Research article
02 Jul 2021
Research article
| 02 Jul 2021
Implementation of WRF-Hydro at two drainage basins in the region of Attica, Greece, for operational flood forecasting
Elissavet Galanaki et al.
Related authors
No articles found.
Emmanouil Flaounas, Silvio Davolio, Shira Raveh-Rubin, Florian Pantillon, Mario Marcello Miglietta, Miguel Angel Gaertner, Maria Hatzaki, Victor Homar, Samira Khodayar, Gerasimos Korres, Vassiliki Kotroni, Jonilda Kushta, Marco Reale, and Didier Ricard
Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, https://doi.org/10.5194/wcd-3-173-2022, 2022
Short summary
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
Olga Petrucci, Luigi Aceto, Cinzia Bianchi, Victoria Bigot, Rudolf Brázdil, Moshe Inbar, Abdullah Kahraman, Özgenur Kılıç, Vassiliki Kotroni, Maria Carmen Llasat, Montserrat Llasat-Botija, Michele Mercuri, Katerina Papagiannaki, Susana Pereira, Jan Řehoř, Joan Rossello Geli, Paola Salvati, Freddy Vinet, and José Luis Zêzere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-154, https://doi.org/10.5194/essd-2020-154, 2020
Preprint withdrawn
Short summary
Short summary
EUFF 2020 database (EUropean Flood Fatalities-FF) contains 2483 flood fatalities (1980–2018) occurred in 8 countries. Gender, age, activity of FF and dynamics of accidents were obtained from documentary sources. 64.8 % of FF were killed by floods killing less than 10 people. Males were more numerous than females due higher proportion of them driving and working outdoors. FF 30–64 years old died traveling to home/work, driving vehicles dragged by water. Elderly people were trapped indoor by flood.
Katerina Papagiannaki, Vassiliki Kotroni, Kostas Lagouvardos, and Giorgos Papagiannakis
Nat. Hazards Earth Syst. Sci., 19, 1329–1346, https://doi.org/10.5194/nhess-19-1329-2019, https://doi.org/10.5194/nhess-19-1329-2019, 2019
Short summary
Short summary
The aim of this work is to advance knowledge on the mechanisms of flood precautionary behavior in an area not adequately addressed. Risk managers may identify gaps in risk communication, advance their understanding of citizens' precautionary behaviors, and adjust their strategies to improve flood resilience. The survey was launched by meteo.gr. This work is part of the study of weather-related hazards and societal impact conducted by IERSD/NOA.
Lluís Fita, Jan Polcher, Theodore M. Giannaros, Torge Lorenz, Josipa Milovac, Giannis Sofiadis, Eleni Katragkou, and Sophie Bastin
Geosci. Model Dev., 12, 1029–1066, https://doi.org/10.5194/gmd-12-1029-2019, https://doi.org/10.5194/gmd-12-1029-2019, 2019
Short summary
Short summary
Regional climate experiments coordinated throughout CORDEX aim to study and provide high-quality climate data over a given region. The data are used in climate change mitigation and adaptation policy studies and by stakeholders. CORDEX requires a list of variables, most of which are not provided by atmospheric models. Aiming to help the community and to maximize the use of CORDEX exercises, we create a new module for WRF models to directly produce them by adding
genericand
additionalones.
Emmanouil Flaounas, Vassiliki Kotroni, Konstantinos Lagouvardos, Martina Klose, Cyrille Flamant, and Theodore M. Giannaros
Geosci. Model Dev., 10, 2925–2945, https://doi.org/10.5194/gmd-10-2925-2017, https://doi.org/10.5194/gmd-10-2925-2017, 2017
Emmanouil Flaounas, Vassiliki Kotroni, Konstantinos Lagouvardos, Martina Klose, Cyrille Flamant, and Theodore M. Giannaros
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-307, https://doi.org/10.5194/acp-2016-307, 2016
Revised manuscript not accepted
E. Defer, J.-P. Pinty, S. Coquillat, J.-M. Martin, S. Prieur, S. Soula, E. Richard, W. Rison, P. Krehbiel, R. Thomas, D. Rodeheffer, C. Vergeiner, F. Malaterre, S. Pedeboy, W. Schulz, T. Farges, L.-J. Gallin, P. Ortéga, J.-F. Ribaud, G. Anderson, H.-D. Betz, B. Meneux, V. Kotroni, K. Lagouvardos, S. Roos, V. Ducrocq, O. Roussot, L. Labatut, and G. Molinié
Atmos. Meas. Tech., 8, 649–669, https://doi.org/10.5194/amt-8-649-2015, https://doi.org/10.5194/amt-8-649-2015, 2015
Short summary
Short summary
The paper summarizes the scientific objectives and the observational/modeling strategy of the atmospheric electricity PEACH project of the HyMeX program focusing on the lightning activity and the electrical state of Mediterranean thunderstorms. Examples of concurrent observations from radio frequency to acoustic for regular and atypical lightning flashes and for storms are discussed, showing the unique and comprehensive description of lightning flashes recorded during a dedicated field campaign.
E. Flaounas, V. Kotroni, K. Lagouvardos, and I. Flaounas
Geosci. Model Dev., 7, 1841–1853, https://doi.org/10.5194/gmd-7-1841-2014, https://doi.org/10.5194/gmd-7-1841-2014, 2014
I. Koletsis, V. Kotroni, and K. Lagouvardos
Nat. Hazards Earth Syst. Sci., 14, 459–472, https://doi.org/10.5194/nhess-14-459-2014, https://doi.org/10.5194/nhess-14-459-2014, 2014
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Hotspots for warm and dry summers in Romania
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective
Hydrometeorological analysis of the 12 and 13 September 2019 widespread flash flooding in eastern Spain
Monitoring the daily evolution and extent of snow drought
Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling
Adaptation and application of the large LAERTES-EU regional climate model ensemble for modeling hydrological extremes: a pilot study for the Rhine basin
Invited perspectives: how does climate change affect the risk of natural hazards? Challenges and step changes from the reinsurance perspective
Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance
Spatio-temporal evolution of wet–dry event features and their transition across the Upper Jhelum Basin (UJB) in South Asia
Precipitation stable isotopic signatures of tropical cyclones in Metropolitan Manila, Philippines, show significant negative isotopic excursions
Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014
Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements
Applying machine learning for drought prediction in a perfect model framework using data from a large ensemble of climate simulations
Using high-resolution regional climate models to estimate return levels of daily extreme precipitation over Bavaria
Lessons from the 2018–2019 European droughts: A collective need for unifying drought risk management
An ensemble of state-of-the-art ash dispersion models: towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions
A climatology of sub-seasonal temporal clustering of extreme precipitation in Switzerland and its links to extreme discharge
Impact of large wildfires on PM10 levels and human mortality in Portugal
Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy
Variability in lightning hazard over Indian region with respect to El Niño–Southern Oscillation (ENSO) phases
Social sensing of high-impact rainfall events worldwide: a benchmark comparison against manually curated impact observations
Idealized Simulations of Mei-yu Rainfall in Taiwan under Uniform Southwesterly Flow using A Could-Resolving Model
Attribution of the role of climate change in the forest fires in Sweden 2018
Invited perspectives: The ECMWF strategy 2021–2030 challenges in the area of natural hazards
Intense windstorms in the northeastern United States
Review article: Risk management framework of environmental hazards and extremes in Mediterranean ecosystems
Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation
Assessing internal changes in the future structure of dry–hot compound events: the case of the Pyrenees
Changes in drought features at the European level over the last 120 years
Assimilation of Himawari-8 imager radiance data with the WRF-3DVAR system for the prediction of Typhoon Soudelor
Atmospheric conditions leading to an exceptional fatal flash flood in the Negev Desert, Israel
Review article: Towards resilient vital infrastructure systems – challenges, opportunities, and future research agenda
Fatalities associated with the severe weather conditions in the Czech Republic, 2000–2019
Drought propagation and construction of a comprehensive drought index based on the Soil and Water Assessment Tool (SWAT) and empirical Kendall distribution function (KC′): a case study for the Jinta River basin in northwestern China
Extreme wind return periods from tropical cyclones in Bangladesh: insights from a high-resolution convection-permitting numerical model
Review article: Observations for high-impact weather and their use in verification
An analysis of temporal scaling behaviour of extreme rainfall in Germany based on radar precipitation QPE data
The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations
Wet and dry spells in Senegal: comparison of detection based on satellite products, reanalysis, and in situ estimates
Drought impact in the Bolivian Altiplano agriculture associated with the El Niño–Southern Oscillation using satellite imagery data
A statistical–parametric model of tropical cyclones for hazard assessment
The impact of drought on soil moisture trends across Brazilian biomes
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations
Radar-based assessment of hail frequency in Europe
A new view on the risk of typhoon occurrence in the western North Pacific
Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment
Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification
Are Kenya Meteorological Department heavy rainfall advisories useful for forecast-based early action and early preparedness for flooding?
