 1994, over Greece: Observations and model results, J. Geophys. Res.-Atmos., 101, 26217–26226, https://doi.org/10.1029/96jd01385, 1996.
Lagouvardos, K., Kotroni, V., Bezes, A., Koletsis, I., Kopania, T., Lykoudis, S., Mazarakis, N., Papagiannaki, K., and Vougioukas, S.: The Automatic Weather Stations Network of the National Observatory of Athens: Operation and Database, Geosci. Data J., 4, 4–16, https://doi.org/10.1002/gdj3.44, 2017.
Larsen, M. A. D., Refsgaard, J. C., Jensen, K. H., Butts, M. B., Stisen, S.,
and Mollerup, M.: Calibration of a distributed hydrology and land surface model using energy flux measurements, Agr. Forest Meteorol., 217, 74–88, https://doi.org/10.1016/j.agrformet.2015.11.012, 2016.
Lasda, O., Dikou, A., and Papapanagiotou, E.,: Flash flooding in Attika,
Greece: Climatic change or urbanization?, Ambio, 39, 608–611,
https://doi.org/10.1007/s13280-010-0050-3, 2010.
Li, L., Gochis, D. J., Sobolowski, S., and Mesquita, M. D. S.: Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model, J. Geophys. Res.-Atmos., 122, 4786–4807, https://doi.org/10.1002/2016JD026279, 2017.
Li, L., Pontoppidan, M., Sobolowski, S., and Senatore, A.: The impact of initial conditions on convection-permitting simulations of a flood event over complex mountainous terrain, Hydrol. Earth Syst. Sci., 24, 771–791,
https://doi.org/10.5194/hess-24-771-2020, 2020.
Lin, P. , Yang, Z., Gochis, D. J., Yu, W., Maidment, D. R., Somos-Valenzuela, M. A., and David, C. H.: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation, Environ. Model. Softw., 107, 1–11, https://doi.org/10.1016/j.envsoft.2018.05.018, 2018.
Liu, Y., Liu, J., Li, C., Yu, F., Wang, W., and Qiu, Q.: Parameter Sensitivity Analysis of the WRF-Hydro Modeling System for Streamflow Simulation: a Case Study in Semi-Humid and Semi-Arid Catchments of Northern
China, Asia-Pacific J. Atmos. Sci., 57, 451–466, https://doi.org/10.1007/s13143-020-00205-2, 2021.
Martens, B., Schumacher, D. L., Wouters, H., Muñoz-Sabater, J., Verhoest, N. E. C., and Miralles, D. G.: Evaluating the land-surface energy partitioning in ERA5, Geosci. Model Dev., 13, 4159–4181,
https://doi.org/10.5194/gmd-13-4159-2020, 2020.
Maxwell, R. M., Chow, F. K., and Kollet, S. J.: The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations, Adv. Water Resour., 30, 2447–2466, https://doi.org/10.1016/j.advwatres.2007.05.018, 2007.
Milly P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L.: Increasing risk of great floods in a changing climate, Nature, 415, 514–517, https://doi.org/10.1038/415514a, 2002.
Mlawer E., Taubman, S., Brown, P., Iacono, M., and Clough, S.: Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.
Naabil, E., Lamptey, B. L., Arnault, J., Olufayo, A., and Kunstmann, H.: Water resources management using the WRF-Hydro modelling system: Case-study of the Tono dam in West Africa, J. Hydrol.: Reg. Stud., 12, 196–209, https://doi.org/10.1016/j.ejrh.2017.05.010, 2017.
NOAA: National Water Model, available at:
https://water.noaa.gov/documents/wrn-national-water-model.pdf (last access: 28 December 2019), 2016.
Nunalee, C. G., Horváth, Á., and Basu, S.: High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data, Geosci. Model Dev., 8, 2645–2653, https://doi.org/10.5194/gmd-8-2645-2015, 2015.
Ogden, F. L.: CASC2D Reference Manual, Dept. of Civil & Env. Engr., U-37, University of Connecticut, Storrs, 106 pp., 1997.
Pal, S., Dominguez, F., Dillon, M. E., Alvarez, J., Garcia, C. M., Nesbitt,
S. W., and Gochis, D.: Hydrometeorological Observations and Modeling of an Extreme Rainfall Event using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina, J. Hydrometeorol., 22, 331–351, https://doi.org/10.1175/JHM-D-20-0133.1, 2020.
