Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Dieter R. Poelman
CORRESPONDING AUTHOR
Royal Meteorological Institute of Belgium, Brussels, Belgium
Austrian Lightning Detection and Information System (ALDIS), Vienna, Austria
Stephane Pedeboy
Météorage, Pau, France
Dustin Hill
Scientific Lightning Solutions LLC (SLS), Titusville, Florida, USA
Marcelo Saba
National Institute for Space Research, INPE, São José dos Campos, Brazil
Hugh Hunt
The Johannesburg Lightning Research Laboratory, School of Electrical and Information Engineering, University of Witwatersrand, Johannesburg, Johannesburg, South Africa
Lukas Schwalt
Institute of High Voltage Engineering and System Performance, Graz University of Technology, Graz, Austria
Christian Vergeiner
Institute of High Voltage Engineering and System Performance, Graz University of Technology, Graz, Austria
Carlos T. Mata
Scientific Lightning Solutions LLC (SLS), Titusville, Florida, USA
Carina Schumann
The Johannesburg Lightning Research Laboratory, School of Electrical and Information Engineering, University of Witwatersrand, Johannesburg, Johannesburg, South Africa
Tom Warner
ZT Research, Rapid City, South Dakota, USA
Related authors
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025, https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Short summary
This study provides detailed insight into the thunderstorm characteristics associated with abrupt changes in the lightning activity of a thunderstorm – lightning jumps (LJs) and lightning dives (LDs) – using geostationary satellite observations. Thunderstorms exhibiting one or multiple LJs or LDs feature characteristics similar to severe thunderstorms. Storms with multiple LJs contain strong convective updrafts and are prone to produce high rain rates, large hail, or tornadoes.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021, https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Felix Erdmann and Dieter Roel Poelman
Nat. Hazards Earth Syst. Sci., 25, 1751–1768, https://doi.org/10.5194/nhess-25-1751-2025, https://doi.org/10.5194/nhess-25-1751-2025, 2025
Short summary
Short summary
This study provides detailed insight into the thunderstorm characteristics associated with abrupt changes in the lightning activity of a thunderstorm – lightning jumps (LJs) and lightning dives (LDs) – using geostationary satellite observations. Thunderstorms exhibiting one or multiple LJs or LDs feature characteristics similar to severe thunderstorms. Storms with multiple LJs contain strong convective updrafts and are prone to produce high rain rates, large hail, or tornadoes.
Hannes Kohlmann, Wolfgang Schulz, Farhad Rachidi, Naiara Duarte, and Dmitry Kuklin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1015, https://doi.org/10.5194/egusphere-2025-1015, 2025
Short summary
Short summary
Ground-based lightning location system (LLS) networks employ LLS sensors that estimate the direction of the magnetic field vector of incident lightning electromagnetic fields. This work demonstrates how field-to-cable coupling induces currents on the LLS sensor power supply cable shield, which are responsible for spurious (scattered) magnetic fields and, thus, cause errors in the estimation of the incident angle and amplitude, called "sensor site errors".
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
Atmos. Chem. Phys., 25, 1791–1803, https://doi.org/10.5194/acp-25-1791-2025, https://doi.org/10.5194/acp-25-1791-2025, 2025
Short summary
Short summary
We contribute to understanding differences in lightning flashes of opposite polarity by explaining distinct in-cloud processes after return strokes. Using data from multiple sensors, including individual Lightning Mapping Array stations, we reveal that positive flashes sustain strong high-frequency radiation due to the recharging of their in-cloud leader; this is in contrast to negative flashes, for which this activity declines rapidly.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021, https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Cited articles
Ballarotti, M. G., Medeiros, C., Saba, M. M. F., Schulz, W., and Pinto Jr., O.: Frequency distributions of some parameters of negative downward lightning flashes based on accurate-stroke-count studies, J. Geophys. Res., 117, D06112, https://doi.org/10.1029/2011JD017135, 2012.
Biagi, C. J., Cummins, K. L., Kehoe, K. E., and Krider, E. P.: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004, J. Geophys. Res., 112, D05208, https://doi.org/10.1029/2006JD007341, 2007.
Bouquegneau, C.: The need for an international standard on Lightning Location Systems, in: 23rd International Lightning Detection Conference, 18–19 March 2014, Tucson, Arizona, USA, 2014.
Bürgesser, R. E.: Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS), Q. J. Roy. Meteor. Soc., 143, 2809–2817, https://doi.org/10.1002/qj.3129, 2017.
Cooray, V. and Jayaratne, K. P. S. C.: Characteristics of lightning flashes observed in Sri Lanka in the tropics, J. Geophys. Res., 99, 21051–21056, https://doi.org/10.1029/94JD01519, 1994.
Cooray, V. and Pérez, H.: Some features of lightning flashes observed in Sweden, J. Geophys. Res., 99, 10683–10688, https://doi.org/10.1029/93JD02366, 1994.