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Arnau Amengual
Nat. Hazards Earth Syst. Sci., 22, 1159–1179, https://doi.org/10.5194/nhess-22-1159-2022, https://doi.org/10.5194/nhess-22-1159-2022, 2022
Short summary
Short summary
On 12 and 13 September 2019, a long-lasting heavy precipitation episode resulted in widespread flash flooding over eastern Spain. Well-organized and quasi-stationary convective structures impacted a vast area with rainfall amounts over 200 mm. The very dry initial soil moisture conditions resulted in a dampened hydrological response: until runoff thresholds were exceeded, infiltration-excess generation did not start. This threshold-based behaviour is explored through simple scaling theory.
Benjamin J. Hatchett, Alan M. Rhoades, and Daniel J. McEvoy
Nat. Hazards Earth Syst. Sci., 22, 869–890, https://doi.org/10.5194/nhess-22-869-2022, https://doi.org/10.5194/nhess-22-869-2022, 2022
Short summary
Short summary
Snow droughts, or below-average snowpack, can result from either dry conditions and/or rainfall instead of snowfall. Monitoring snow drought through time and across space is important to evaluate when snow drought onset occurred, its duration, spatial extent, and severity as well as what conditions created it or led to its termination. We present visualization techniques, including a web-based snow-drought-tracking tool, to evaluate snow droughts and assess their impacts in the western US.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, Yi He, Martin Kadlec, Fanni D. Kelemen, Hilke S. Lentink, Patrick Ludwig, Desmond Manful, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 22, 677–692, https://doi.org/10.5194/nhess-22-677-2022, https://doi.org/10.5194/nhess-22-677-2022, 2022
Short summary
Short summary
For various applications, it is crucial to have profound knowledge of the frequency, severity, and risk of extreme flood events. Such events are characterized by very long return periods which observations can not cover. We use a large ensemble of regional climate model simulations as input for a hydrological model. Precipitation data were post-processed to reduce systematic errors. The representation of precipitation and discharge is improved, and estimates of long return periods become robust.
Anja T. Rädler
Nat. Hazards Earth Syst. Sci., 22, 659–664, https://doi.org/10.5194/nhess-22-659-2022, https://doi.org/10.5194/nhess-22-659-2022, 2022
Short summary
Short summary
Natural disasters are causing high losses worldwide. To adequately deal with this loss potential, a reinsurer has to quantitatively assess the individual risks of natural catastrophes and how these risks are changing over time with respect to climate change. From a reinsurance perspective, the most pressing scientific challenges related to natural hazards are addressed, and broad changes are suggested that should be achieved by the scientific community to address these hazards in the future.
Jussi Leinonen, Ulrich Hamann, Urs Germann, and John R. Mecikalski
Nat. Hazards Earth Syst. Sci., 22, 577–597, https://doi.org/10.5194/nhess-22-577-2022, https://doi.org/10.5194/nhess-22-577-2022, 2022
Short summary
Short summary
We evaluate the usefulness of different data sources and variables to the short-term prediction (
nowcasting) of severe thunderstorms using machine learning. Machine-learning models are trained with data from weather radars, satellite images, lightning detection and weather forecasts and with terrain elevation data. We analyze the benefits provided by each of the data sources to predicting hazards (heavy precipitation, lightning and hail) caused by the thunderstorms.
Rubina Ansari and Giovanna Grossi
Nat. Hazards Earth Syst. Sci., 22, 287–302, https://doi.org/10.5194/nhess-22-287-2022, https://doi.org/10.5194/nhess-22-287-2022, 2022
Short summary
Short summary
The current research investigated spatio-temporal evolution of wet–dry events collectively, their characteristics, and their transition (wet to dry and dry to wet) across the Upper Jhelum Basin using the standardized precipitation evapotranspiration (SPEI) at a monthly timescale. The results provide significant knowledge to identify and locate most vulnerable geographical hotspots of extreme events, providing the basis for more effective risk reduction and climate change adaptation plans.
Dominik Jackisch, Bi Xuan Yeo, Adam D. Switzer, Shaoneng He, Danica Linda M. Cantarero, Fernando P. Siringan, and Nathalie F. Goodkin
Nat. Hazards Earth Syst. Sci., 22, 213–226, https://doi.org/10.5194/nhess-22-213-2022, https://doi.org/10.5194/nhess-22-213-2022, 2022
Short summary
Short summary
The Philippines is a nation very vulnerable to devastating typhoons. We investigate if stable isotopes of precipitation can be used to detect typhoon activities in the Philippines based on daily isotope measurements from Metropolitan Manila. We find that strong typhoons such as Rammasun, which occurred in July 2014, leave detectable isotopic signals in precipitation. Besides other factors, the distance of the typhoon to the sampling site plays a key role in influencing the signal.
Chung-Chieh Wang, Pi-Yu Chuang, Chih-Sheng Chang, Kazuhisa Tsuboki, Shin-Yi Huang, and Guo-Chen Leu
Nat. Hazards Earth Syst. Sci., 22, 23–40, https://doi.org/10.5194/nhess-22-23-2022, https://doi.org/10.5194/nhess-22-23-2022, 2022
Short summary
Short summary
This study indicated that the Cloud-Resolving Storm Simulator (CReSS) model significantly improved heavy-rainfall quantitative precipitation forecasts in the Taiwan Mei-yu season. At high resolution, the model has higher threat scores and is more skillful in predicting larger rainfall events compared to smaller ones. And the strength of the model mainly lies in the topographic rainfall rather than less predictable and migratory events due to nonlinearity.