Papagiannaki, K., Lagouvardos,K., and Kotroni, V.: A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001–2011, Nat. Hazards Earth Syst. Sci., 13, 727–736,
https://doi.org/10.5194/nhess-13-727-2013, 2013.
Papagiannaki, K., Lagouvardos, K., Kotroni, V., and Bezes, A.: Flash flood
occurrence and relation to the rainfall hazard in a highly urbanized area,
Nat. Hazards Earth Syst. Sci., 15, 1859–1871, https://doi.org/10.5194/nhess-15-1859-2015, 2015.
Papagiannaki, K., Kotroni, V., Lagouvardos, K., Ruin, I., and Bezes, A.: Urban Area Response to Flash Flood–761 Triggering Rainfall, Featuring Human
Behavioral Factors: The Case of 22 October 2015 in Attica, Greece, Weather Clim. Soc., 9, 621–638, https://doi.org/10.1175/wcas-d-16-0068.1, 2017.
Papaioannou, G., Varlas, G., Terti, G., Papadopoulos, A., Loukas, A.,
Panagopoulos, Y., and Dimitriou, E.: Flood Inundation Mapping at Ungauged Basins Using Coupled Hydrometeorological–Hydraulic Modelling: The Catastrophic Case of the 2006 Flash Flood in Volos City, Greece, Water, 11, 2328, https://doi.org/10.3390/w11112328, 2019.
Papathanasiou, C., Makropoulos, C., and Mimikou, M.: Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions, J. Hydrol., 529, 1838–1850, 2015.
Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V., Grimalt, M., Llasat, M. C., Llasat-Botija, M., Rosselló, J., Pasqua, A. A., and Vinet, F.: MEFF: The database of MEditerranean Flood Fatalities (1980 to 2015), J. Flood Risk Manage., 12, 1–17, 2018.
Politi, N., Nastos, P. T., Sfetsos, A., Vlachogiannis, D., and Dalezios, N. R.: Evaluation of the AWR-WRF model confguration at high resolution over the
domain of Greece, Atmos. Res., 208, 229–245, https://doi.org/10.1016/j.atmosres.2017.10.019, 2018.
Pytharoulis, I., Kotsopoulos, S., Tegoulias, I., Kartsios, S., Bampzelis, D.,
and Karacostas, T.: Numerical modeling of an intense precipitation event and
its associated lightning activity over northern Greece, Atmos. Res., 169,
523–538, https://doi.org/10.1016/j.atmosres.2015.06.019, 2016.
Romang, H., Zappa, M., Hilker, N., Gerber, M., Dufour, F., Frede, V., Bérod, D., Oplatka, M., Hegg, C., and Rhyner, J.: IFKIS-Hydro: an early
warning and information system for floods and debris flows, Nat. Hazards, 56, 509–527, https://doi.org/10.1007/s11069-010-9507-8, 2011.
Schwarzkopf, M. D. and Fels, S. B.: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res., 96, 9075–9096, https://doi.org/10.1029/89JD01598, 1991.
Senatore, A., Mendicino, G., Gochis, D. J., Yu, W., Yates, D. N., and Kunstmann, H.: Fully coupled atmosphere-hydrology simulations for the Central
Mediterranean: impact of enhanced hydrological parameterization for short and long time scales, J. Adv. Model. Earth Syst., 7, 1693–1715, https://doi.org/10.1002/2015MS000510, 2015.
Senatore, A., Furnari, L., and Mendicino, G.: Impact of high-resolution sea
surface temperature representation on the forecast of small Mediterranean
catchments' hydrological responses to heavy precipitation, Hydrol. Earth Syst. Sci., 24, 269–291, https://doi.org/10.5194/hess-24-269-2020, 2020.
Seneviratne, S., Corti, T., Davin, E., Hirschi, M., Jaeger, E., Lehner, I., Orlowsky, B., and Teuling, A.: Investigating soil moisture-climate interactions in a changing climate: a review, Earth Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A scale-consistent terrestrial systems modeling platform based on COSMO, CLM,
and ParFlow, Mon. Weather Rev., 142, 3466–3483, https://doi.org/10.1175/MWR-D-14-00029.1, 2014.