Coquillat, S., Defer, E., de Guibert, P., Lambert, D., Pinty, J.-P., Pont, V., Prieur, S., Thomas, R. J., Krehbiel, P. R., and Rison, W.: SAETTA: high-resolution 3-D mapping of the total lightning activity in the Mediterranean Basin over Corsica, with a focus on a mesoscale convective system event, Atmos. Meas. Tech., 12, 5765–5790, https://doi.org/10.5194/amt-12-5765-2019, 2019.
Evert, R. C. and Gijben, M.: Official South African Lightning Ground Flash Density Map 2006 to 2017 – Earthing Africa Inaugural Symposium and Exhibition, Johannesburg, South Africa, 2017.
Ferro, M. A., Saba, M. M. F., and Pinto Jr., O.: Time intervals between negative lightning strokes and the creation of new ground terminations, Atmos. Res., 116, 130–133, 2012.
Fleenor, S. A., Biagi, C. J., Cummins, K. L., Krider, E. P., and Shao, X.: Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains, Atmos. Res., 91, 333–352, 2009.
Gaffard, C., Nash, J., Atkinson, N., Bennett, A., Callaghan, G., Hibbett, E., Taylor, P., Turp, M., and Schulz, W.: Observing lightning around the globe from the surface, in: 20th International Lightning Detection Conference, Tucson, Arizona, USA, 21–23, 2008.
Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey J., Buechler, D., Carey, L., Schultz, C., Bateman, M., McCaul, E., and Stano, G.: The GOES-R Geostationary Lightning Mapper (GLM), Atmos. Res., 125–126, 34–49, 2013.
Grandell, J., Finke, U., and Stuhlmann, R.: The EUMETSAT meteosat third generation lightning imager (MTG-LI): Applications and product processing, in: Proceedings of the 9th EMS Annual Meeting, 28 September–2 October 2009, Toulouse, France, 2009.
Hill, J. D., Mata, C. T., Nag, A., and Roeder, W. P.: Evaluation of the performance characteristics of MERLIN and NLDN based on two years of ground-truth data from Kennedy Space Center/Cape Canaveral Air Force station, Florida, in: 24th International Lightning Detection Conference, San Diego, California, USA, 2016.
International Standard: IEC 62858, Edition 2, lightning density based on lightning location systems (LLS) – General principles, International Electrotechnical Commission, ISBN 978-2-8322-7457-6, 2019.
Kitagawa, N., Brook, M., and Workman, E. J.: Continuing currents in cloud-to-ground lightning discharges, J. Geophys. Res., 67, 637–647, https://doi.org/10.1029/JZ067i002p00637, 1962.
Krider, E. P., Noggle, R. C., and Uman, M. A.: A gated wide-band magnetic direction finder for lightning return strokes, J. Appl. Meteorol., 15, 301–306, 1976.
Lewis, E. A., Harvey, R. B., and Rasmussen, J. E.: Hyperbolic direction finding with sferics of transatlantic origin, J. Geophys. Res., 65, 1879–1905, 1960.
Murphy, M. J., Cramer, J. A., and Said, R. K.: Recent History of Upgrades to the U.S. National Lightning Detection Network, J. Atmos. Ocean. Tech., 38, 573–585, 2021.
Naccarato, K. P. and Pinto Jr., O.: Improvements in the detection efficiency model for the Brazilian lightning detection network (Brasil – DAT), Atmos. Res., 91, 546–563, https://doi.org/10.1016/j.atmosres.2008.06.019, 2009.
Poelman, D. R., Schulz, W., Pedeboy, S., Campos, L. Z. S., Matsui, M., Hill, D., Saba, M., and Hunt, H.: Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation, Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021, 2021.
Rakov, V. A. and Uman, M. A.: Some properties of negative cloud- to-ground lightning, paper presented at 20th International Conference on Lightning Protection, Swiss Electrotechn. Assoc., Interlaken, Switzerland, 1990.
Rakov, V. A., Uman, M. A., and Thottappillil, R.: Review of lightning properties from electric field and TV observations, J. Geophys. Res., 99, 10745–10750, https://doi.org/10.1029/93JD01205, 1994.
Saba, M. M. F., Ballarotti, M. G., Pinto Jr., O.: Negative cloud-to-ground lightning properties from high-speed video observations, J. Geophys. Res. 111, D03101, https://doi.org/10.1029/2005JD006415, 2006.
Saba, M. M. F., Schumann, C., Warner, T. A., Ferro, M. A. S., de Paiva, A. R., Helsdon Jr., J., and Orville, R. E.: Upward lightning flashes characteristics from high-speed videos, J. Geophys. Res. Atmos., 121, 8493–8505, https://doi.org/10.1002/2016JD025137, 2016.