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021, https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Short summary
Volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, may have huge economic consequences due to flight cancellations. In this article, we demonstrate the benefits of source term improvement and of data assimilation for quantifying volcanic ash concentrations. The work, which was supported by the EUNADICS-AV project, is the first one, to our knowledge, that demonstrates the benefit of the assimilation of ground-based lidar data over Europe during an eruption.
Elizaveta Felsche and Ralf Ludwig
Nat. Hazards Earth Syst. Sci., 21, 3679–3691, https://doi.org/10.5194/nhess-21-3679-2021, https://doi.org/10.5194/nhess-21-3679-2021, 2021
Short summary
Short summary
This study applies artificial neural networks to predict drought occurrence in Munich and Lisbon, with a lead time of 1 month. An analysis of the variables that have the highest impact on the prediction is performed. The study shows that the North Atlantic Oscillation index and air pressure 1 month before the event have the highest importance for the prediction. Moreover, it shows that seasonality strongly influences the goodness of prediction for the Lisbon domain.
Benjamin Poschlod
Nat. Hazards Earth Syst. Sci., 21, 3573–3598, https://doi.org/10.5194/nhess-21-3573-2021, https://doi.org/10.5194/nhess-21-3573-2021, 2021
Short summary
Short summary
Three regional climate models (RCMs) are used to simulate extreme daily rainfall in Bavaria statistically occurring once every 10 or even 100 years. Results are validated with observations. The RCMs can reproduce spatial patterns and intensities, and setups with higher spatial resolutions show better results. These findings suggest that RCMs are suitable for assessing the probability of the occurrence of such rare rainfall events.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Ksenija Cindrić Kalin, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Silvana Stevkova, Lena M. Tallaksen, Iryna Trofimova, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-276, https://doi.org/10.5194/nhess-2021-276, 2021
Revised manuscript under review for NHESS
Short summary
Short summary
Recent drought events caused enormous damages in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts, and how drought is perceived by relevant stakeholders. Over 700 participant from 28 European countries provided insights to drought hazard and impact perception, and current management strategies. The study concludes with an urgent need to collectively combat drought risk via an European macro-level drought governance approach.
Matthieu Plu, Barbara Scherllin-Pirscher, Delia Arnold Arias, Rocio Baro, Guillaume Bigeard, Luca Bugliaro, Ana Carvalho, Laaziz El Amraoui, Kurt Eschbacher, Marcus Hirtl, Christian Maurer, Marie D. Mulder, Dennis Piontek, Lennart Robertson, Carl-Herbert Rokitansky, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 21, 2973–2992, https://doi.org/10.5194/nhess-21-2973-2021, https://doi.org/10.5194/nhess-21-2973-2021, 2021
Short summary
Short summary
Past volcanic eruptions that spread out ash over large areas, like Eyjafjallajökull in 2010, forced the cancellation of thousands of flights and had huge economic consequences.
In this article, an international team in the H2020 EU-funded EUNADICS-AV project has designed a probabilistic model approach to quantify ash concentrations. This approach is evaluated against measurements, and its potential use to mitigate the impact of future large-scale eruptions is discussed.
Alexandre Tuel and Olivia Martius
Nat. Hazards Earth Syst. Sci., 21, 2949–2972, https://doi.org/10.5194/nhess-21-2949-2021, https://doi.org/10.5194/nhess-21-2949-2021, 2021
Short summary
Short summary
Extreme river discharge may be triggered by large accumulations of precipitation over short time periods, which can result from the successive occurrence of extreme-precipitation events. We find a distinct spatiotemporal pattern in the temporal clustering behavior of precipitation extremes over Switzerland, with clustering occurring on the northern side of the Alps in winter and on their southern side in fall. Clusters tend to be followed by extreme discharge, particularly in the southern Alps.
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021, https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Short summary
Uncontrolled wildfires have a substantial impact on the environment and local populations. Although most southern European countries have been impacted by wildfires in the last decades, Portugal has the highest percentage of burned area compared to its whole territory. Under this umbrella, associations between large fires, PM10, and all-cause and cause-specific mortality (circulatory and respiratory) have been explored using Poisson regression models for 2001–2016.
Vincenzo Mazzarella, Rossella Ferretti, Errico Picciotti, and Frank Silvio Marzano
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, https://doi.org/10.5194/nhess-21-2849-2021, https://doi.org/10.5194/nhess-21-2849-2021, 2021
Short summary
Short summary
Forecasting precipitation over the Mediterranean basin is still a challenge. In this context, data assimilation techniques play a key role in improving the initial conditions and consequently the timing and position of the precipitation forecast. For the first time, the ability of a cycling 4D-Var to reproduce a heavy rain event in central Italy, as well as to provide a comparison with the largely used cycling 3D-Var, is evaluated in this study.
Avaronthan Veettil Sreenath, Sukumarapillai Abhilash, and Pattathil Vijaykumar
Nat. Hazards Earth Syst. Sci., 21, 2597–2609, https://doi.org/10.5194/nhess-21-2597-2021, https://doi.org/10.5194/nhess-21-2597-2021, 2021
Short summary
Short summary
Lightning is a multifaceted hazard with widespread negative consequences for the environment and society. We explore how El Niño–Southern Oscillation (ENSO) phases impact the lightning over India by modulating the deep convection and associated atmospheric thermodynamics. Results show that ENSO phases directly influence lightning during monsoon and postmonsoon seasons by pushing the mean position of subtropical westerlies southward.
Michelle D. Spruce, Rudy Arthur, Joanne Robbins, and Hywel T. P. Williams
Nat. Hazards Earth Syst. Sci., 21, 2407–2425, https://doi.org/10.5194/nhess-21-2407-2021, https://doi.org/10.5194/nhess-21-2407-2021, 2021
Short summary
Short summary
Despite increased use of impact-based weather warnings, the social impacts of extreme weather events lie beyond the reach of conventional meteorological observations and remain difficult to quantify. This study compares data collected from the social media platform Twitter with a manually curated database of high-impact rainfall events across the globe between January–June 2017. Twitter is found to be a good detector of impactful rainfall events and, therefore, a useful source of impact data.
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-196, https://doi.org/10.5194/nhess-2021-196, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction/speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall, without the influence of unwanted disturbances. A low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in flow-over scenario prevails, and a mixed regime also exists.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Florian Pappenberger, Florence Rabier, and Fabio Venuti
Nat. Hazards Earth Syst. Sci., 21, 2163–2167, https://doi.org/10.5194/nhess-21-2163-2021, https://doi.org/10.5194/nhess-21-2163-2021, 2021
Short summary
Short summary
The European Centre for Medium-Range Weather Forecasts mission is to deliver high-quality global medium‐range (3–15 d ahead of time) weather forecasts and monitoring of the Earth system. We have published a new strategy, and in this paper we discuss what this means for forecasting and monitoring natural hazards.
