Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-1721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing internal changes in the future structure of dry–hot compound events: the case of the Pyrenees
Climatology Group, Department of Geography, University of Barcelona, Barcelona, 08001, Spain
Joan Albert Lopez-Bustins
Climatology Group, Department of Geography, University of Barcelona, Barcelona, 08001, Spain
Related authors
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci., 25, 2503–2518, https://doi.org/10.5194/nhess-25-2503-2025, https://doi.org/10.5194/nhess-25-2503-2025, 2025
Short summary
Short summary
This study investigates the intense heatwaves of 2022 in the Pyrenees. The interplay of the synoptic circulation with the complex topography and the pre-existing soil moisture deficits played an important role in driving the spatial variability of their temperature anomalies. Moreover, human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
Marc Lemus-Canovas, Sergi Gonzalez-Herrero, Laura Trapero, Anna Albalat, Damian Insua-Costa, Martin Senande-Rivera, and Gonzalo Miguez-Macho
Nat. Hazards Earth Syst. Sci., 25, 2503–2518, https://doi.org/10.5194/nhess-25-2503-2025, https://doi.org/10.5194/nhess-25-2503-2025, 2025
Short summary
Short summary
This study investigates the intense heatwaves of 2022 in the Pyrenees. The interplay of the synoptic circulation with the complex topography and the pre-existing soil moisture deficits played an important role in driving the spatial variability of their temperature anomalies. Moreover, human-driven climate change has made these heatwaves more severe compared to the past. This research helps us better understand how climate change affects extreme weather in mountainous regions.
Marc Lemus-Canovas, Alice Crespi, Elena Maines, Stefano Terzi, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-1347, https://doi.org/10.5194/egusphere-2025-1347, 2025
Short summary
Short summary
We studied a severe compound drought and heatwave event in the Adige River basin in May 2022 and found that similar events are now hotter and drier due to current warming. These changes worsen water stress and river drying. We show that timing matters: events in June are now more critical than in April, as the snowmelt contribution to streamflow in June has become much lower than in the past. However, many climate models still fail to capture these changes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
Joan Albert Lopez-Bustins, Laia Arbiol-Roca, Javier Martin-Vide, Antoni Barrera-Escoda, and Marc Prohom
Nat. Hazards Earth Syst. Sci., 20, 2483–2501, https://doi.org/10.5194/nhess-20-2483-2020, https://doi.org/10.5194/nhess-20-2483-2020, 2020
Short summary
Short summary
We considered the Western Mediterranean Oscillation index (WeMOi) to analyse the occurrence of extreme torrential episodes (≥ 200 mm in 24 h) over Catalonia (NE Iberia) during the 1951–2016 period. Principal results reveal the occurrence of 50 episodes, mainly in autumn, especially during the second 10 d period of October (11–20), coinciding with the most negative WeMOi values of the year. Seasonal changes in these episodes and in WeMOi values might be due to sea warming.
Cited articles
Camarero, J. J.: The Multiple Factors Explaining Decline in Mountain Forests: Historical Logging and Warming-Related Drought Stress is Causing Silver-Fir Dieback in the Aragón Pyrenees, in: High Mountain Conservation in a Changing World, edited by: Catalan, J., Ninot, J., and Aniz, M., Advances in Global Change Research, vol 62, Springer, Cham, https://doi.org/10.1007/978-3-319-55982-7_6, 2017.
Cannon, A. J.:
Multivariate Bias Correction of Climate Model Output: Matching Marginal Distributions and Intervariable Dependence Structure,
J. Climate,
29, 7045–7064, https://doi.org/10.1175/jcli-d-15-0679.1, 2016.
Cannon, A. J.:
Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables,
Clim. Dynam.,
50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018a.
Cannon, A. J.:
Multivariate Bias Correction of Climate Model Outputs,
available at: https://CRAN.R-project.org/package=MBC (last access: 30 April 2021), 2018b.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.:
Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?,
J. Climate, 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.
Carro-Calvo, L., Ordóñez, C., García-Herrera, R., and Schnell, J. L.: Spatial clustering and meteorological drivers of summer ozone in Europe, Atmos. Environ., 167, 496–510, https://doi.org/10.1016/j.atmosenv.2017.08.050, 2017.
Carvalho, M. J., Melo-Gonçalves, P., Teixeira, J. C., and Rocha, A.:
Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation,
Phys. Chem. Earth, 94, 22–28, https://doi.org/10.1016/j.pce.2016.05.001, 2016.