Said, R. K., Inan, U. S., and Cummins, K. L.: Long-range lightning geolocation using a VLF radio atmospheric waveform bank, J. Geophys.Res., 115, D23108, https://doi.org/10.1029/2010JD013863, 2010.
Saraiva, A. C. V., Saba, M. M. F., Pinto, O., Cummins, K. L., Krider, E. P., and Campos, L. Z. S.: A comparative study of negative cloud-to-ground lightning characteristics in São Paulo (Brazil) and Arizona (United States) based on high-speed video observations, J. Geophys. Res., 115, D11102, https://doi.org/10.1029/2009JD012604, 2010.
Schulz, W. and Saba, M. M. F.: First results of correlated lightning video images and electric field measurements in Austria, in: SIPDA, 9–13 November 2009, Curitiba, Brazil, 2009.
Schulz, W., Lackenbauer, B., Pichler, H., and Diendorfer, G.: LLS data and correlated continuous E-field measurements, in: SIPDA, 21–25 November 2009, Sao Paulo, Brazil, 2005.
Schulz, W., Diendorfer, G., Pedeboy, S., and Poelman, D. R.: The European lightning location system EUCLID – Part 1: Performance analysis and validation, Nat. Hazards Earth Syst. Sci., 16, 595–605, https://doi.org/10.5194/nhess-16-595-2016, 2016.
Schumann, C., Hunt, H. G. P., Tasman, J., Fensham, H., Nixon, K. J., Warner, T. A., and Saba, M. M. F.: High-speed Video Observation of Lightning Flashes Over Johannesburg, in: South Africa 2017–2018 International Conference on Lightning Protection, 2–7 September 2018, Rzeszow, Poland, 2018.
Schwalt, L.: Lightning Phenomena in the Alpine Region of Austria, PhD thesis, Graz University of Technology, 147 pp., 2019.
Schwalt, L., Pack, S., and Schulz, W.: Ground truth Data of Atmospheric Discharges in Correlation with LLS Detections, Elect. Pow. Syst. Res., 180, 106065, https://doi.org/10.1016/j.epsr.2019.106065, 2020.
Schwalt, L., Pack, S., Schulz, W., and Pistotnik, G.: Percentage of single-stroke flashes related to different thunderstorm types, Elect. Power Syst. Res., 194, 107109, https://doi.org/10.1016/j.epsr.2021.107109, 2021.
Sparrow, J. G. and Ney, E. P.: Lightning observations by satellite, Nature, 232, 514–540, 1971.
Stall, C. A., Cummins, K. L., Krider, E. P., and Cramer, J. A.: Detecting multiple ground contacts in cloud-to-ground lightning flashes, J. Atmos. Ocean. Tech., 26, 2392–2402, 2009.
Turman, B. N.: Analysis of lightning data from the DMSP satellite, J. Geophys. Res.-Oceans, 83, 5019–5024, https://doi.org/10.1029/JC083iC10p05019, 1978.
Valine, W. and Krider, E. P.: Statistics and characteristics of cloud-to-ground lightning with multiple ground contacts, J. Geophys. Res., 107, 4441, https://doi.org/10.1029/2001JD001360, 2002.
Vergeiner, C., Pack, S., Schulz, W., and Diendorfer, G.: Negative cloud-to-ground lightning in the alpine region: a new approach, in: CIGRE International Colloquium, 28–30 March 2016, Curitiba, Brazil, 2016.
Vorpahl, J. A., Sparrow, J. G., and Ney, E. P.: Satellite observations of lightning, Science, 169, 860–862, 1970.
Yang, J., Zhang, Z., Wei, C., Lu, F., and Guo, Q.: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4, B. Am. Meteorol. Soc., 98, 1637–1658, 2017.
Zhu, Y., Rakov, V. A., Tran, M. D., Stock, M. G., Heckman, S., Liu, C., Sloop, C. D., Jordan, D. M., Uman, M. A., Caicedo, J. A., Kotovsky, D. A., Wilkes, R. A., Carvalho, F. L., Ngin, T., Gamerota, W. R., Pilkey, J. T., and Hare, B. M.: Evaluation of ENTLN performance characteristics based on the ground truth natural and rocket-triggered lightning data acquired in Florida, J. Geophys. Res.-Atmos., 122, 9858–9866, https://doi.org/10.1002/2017JD027270, 2017.
Short summary
Information about lightning properties is important in order to advance the current understanding of lightning, whereby the characteristics of ground strike points are in particular helpful to improving the risk estimation for lightning protection. High-speed video recordings of 1174 negative downward lightning flashes are taken in different regions around the world and analyzed in terms of flash multiplicity, duration, interstroke intervals and ground strike point properties.
Information about lightning properties is important in order to advance the current...
Altmetrics
Final-revised paper
Preprint