Frederick W. Letson, Rebecca J. Barthelmie, Kevin I. Hodges, and Sara C. Pryor
Nat. Hazards Earth Syst. Sci., 21, 2001–2020, https://doi.org/10.5194/nhess-21-2001-2021, https://doi.org/10.5194/nhess-21-2001-2021, 2021
Short summary
Short summary
Windstorms during the last 40 years in the US Northeast are identified and characterized using the spatial extent of extreme wind speeds at 100 m height from the ERA5 reanalysis. During all of the top 10 windstorms, wind speeds exceeding the local 99.9th percentile cover at least one-third of the land area in this high-population-density region. These 10 storms followed frequently observed cyclone tracks but have intensities 5–10 times the mean values for cyclones affecting this region.
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021, https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for feedback on all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021, https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Short summary
Information about lightning properties is important in order to advance the current understanding of lightning, whereby the characteristics of ground strike points are in particular helpful to improving the risk estimation for lightning protection. High-speed video recordings of 1174 negative downward lightning flashes are taken in different regions around the world and analyzed in terms of flash multiplicity, duration, interstroke intervals and ground strike point properties.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021, https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Marc Lemus-Canovas and Joan Albert Lopez-Bustins
Nat. Hazards Earth Syst. Sci., 21, 1721–1738, https://doi.org/10.5194/nhess-21-1721-2021, https://doi.org/10.5194/nhess-21-1721-2021, 2021
Short summary
Short summary
We present research that attempts to address recent and future changes in hot and dry compound events in the Pyrenees, which can induce severe environmental hazards in this area. The results show that during the last few decades, these kinds of compound events have only increased due to temperature increase. However, for the future, it is expected that the risk associated with these compound events will be raised by both the thermal increase and the longer duration of drought periods.
Monica Ionita and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021, https://doi.org/10.5194/nhess-21-1685-2021, 2021
Short summary
Short summary
By analyzing the joint frequency of compound events (e.g., high temperatures and droughts), we show that the potential evapotranspiration and mean air temperature are becoming essential components for drought occurrence over Central Europe and the Mediterranean region. This, together with the projected increase in potential evapotranspiration under a warming climate, has significant implications concerning the future occurrence of drought events over these regions.
Feifei Shen, Aiqing Shu, Hong Li, Dongmei Xu, and Jinzhong Min
Nat. Hazards Earth Syst. Sci., 21, 1569–1582, https://doi.org/10.5194/nhess-21-1569-2021, https://doi.org/10.5194/nhess-21-1569-2021, 2021
Short summary
Short summary
The Advanced Himawari Imager (AHI) on Himawari-8 can continuously monitor high-impact weather events with high frequency in space and time. The assimilation of AHI radiance data was implemented with the three-dimensional variational data assimilation system of the Weather Research and Forecasting Model for the analysis and prediction of Typhoon Soudelor (2015) in the Pacific typhoon season.
Uri Dayan, Itamar M. Lensky, Baruch Ziv, and Pavel Khain
Nat. Hazards Earth Syst. Sci., 21, 1583–1597, https://doi.org/10.5194/nhess-21-1583-2021, https://doi.org/10.5194/nhess-21-1583-2021, 2021
Short summary
Short summary
An intense rainstorm hit the Middle East between 24 and 27 April 2018. The storm reached its peak over Israel on 26 April when a heavy flash flood took the lives of 10 people. The rainfall was comparable to the long-term annual rainfall in the southern Negev. The timing was the end of the rainy season when rain is rare and spotty. The study analyses the dynamic and thermodynamic conditions that made this rainstorm one of the latest spring severe events in the region during the last 3 decades.
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke-de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci., 21, 1383–1407, https://doi.org/10.5194/nhess-21-1383-2021, https://doi.org/10.5194/nhess-21-1383-2021, 2021
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient vital infrastructure systems (VIS). Results from a systematic literature review indicate that (i) VIS are still being built without taking resilience explicitly into account and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. The main pressing topic to address is the integration of the combined social, ecological, and technical resilience of these systems.
Rudolf Brázdil, Kateřina Chromá, Lukáš Dolák, Jan Řehoř, Ladislava Řezníčková, Pavel Zahradníček, and Petr Dobrovolný
Nat. Hazards Earth Syst. Sci., 21, 1355–1382, https://doi.org/10.5194/nhess-21-1355-2021, https://doi.org/10.5194/nhess-21-1355-2021, 2021
Short summary
Short summary
We present an analysis of fatalities attributable to weather conditions in the Czech Republic during the 2000–2019 period based on our own database created from newspaper reports, on the database of the Czech Statistical Office, and on the database of the police of the Czech Republic as well as on their comparison. Despite some uncertainties, generally declining trends in the number of fatalities appear for the majority of weather variables. The structure of fatalities is described in detail.
Zheng Liang, Xiaoling Su, and Kai Feng
Nat. Hazards Earth Syst. Sci., 21, 1323–1335, https://doi.org/10.5194/nhess-21-1323-2021, https://doi.org/10.5194/nhess-21-1323-2021, 2021
Short summary
Short summary
In view of the shortage of data in alpine mountainous areas and the difficulty of a single drought index to reflect all the characteristics of drought, this paper constructs a comprehensive drought index (MAHDI) based on the SWAT model and the empirical Kendall distribution function, which connects multiple drought elements. The results show that MAHDI can simultaneously characterize meteorological, agricultural and hydrological drought and has strong applicability and comprehensiveness.
Hamish Steptoe and Theodoros Economou
Nat. Hazards Earth Syst. Sci., 21, 1313–1322, https://doi.org/10.5194/nhess-21-1313-2021, https://doi.org/10.5194/nhess-21-1313-2021, 2021
Short summary
Short summary
We use high-resolution computer simulations of tropical cyclones to investigate extreme wind speeds over Bangladesh. We show that some northern provinces, up to 200 km inland, may experience conditions equal to or exceeding a very severe cyclonic storm event with a likelihood equal to coastal regions less than 50 km inland. We hope that these kilometre-scale hazard maps facilitate one part of the risk assessment chain to improve local ability to make effective risk management decisions.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021, https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather and provides advice for their usage in objective verification. New observations include remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of the WMO.
Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer
Nat. Hazards Earth Syst. Sci., 21, 1195–1207, https://doi.org/10.5194/nhess-21-1195-2021, https://doi.org/10.5194/nhess-21-1195-2021, 2021
Short summary
Short summary
We examined maximum rainfall values for different durations from 16 years of radar-based rainfall records for whole Germany. Unlike existing observations based on rain gauge data no clear linear relationship could be identified. However, by classifying all time series, we could identify three similar groups determined by the temporal structure of rainfall extremes observed in the study period. The study highlights the importance of using long data records and a dense measurement network.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021, https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary
Short summary
This study focuses on the heavy precipitation event of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France.
The case is studied from a meteorological point of view using various operational numerical weather prediction systems, as well as a unique combination of observations from both standard and personal weather stations. The peculiarities of this case compared to other cases of Mediterranean heavy precipitation events are presented.