Casanueva, A., Bedia, J., Herrera, S., Fernández, J., and Gutiérrez, J. M.:
Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool,
Climatic Change,
147, 411–425, https://doi.org/10.1007/s10584-018-2167-5, 2018.
Cattell, R. B.:
The scree test for the number of factors,
Multivar. Behav. Res., 1, 245–276, https://doi.org/10.1207/s15327906mbr0102_10, 1966.
Cuadrat, J. M., Serrano-Notivoli, R., Tejedor, E., Saz, M. Á., Prohom, M., Cunillera, J., Llabrés, A., Trapero, L., Pons, M., López-Moreno, J. I., Copons, R., Gascoin, S., Luna, Y., Rodríguez, E., Ramos, P., Amblar, P., and Soubeyroux, J.-M.:
CLIMPY: Climate of the Pyrenees, Zenodo, https://doi.org/10.5281/ZENODO.3611127, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.:
The ERA-Interim reanalysis: configuration and performance of the data assimilation system.
Q. J. Roy. Meteor. Soc.,
137, 553–597. https://doi.org/10.1002/qj.828, 2011.
Diffenbaugh, N. S. and Ashfaq, M.:
Intensification of hot extremes in the United States,
Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043888, 2010.
Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C., Klein Tank, A. M. G., Kruger, A. C., Marengo, J., Peterson, T. C., Renom, M., Oria Rojas, C., Rusticucci, M., Salinger, J., Elrayah, A. S., Sekele, S. S., Srivastava, A. K., Trewin, B., Villarroel, C., Vincent, L. A., Zhai, P., Zhang, X., and Kitching, S.:
Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset,
J. Geophys. Res.-Atmos., 118, 2098–2118, https://doi.org/10.1002/jgrd.50150, 2013.
Fonseca, D., Carvalho, M. J., Marta-Almeida, M., Melo-Gonçalves, P., and Rocha, A.:
Recent trends of extreme temperature indices for the Iberian Peninsula,
Phys. Chem. Earth Pt. A/B/C,
94, 66–76, https://doi.org/10.1016/j.pce.2015.12.005, 2016.
François, B., Vrac, M., Cannon, A. J., Robin, Y., and Allard, D.: Multivariate bias corrections of climate simulations: which benefits for which losses?, Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020, 2020.
Gazol, A., Sangüesa-Barreda, G., and Camarero, J. J.:
Forecasting Forest Vulnerability to Drought in Pyrenean Silver Fir Forests Showing Dieback,
Frontiers in Forests and Global Change, 36, 1–13, https://doi.org/10.3389/ffgc.2020.00036, 2020.
Gillett, N. P. and Stott, P. A.:
Attribution of anthropogenic influence on seasonal sea level pressure,
Geophys. Res. Lett., 36, 1:5, https://doi.org/10.1029/2009GL041269, 2009.
Gudmundsson, L.:
qmap: Statistical transformations for postprocessing climate model output, R package version 1.0-2, 2014.
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods, Hydrol. Earth Syst. Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012.
Gutowski, W. J., Decker, S. G., Donavon, R. A., Pan, Z., Arritt, R. W., and Takle, E. S.:
Temporal-spatial scales of observed and simulated precipitation in Central U.S. climate,
J. Climate, 16, 3841–3847, https://doi.org/10.1175/1520-0442(2003)016<3841:TSOOAS>2.0.CO;2, 2003.
Hao, Z., Singh, V. P., and Hao, F.:
Compound extremes in hydroclimatology: A review,
Water (Switzerland), 10, 1–24, https://doi.org/10.3390/w10060718, 2018.
Hao, Z., Hao, F., Xia, Y., Singh, V. P., and Zhang, X.:
A monitoring and prediction system for compound dry and hot events,
Environ. Res. Lett., 14, 1–10, https://doi.org/10.1088/1748-9326/ab4df5, 2019.
Hay, L. E. and Clark, M. P.:
Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States,
J. Hydrol.,
282, 56–75., 2003.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J. F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.:
EURO-CORDEX: New high-resolution climate change projections for European impact research,
Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Lehtonen, I., Ruosteenoja, K., and Jylhä, K.:
Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles,
Int. J. Climatol., 34, 1208–1222, https://doi.org/10.1002/joc.3758, 2014.
Lemus-Cánovas, M., Ninyerola, M., Lopez-Bustins, J. A., Manguan, S., and Garcia-Sellés, C.:
A mixed application of an objective synoptic classification and spatial regression models for deriving winter precipitation regimes in the Eastern Pyrenees,
Int. J. Climatol., 39, 2244–2259, https://doi.org/10.1002/joc.5948, 2018.