Silver, M., Karnieli, A., Ginat, H., Meiri, E., and Fredj, E.: An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions, Environ. Model. Softw., 91, 47–69, https://doi.org/10.1016/j.envsoft.2017.01.010, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, National Center For Atmospheric Research, Mesoscale and Microscale Meteorology Div., Boulder, Colorado, 2005.
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang, X., Wang, W., and Powers, J.: A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR), University Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, Trans. Am. Geophys. Union, 38, 913–920, https://doi.org/10.1029/tr038i006p00913, 1957.
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over
North America, Hydrol. Earth Syst. Sci., 24, 2527–2544,
https://doi.org/10.5194/hess-24-2527-2020, 2020.
Varlas, G., Anagnostou, M. N., Spyrou, C., Papadopoulos, A., Kalogiros, J.,
Mentzafou, A., Michaelides, S., Baltas, E., Karymbalis, E., and Katsafados, P.: A Multi-Platform Hydrometeorological Analysis of the Flash Flood Event of 15 November 2017 in Attica, Greece, Remote Sens., 11, 45, https://doi.org/10.3390/rs11010045, 2019.
Verri, G., Pinardi, N., Gochis, D., Tribbia, J., Navarra, A., Coppini, G.,
and Vukicevic, T.: A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment, Nat.
Hazards Earth Syst. Sci., 17, 1741–1761, https://doi.org/10.5194/nhess-17-1741-2017, 2017.
Wagner, S., Fersch, B., Yuan, F., Yu, Z., and Kunstmann, H.: Fully coupled
atmospheric-hydrological modeling at regional and long-term scales: development, application, and analysis of WRF-HMS, Water Resour. Res., 52, 1–20, https://doi.org/10.1002/2015WR018185, 2016.
Wang, W., Liu, J., Li, C., Liu, Y., Yu, F., and Yu, E.: An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm
Events with Different Rainfall Evenness in Space and Time, Water, 12, 1209, https://doi.org/10.3390/w12041209, 2020.
Wehbe, Y., Temimi, M., Weston, M., Chaouch, N., Branch, O., Schwitalla, T., Wulfmeyer, V., Zhan, X., Liu, J., and Al Mandous, A.: Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data, Nat. Hazards Earth Syst. Sci., 19, 1129–1149, https://doi.org/10.5194/nhess-19-1129-2019, 2019.
White, K. S., Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V., Grimalt, M., Llasat, M. C., Llasat-Botija, M., Rosselló, J., Pasqua, A. A., and Vinet, F.: Technical Summary in Climate Change 2001: Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, 19–73, 2001.
Wigmosta, M. and Lettenmaier, D. P.: A comparison of simplified methods for routing topographically driven subsurface flow, Water Resour. Res., 35, 255–264, 1999.
Wigmosta, M., Vail, L. W., and Lettenmaier, D. P.: A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 1665–1679, 1994.
Wu, J., Lu, G., and Wu, Z.: Flood forecasts based on multi-model ensemble
precipitation forecasting using a coupled atmospheric-hydrological modeling
system, Nat. Hazards, 74, 325–340, https://doi.org/10.1007/s11069-014-1204-6, 2014.
Xiang, T., Vivoni, E. R., Gochis, D. J., and Mascaro, G.: On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRF-Hydro modeling system, J. Geophys. Res.-Atmos., 122, 9024–9049, https://doi.org/10.1002/2017JD026472, 2017.
Yucel, I., Onen, A., Yilmaz, K. K., Gochis, and D. J.: Calibration and evaluation of a flood forecasting system: utility of numerical weather prediction model, data assimilation and satellite-based rainfall, J. Hydrol., 523, 49–66, https://doi.org/10.1016/j.jhydrol.2015.01.042, 2015.
Zigoura, A., Karympalis, E., and Xalkisa, X.: Geomorphological characteristics of Sarantapotamos drainage network as causative factor of flooding in Thriassion Plain. Attica, Greece, in: Proceedings of the 10th International Congress of the Hellenic Geographical Society, 22–24 October 2014, Thessaloniki, Greece, 2014.
Short summary
A two-way coupled hydrometeorological model (WRF-Hydro) is used for flood forecasting purposes in medium-catchment-size basins in Greece. The results showed the capability of WRF-Hydro to adequately simulate the observed discharge and the slight improvement in terms of quantitative precipitation forecasting compared to the WRF-only simulations.
A two-way coupled hydrometeorological model (WRF-Hydro) is used for flood forecasting purposes...
Altmetrics
Final-revised paper
Preprint