Cheikh Modou Noreyni Fall, Christophe Lavaysse, Mamadou Simina Drame, Geremy Panthou, and Amadou Thierno Gaye
Nat. Hazards Earth Syst. Sci., 21, 1051–1069, https://doi.org/10.5194/nhess-21-1051-2021, https://doi.org/10.5194/nhess-21-1051-2021, 2021
Short summary
Short summary
Extreme wet and dry rainfall periods over Senegal provided by satellite, reanalyses, and ground observations are compared. Despite a spatial coherence of seasonal rainfall accumulation between all products, discrepancies are found at intra-seasonal timescales. All datasets highlight comparable seasonal cycles of dry and wet spells. Nevertheless, CHIRPS and TAMSAT are close to observations for the dry spells, whereas TRMM obtains the closest values of wet spells as regards the observations.
Claudia Canedo-Rosso, Stefan Hochrainer-Stigler, Georg Pflug, Bruno Condori, and Ronny Berndtsson
Nat. Hazards Earth Syst. Sci., 21, 995–1010, https://doi.org/10.5194/nhess-21-995-2021, https://doi.org/10.5194/nhess-21-995-2021, 2021
Short summary
Short summary
Drought is a major natural hazard that causes large losses for farmers. This study evaluated drought severity based on a drought classification scheme using NDVI and LST, which was related to the ENSO anomalies. In addition, the spatial distribution of NDVI was associated with precipitation and air temperature at the local level. Our findings show that drought severity increases during El Niño years, and as a consequence the socio-economic drought risk of farmers will likely increase.
William C. Arthur
Nat. Hazards Earth Syst. Sci., 21, 893–916, https://doi.org/10.5194/nhess-21-893-2021, https://doi.org/10.5194/nhess-21-893-2021, 2021
Short summary
Short summary
We have developed a statistical–parametric model of tropical cyclones (TCs), to undertake hazard and risk assessments at continental scales. The model enables users to build an understanding of the likelihood and magnitude of TC-related wind speeds across full ocean basins but at a fine spatial resolution. The model can also be applied to single events, either scenarios or forecast events, to inform detailed impact assessments.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021, https://doi.org/10.5194/nhess-21-861-2021, 2021
Short summary
Short summary
The design of coastal protection affected by tropical cyclones is often based solely on the analysis of historical tropical cyclones (TCs). The simulation of numerous synthetic TC tracks based on historical data can overcome this limitation. In this paper, a new method for the generation of synthetic TC tracks is proposed, called the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE). TCWiSE can simulate thousands of tracks and wind fields in any oceanic basin based on any data source.
Elody Fluck, Michael Kunz, Peter Geissbuehler, and Stefan P. Ritz
Nat. Hazards Earth Syst. Sci., 21, 683–701, https://doi.org/10.5194/nhess-21-683-2021, https://doi.org/10.5194/nhess-21-683-2021, 2021
Short summary
Short summary
Severe convective storms (SCSs) and the related hail events constitute major atmospheric hazards in parts of Europe. In our study, we identified the regions of France, Germany, Belgium and Luxembourg that were most affected by hail over a 10 year period (2005 to 2014). A cell-tracking algorithm was computed on remote-sensing data to enable the reconstruction of several thousand SCS tracks. The location of hail hotspots will help us understand hail formation and improve hail forecasting.
Kelvin S. Ng and Gregor C. Leckebusch
Nat. Hazards Earth Syst. Sci., 21, 663–682, https://doi.org/10.5194/nhess-21-663-2021, https://doi.org/10.5194/nhess-21-663-2021, 2021
Short summary
Short summary
Due to the rarity of high-impact tropical cyclones (TCs), it is difficult to achieve a robust TC hazard assessment based on historical observations only. Here we present an approach to construct a TC event set that contains more than 10 000 years of TC events by using a computationally simple and efficient method. This event set has similar characteristics as the historical observations but includes a better representation of intense TCs. Thus, a robust TC hazard assessment can be achieved.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 21, 463–480, https://doi.org/10.5194/nhess-21-463-2021, https://doi.org/10.5194/nhess-21-463-2021, 2021
Short summary
Short summary
The assimilation impact of four observation data sets on forecasts is studied in a mesoscale weather model. The ground-based Global Navigation Satellite System (GNSS) zenithal total delay data set with information on humidity has the largest impact on analyses and forecasts, representing an evenly spread and frequent data set for each analysis time over the model domain. Moreover, the reprocessing of these data also improves the forecast quality, but this impact is not statistically significant.
Joan Gilabert, Anna Deluca, Dirk Lauwaet, Joan Ballester, Jordi Corbera, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 21, 375–391, https://doi.org/10.5194/nhess-21-375-2021, https://doi.org/10.5194/nhess-21-375-2021, 2021
Short summary
Short summary
Trends of extreme temperature episodes in cities are increasing due to regional climate change in interaction with urban effects. Urban morphologies and thermal properties of the materials used to build them are factors that influence climate variability and are one of the main reasons for the climatic singularity of cities. This paper presents a methodology to evaluate the urban and peri-urban effect on extreme-temperature exposure using land cover and land use maps.
David MacLeod, Mary Kilavi, Emmah Mwangi, Maurine Ambani, Michael Osunga, Joanne Robbins, Richard Graham, Pedram Rowhani, and Martin C. Todd
Nat. Hazards Earth Syst. Sci., 21, 261–277, https://doi.org/10.5194/nhess-21-261-2021, https://doi.org/10.5194/nhess-21-261-2021, 2021
Short summary
Short summary
Forecasts of natural hazards save lives. But the accuracy of forecasts must be evaluated before use. Here we evaluate heavy rainfall advisories over Kenya. We assess their ability to anticipate heavy rainfall and show how well they warned of recent floods which had significant impacts. We find that although they effectively warn of heavy rainfall and flooding, issues such as a lack of spatial detail limit their utility for systematic approaches to preparedness.
Cited articles
Alves, M., Nadeau, D. F., Music, B., Anctil, F., and Parajuli, A.: On the
performance of the Canadian Land Surface Scheme driven by the ERA5 reanalysis over the Canadian boreal forest, J. Hydrometeorol., 21, 1383–1404, 2020.
Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen, S., and Kunstmann, H.: Role of runoff-infiltration partitioning and resolved
overland flow on land-atmosphere feedbacks: a case-study with the WRF-Hydro
coupled modeling system for West Africa, J. Hydrometeorol., 17, 1489–1516,
https://doi.org/10.1175/JHM-D-15-0089.1, 2016.
Arnault, J., Rummler, T., Baur, F., Lerch, S., Wagner, S., Fersch, B., Zhang, Z., Kerandi, N., Keil, C., and Kunstmann, H.: Precipitation Sensitivity to the Uncertainty of Terrestrial Water Flow in WRF-Hydro: An Ensemble Analysis for Central Europe, J. Hydrometeorol., 19, 1007–1025, https://doi.org/10.1175/JHM-D-17-0042.1, 2018.
Avolio, E., Cavalcanti, O., Furnari, L., Senatore, A., and Mendicino, G.:
Brief communication: Preliminary hydro-meteorological analysis of the flash
flood of 20 August 2018 in Raganello Gorge, southern Italy, Nat. Hazards Earth Syst. Sci., 19, 1619–1627, https://doi.org/10.5194/nhess-19-1619-2019, 2019.
Bassett, R., Young, P. J., Blair, G. S., Samreen, F., and Simm, W.: A large ensemble approach to quantifying internal model variability within the WRF numerical model, J. Geophys. Res.-Atmos., 125, e2019JD031286, https://doi.org/10.1029/2019JD031286, 2020.
Camera, C., Bruggeman, A., Zittis, G., Sofokleous, I., and Arnault, J.:
Simulation of extreme rainfall and streamflow events in small Mediterranean
watersheds with a one-way-coupled atmospheric–hydrologic modelling system,
Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, 2020.
Chen, F. and Dudhia, J.: Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system, Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Diakakis, M.: Rainfall thresholds for flood triggering: The case of Marathonas in Greece, Nat. Hazards, 60, 789–800, https://doi.org/10.1007/s11069-011-9904-7, 2012.
Diakakis, M., Katsetsiadou, K., and Pallikarakis, A.: Flood fatalities in Athens, Greece: 1880-2010, in: Bulletin of the Geological Society of Greece,
vol. XLVII 2013, Proceedings of the 13th International Congress, September 2013, Chania, 2013.
Doocy, S., Daniels, A., Murray, S., and Kirsch, T. D.: The human impact of floods: A historical review of events 1980–2009 and systematic literature
review, PLOS Curr. Disast., 2013, 1, https://doi.org/10.1371/currents.dis.f4deb457904936b07c09daa98ee8171a, 2013.
Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107, 1989.
Eltahir, E. A.: A soil moisture–rainfall feedback mechanism: 1. Theory and observations, Water Resour. Res., 34, 765–776, 1998.
Emmanouil, G., Vlachogiannis, D., and Sfetsos, A.: Exploring the ability of
the WRF-ARW atmospheric model to simulate different meteorological conditions in Greece, Atmos. Res., 247, 105–226, https://doi.org/10.1016/j.atmosres.2020.105226, 2020.
Falter, D., Schröter, K., Dung, N. V., Vorogushyn, S., Kreibich, H.,
Hundecha, Y., Apel, H., and Merz, B.: Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain, J. Hydrol., 524, 182–193, 2015.
Fersch, B., Senatore, A., Adler, B., Arnault, J., Mauder, M., Schneider, K., Völksch, I., and Kunstmann, H.: High-resolution fully coupled atmospheric–hydrological modeling: a cross-compartment regional water and energy cycle evaluation, Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, 2020.
Furnari, L., Mendicino, G., and Senatore, A.: Hydrometeorological Ensemble
Forecast of a Highly Localized Convective Event in the Mediterranean, Water, 12, 1545, https://doi.org/10.3390/w12061545, 2020.
Galanaki, E., Flaounas, E., Kotroni, V., Lagouvardos, K., and Argiriou, A.:
Lightning activity in the Mediterranean: quantification of cyclones contribution and relation to their intensity, Atmos. Sci. Lett., 17, 510–516, https://doi.org/10.1002/asl.685, 2016.
Giannaros, C., Kotroni, V., Lagouvardos, K., Oikonomou, C., Haralambous, H., and Papagiannaki, K.: Hydrometeorological and Socio-Economic Impact Assessment of Stream Flooding in Southeast Mediterranean: The Case of Rafina Catchment (Attica, Greece), Water, 12, 2426, https://doi.org/10.3390/w12092426, 2020.
Giannaros, T., Melas, D., and Ziomas, I.: Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in
Greece, Renew. Energy, 102, 190–198, https://doi.org/10.1016/j.renene.2016.10.033, 2016.
Giannaros, C., Nenes, A., Giannaros, T. M., Kourtidis, K., and Melas, D.: A
comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece), Atmos. Res.,
201, 86–101, https://doi.org/10.1016/j.atmosres.2017.10.015, 2018.
Giannaros, C., Melas, D., and Giannaros, T. M.: On the short-term simulation
of heat waves in the Southeast Mediterranean: Sensitivity of the WRF model to various physics schemes, Atmos. Res., 218, 99–116,
https://doi.org/10.1016/j.atmosres.2018.11.015, 2019.
Giannaros, C., Kotroni, V., Lagouvardos, K., Giannaros, T. M., and Pikridas, C.: Assessing the Impact of GNSS ZTD Data Assimilation into the WRF Modeling System during High-Impact Rainfall Events over Greece, Remote Sens., 12, 383, https://doi.org/10.3390/rs12030383, 2020.
Givati, A. and Sapir, G.: Simulating 1 % Probability Hydrograph at the Ayalon Basin Using the HEC-HMS, Special Hydrological Report, Israel Hydrological Service, Jerusalem, Israel, 2014.
Givati, A., Gochis, D., Rummler, T., and Kunstmann, H.: Comparing one-way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the mediterranean region, Hydrology. 3, 19, https://doi.org/10.3390/hydrology3020019, 2016.
Gochis, D., Yu, W., and Yates, D.: The WRF-Hydro model technical description and user's guide, version 3.0, NCAR Technical Document, 120 pp., available at: https://ral.ucar.edu/sites/default/files/public/images/project/WRF_Hydro_User_Guide_v3.0.pdf
(last access: 28 December 2019), 2015.
Gochis, D. J. and Chen, F.: Hydrological Enhancements to the Community Noah Land Surface Model (No. NCAR/TN-454+STR), University Corporation for Atmospheric Research, https://doi.org/10.5065/D60P0X00, 2003.
Gochis, D. J., Yu, W., and Yates, D. N.: The WRF-Hydro Model Technical
Description and User's Guide, Version 1.0, NCAR Technical Document, NCAR,
Boulder, Colorado, 120 pp., available at:
http://www.ral.ucar.edu/projects/wrf_hydro/ (last access: 28 December 2019), 2013.
Hauck C., Barthlott, C., Krauss, L., and Kalthoff, N.: Soil moisture variability and its influence on convective precipitation over complex terrain, Q. J. Roy. Meteorol. Soc., 137, 42–56, 2011.
Hersbach, H. and Dee, D.: ERA5 reanalysis is in production, ECMWF Newsletter 147, ECMWF, available at:
https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production
(last access: 28 December 2019), 2016.
Hong, S. Y. and Lim, J. O.: The WRF Single-Moment 6-ClassMicrophysics Scheme (WSM6), J. Korean Meteorol. Soc., 42, 129–151, 2006.
Janjic, Z. I.: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model, NCEP Office Note No. 437, National Oceanic and Atmospheric Administration, USA, p. 61, available at: https://repository.library.noaa.gov/view/noaa/11409 (last access: 28 December 2019), 2002.
Julien, P., Saghafian, B., and Ogden, F.: Raster-based hydrological modeling of spatially-varied surface runoff, Water Resour. Bull., 31, 523–536, 1995.
Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale
models: the Kain-Fritsch scheme, in: vol. 46, The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., Am. Meteorol. Soc., 165–170, 1992.
Kandilioti, G. and Makropoulos, C.: Preliminary flood risk assessment: the case of Athens, Nat. Hazards, 61, 441–468, https://doi.org/10.1007/s11069-011-9930-5, 2012.
Karympalis, E., Gaki-Papanastasiou, K., and Maroukian, M.: Contribution of
geomorphological features of the darinage network of Megalo rema (Rafina)
and human interference in occurrence of flood events, Bull. Geol. Soc. Greece, 38, 171–181, https://doi.org/10.12681/bgsg.18436, 2005.
Kerandi, N., Arnault, J., Laux, P., Wagner, S., Kitheka, J., and Kunstmann, H.: Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin, Theor. Appl. Climatol., 131, 1337, https://doi.org/10.1007/s00704-017-2050-8, 2018.
Krajewski, W. F., Ceynar, D., Demir, I., Goska, R., Kruger, A., Langel, C.,
Mantilla, R., Niemeier, J., Quintero, F., Seo, B., Small, S. J., Weber, L. J., and Young, N. C.: Real-Time Flood Forecasting and Information System for the State of Iowa, B. Am. Meteorol. Soc., 98, 539–554,
https://doi.org/10.1175/BAMS-D-15-00243.1, 2017.
Lagouvardos, K., Kotroni, V., Dobricic, S., Nickovic, S., and Kallos, G.: The storm of October 21–22, 1994, over Greece: Observations and model results, J. Geophys. Res.-Atmos., 101, 26217–26226, https://doi.org/10.1029/96jd01385, 1996.
Lagouvardos, K., Kotroni, V., Bezes, A., Koletsis, I., Kopania, T., Lykoudis, S., Mazarakis, N., Papagiannaki, K., and Vougioukas, S.: The Automatic Weather Stations Network of the National Observatory of Athens: Operation and Database, Geosci. Data J., 4, 4–16, https://doi.org/10.1002/gdj3.44, 2017.
Larsen, M. A. D., Refsgaard, J. C., Jensen, K. H., Butts, M. B., Stisen, S.,
and Mollerup, M.: Calibration of a distributed hydrology and land surface model using energy flux measurements, Agr. Forest Meteorol., 217, 74–88, https://doi.org/10.1016/j.agrformet.2015.11.012, 2016.
Lasda, O., Dikou, A., and Papapanagiotou, E.,: Flash flooding in Attika,
Greece: Climatic change or urbanization?, Ambio, 39, 608–611,
https://doi.org/10.1007/s13280-010-0050-3, 2010.
Li, L., Gochis, D. J., Sobolowski, S., and Mesquita, M. D. S.: Evaluating the present annual water budget of a Himalayan headwater river basin using a high-resolution atmosphere-hydrology model, J. Geophys. Res.-Atmos., 122, 4786–4807, https://doi.org/10.1002/2016JD026279, 2017.
Li, L., Pontoppidan, M., Sobolowski, S., and Senatore, A.: The impact of initial conditions on convection-permitting simulations of a flood event over complex mountainous terrain, Hydrol. Earth Syst. Sci., 24, 771–791,
https://doi.org/10.5194/hess-24-771-2020, 2020.
Lin, P. , Yang, Z., Gochis, D. J., Yu, W., Maidment, D. R., Somos-Valenzuela, M. A., and David, C. H.: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation, Environ. Model. Softw., 107, 1–11, https://doi.org/10.1016/j.envsoft.2018.05.018, 2018.
Liu, Y., Liu, J., Li, C., Yu, F., Wang, W., and Qiu, Q.: Parameter Sensitivity Analysis of the WRF-Hydro Modeling System for Streamflow Simulation: a Case Study in Semi-Humid and Semi-Arid Catchments of Northern
China, Asia-Pacific J. Atmos. Sci., 57, 451–466, https://doi.org/10.1007/s13143-020-00205-2, 2021.
Martens, B., Schumacher, D. L., Wouters, H., Muñoz-Sabater, J., Verhoest, N. E. C., and Miralles, D. G.: Evaluating the land-surface energy partitioning in ERA5, Geosci. Model Dev., 13, 4159–4181,
https://doi.org/10.5194/gmd-13-4159-2020, 2020.
Maxwell, R. M., Chow, F. K., and Kollet, S. J.: The groundwater–land-surface–atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations, Adv. Water Resour., 30, 2447–2466, https://doi.org/10.1016/j.advwatres.2007.05.018, 2007.
Milly P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L.: Increasing risk of great floods in a changing climate, Nature, 415, 514–517, https://doi.org/10.1038/415514a, 2002.
Mlawer E., Taubman, S., Brown, P., Iacono, M., and Clough, S.: Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682, 1997.
Naabil, E., Lamptey, B. L., Arnault, J., Olufayo, A., and Kunstmann, H.: Water resources management using the WRF-Hydro modelling system: Case-study of the Tono dam in West Africa, J. Hydrol.: Reg. Stud., 12, 196–209, https://doi.org/10.1016/j.ejrh.2017.05.010, 2017.
NOAA: National Water Model, available at:
https://water.noaa.gov/documents/wrn-national-water-model.pdf (last access: 28 December 2019), 2016.
Nunalee, C. G., Horváth, Á., and Basu, S.: High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data, Geosci. Model Dev., 8, 2645–2653, https://doi.org/10.5194/gmd-8-2645-2015, 2015.
Ogden, F. L.: CASC2D Reference Manual, Dept. of Civil & Env. Engr., U-37, University of Connecticut, Storrs, 106 pp., 1997.
Pal, S., Dominguez, F., Dillon, M. E., Alvarez, J., Garcia, C. M., Nesbitt,
S. W., and Gochis, D.: Hydrometeorological Observations and Modeling of an Extreme Rainfall Event using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina, J. Hydrometeorol., 22, 331–351, https://doi.org/10.1175/JHM-D-20-0133.1, 2020.
Papagiannaki, K., Lagouvardos,K., and Kotroni, V.: A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001–2011, Nat. Hazards Earth Syst. Sci., 13, 727–736,
https://doi.org/10.5194/nhess-13-727-2013, 2013.
Papagiannaki, K., Lagouvardos, K., Kotroni, V., and Bezes, A.: Flash flood
occurrence and relation to the rainfall hazard in a highly urbanized area,
Nat. Hazards Earth Syst. Sci., 15, 1859–1871, https://doi.org/10.5194/nhess-15-1859-2015, 2015.
Papagiannaki, K., Kotroni, V., Lagouvardos, K., Ruin, I., and Bezes, A.: Urban Area Response to Flash Flood–761 Triggering Rainfall, Featuring Human
Behavioral Factors: The Case of 22 October 2015 in Attica, Greece, Weather Clim. Soc., 9, 621–638, https://doi.org/10.1175/wcas-d-16-0068.1, 2017.
Papaioannou, G., Varlas, G., Terti, G., Papadopoulos, A., Loukas, A.,
Panagopoulos, Y., and Dimitriou, E.: Flood Inundation Mapping at Ungauged Basins Using Coupled Hydrometeorological–Hydraulic Modelling: The Catastrophic Case of the 2006 Flash Flood in Volos City, Greece, Water, 11, 2328, https://doi.org/10.3390/w11112328, 2019.
Papathanasiou, C., Makropoulos, C., and Mimikou, M.: Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions, J. Hydrol., 529, 1838–1850, 2015.
Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V., Grimalt, M., Llasat, M. C., Llasat-Botija, M., Rosselló, J., Pasqua, A. A., and Vinet, F.: MEFF: The database of MEditerranean Flood Fatalities (1980 to 2015), J. Flood Risk Manage., 12, 1–17, 2018.
Politi, N., Nastos, P. T., Sfetsos, A., Vlachogiannis, D., and Dalezios, N. R.: Evaluation of the AWR-WRF model confguration at high resolution over the
domain of Greece, Atmos. Res., 208, 229–245, https://doi.org/10.1016/j.atmosres.2017.10.019, 2018.
Pytharoulis, I., Kotsopoulos, S., Tegoulias, I., Kartsios, S., Bampzelis, D.,
and Karacostas, T.: Numerical modeling of an intense precipitation event and
its associated lightning activity over northern Greece, Atmos. Res., 169,
523–538, https://doi.org/10.1016/j.atmosres.2015.06.019, 2016.
Romang, H., Zappa, M., Hilker, N., Gerber, M., Dufour, F., Frede, V., Bérod, D., Oplatka, M., Hegg, C., and Rhyner, J.: IFKIS-Hydro: an early
warning and information system for floods and debris flows, Nat. Hazards, 56, 509–527, https://doi.org/10.1007/s11069-010-9507-8, 2011.
Schwarzkopf, M. D. and Fels, S. B.: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes, J. Geophys. Res., 96, 9075–9096, https://doi.org/10.1029/89JD01598, 1991.
Senatore, A., Mendicino, G., Gochis, D. J., Yu, W., Yates, D. N., and Kunstmann, H.: Fully coupled atmosphere-hydrology simulations for the Central
Mediterranean: impact of enhanced hydrological parameterization for short and long time scales, J. Adv. Model. Earth Syst., 7, 1693–1715, https://doi.org/10.1002/2015MS000510, 2015.
Senatore, A., Furnari, L., and Mendicino, G.: Impact of high-resolution sea
surface temperature representation on the forecast of small Mediterranean
catchments' hydrological responses to heavy precipitation, Hydrol. Earth Syst. Sci., 24, 269–291, https://doi.org/10.5194/hess-24-269-2020, 2020.
Seneviratne, S., Corti, T., Davin, E., Hirschi, M., Jaeger, E., Lehner, I., Orlowsky, B., and Teuling, A.: Investigating soil moisture-climate interactions in a changing climate: a review, Earth Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A scale-consistent terrestrial systems modeling platform based on COSMO, CLM,
and ParFlow, Mon. Weather Rev., 142, 3466–3483, https://doi.org/10.1175/MWR-D-14-00029.1, 2014.
Silver, M., Karnieli, A., Ginat, H., Meiri, E., and Fredj, E.: An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions, Environ. Model. Softw., 91, 47–69, https://doi.org/10.1016/j.envsoft.2017.01.010, 2017.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 2, National Center For Atmospheric Research, Mesoscale and Microscale Meteorology Div., Boulder, Colorado, 2005.
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang, X., Wang, W., and Powers, J.: A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR), University Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, Trans. Am. Geophys. Union, 38, 913–920, https://doi.org/10.1029/tr038i006p00913, 1957.
Tarek, M., Brissette, F. P., and Arsenault, R.: Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over
North America, Hydrol. Earth Syst. Sci., 24, 2527–2544,
https://doi.org/10.5194/hess-24-2527-2020, 2020.
Varlas, G., Anagnostou, M. N., Spyrou, C., Papadopoulos, A., Kalogiros, J.,
Mentzafou, A., Michaelides, S., Baltas, E., Karymbalis, E., and Katsafados, P.: A Multi-Platform Hydrometeorological Analysis of the Flash Flood Event of 15 November 2017 in Attica, Greece, Remote Sens., 11, 45, https://doi.org/10.3390/rs11010045, 2019.
Verri, G., Pinardi, N., Gochis, D., Tribbia, J., Navarra, A., Coppini, G.,
and Vukicevic, T.: A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment, Nat.
Hazards Earth Syst. Sci., 17, 1741–1761, https://doi.org/10.5194/nhess-17-1741-2017, 2017.
Wagner, S., Fersch, B., Yuan, F., Yu, Z., and Kunstmann, H.: Fully coupled
atmospheric-hydrological modeling at regional and long-term scales: development, application, and analysis of WRF-HMS, Water Resour. Res., 52, 1–20, https://doi.org/10.1002/2015WR018185, 2016.
Wang, W., Liu, J., Li, C., Liu, Y., Yu, F., and Yu, E.: An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm
Events with Different Rainfall Evenness in Space and Time, Water, 12, 1209, https://doi.org/10.3390/w12041209, 2020.
Wehbe, Y., Temimi, M., Weston, M., Chaouch, N., Branch, O., Schwitalla, T., Wulfmeyer, V., Zhan, X., Liu, J., and Al Mandous, A.: Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data, Nat. Hazards Earth Syst. Sci., 19, 1129–1149, https://doi.org/10.5194/nhess-19-1129-2019, 2019.
White, K. S., Petrucci, O., Papagiannaki, K., Aceto, L., Boissier, L., Kotroni, V., Grimalt, M., Llasat, M. C., Llasat-Botija, M., Rosselló, J., Pasqua, A. A., and Vinet, F.: Technical Summary in Climate Change 2001: Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, 19–73, 2001.
Wigmosta, M. and Lettenmaier, D. P.: A comparison of simplified methods for routing topographically driven subsurface flow, Water Resour. Res., 35, 255–264, 1999.
Wigmosta, M., Vail, L. W., and Lettenmaier, D. P.: A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 30, 1665–1679, 1994.
Wu, J., Lu, G., and Wu, Z.: Flood forecasts based on multi-model ensemble
precipitation forecasting using a coupled atmospheric-hydrological modeling
system, Nat. Hazards, 74, 325–340, https://doi.org/10.1007/s11069-014-1204-6, 2014.
Xiang, T., Vivoni, E. R., Gochis, D. J., and Mascaro, G.: On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRF-Hydro modeling system, J. Geophys. Res.-Atmos., 122, 9024–9049, https://doi.org/10.1002/2017JD026472, 2017.
Yucel, I., Onen, A., Yilmaz, K. K., Gochis, and D. J.: Calibration and evaluation of a flood forecasting system: utility of numerical weather prediction model, data assimilation and satellite-based rainfall, J. Hydrol., 523, 49–66, https://doi.org/10.1016/j.jhydrol.2015.01.042, 2015.
Zigoura, A., Karympalis, E., and Xalkisa, X.: Geomorphological characteristics of Sarantapotamos drainage network as causative factor of flooding in Thriassion Plain. Attica, Greece, in: Proceedings of the 10th International Congress of the Hellenic Geographical Society, 22–24 October 2014, Thessaloniki, Greece, 2014.
Short summary
A two-way coupled hydrometeorological model (WRF-Hydro) is used for flood forecasting purposes in medium-catchment-size basins in Greece. The results showed the capability of WRF-Hydro to adequately simulate the observed discharge and the slight improvement in terms of quantitative precipitation forecasting compared to the WRF-only simulations.
A two-way coupled hydrometeorological model (WRF-Hydro) is used for flood forecasting purposes...
Altmetrics
Final-revised paper
Preprint