Lemus-Canovas, M., Lopez-Bustins, J. A., Trapero, L., and Martin-Vide, J.:
Combining circulation weather types and daily precipitation modelling to derive climatic precipitation regions in the Pyrenees,
Atmos. Res.,
220, 181–193, https://doi.org/10.1016/j.atmosres.2019.01.018, 2019a.
Lemus-Canovas, M., Lopez-Bustins, J. A., Martin-Vide, J., and Royé, D.:
synoptReg: An R package for computing a synoptic climate classification and a spatial regionalization of environmental data,
Environ. Model. Softw.,
118, 114–119, https://doi.org/10.1016/J.ENVSOFT.2019.04.006, 2019b.
Lu, J., Vecchi, G. A., and Reichler, T.:
Expansion of the Hadley cell under global warming,
Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL028443, 2007.
Lu, Y., Hu, H., Li, C., and Tian, F.:
Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China,
Sci. Rep., 8, 1–8, https://doi.org/10.1038/s41598-018-34215-y, 2018.
Mann, H. B.:
Nonparametric Tests Against Trend,
Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
Manning, C., Widmann, M., Bevacqua, E., Van Loon, A. F., Maraun, D., and Vrac, M.:
Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013),
Environ. Res. Lett., 14, 1–16, https://doi.org/10.1088/1748-9326/ab23bf, 2019.
Maraun, D.:
Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue,
J. Climate, 26, 2137–2143, https://doi.org/10.1175/JCLI-D-12-00821.1, 2013.
Maraun, D. and Widmann, M.: Cross-validation of bias-corrected climate simulations is misleading, Hydrol. Earth Syst. Sci., 22, 4867–4873, https://doi.org/10.5194/hess-22-4867-2018, 2018a.
Maraun, D. and Widmann, M.:
Statistical Downscaling and Bias Correction for Climate Research, Cambridge University Press, Cambridge, https://doi.org/10.1017/9781107588783, Online ISBN: 9781107588783, 2018b.
Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns, L. O.:
Towards process-informed bias correction of climate change simulations,
Nat. Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418, 2017.
Maraun, D., Truhetz, H., and Schaffer, A.:
Regional Climate Model Biases, Their Dependence on Synoptic Circulation Biases and the Potential for Bias Adjustment: A Process-Oriented Evaluation of the Austrian Regional Climate Projections,
J. Geophys. Res.-Atmos.,
126, e2020JD032824, https://doi.org/10.1029/2020JD032824, 2021.
Martin-Vide, J. and Gomez, L.:
Regionalization of peninsular Spain based on the length of dry spells,
Int. J. Climatol., 19, 537–555, https://doi.org/10.1002/(SICI)1097-0088(199904)19:5<537::AID-JOC371>3.0.CO;2-X, 1999.
Mazdiyasni, O. and AghaKouchak, A.:
Substantial increase in concurrent droughts and heatwaves in the United States,
P. Natl. Acad. Sci. USA, 37, 11484–11489, https://doi.org/10.1073/pnas.1422945112, 2015.
Orlowsky, B. and Seneviratne, S. I.:
Global changes in extreme events: Regional and seasonal dimension,
Climatic Change, 110, 669–696, https://doi.org/10.1007/s10584-011-0122-9, 2012.
Panofsky, H. and Brier, G.:
Some Applications of Statistics to Meteorology,
The Pennsylvania State University, University Park, PA, 1968.
Piani, C. and Haerter, J. O.:
Two dimensional bias correction of temperature and precipitation copulas in climate models,
Geophys. Res. Lett.,
39, 1–6, https://doi.org/10.1029/2012GL053839, 2012.
Piani, C., Haerter, J. O., and Coppola, E.:
Statistical bias correction for daily precipitation in regional climate models over Europe,
Theor. Appl. Climatol.,
99, 187–192, 2010.
Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., and Dettinger, M. D.:
The key role of dry days in changing regional climate and precipitation regimes,
Sci. Rep., 4, 4364, https://doi.org/10.1038/srep04364, 2014.
Rajczak, J., Kotlarski, S., and Schär, C.:
Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths?,
J. Climate, 29, 1605–1615, https://doi.org/10.1175/JCLI-D-15-0162.1, 2016.
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.:
RCP 8.5-A scenario of comparatively high greenhouse gas emissions,
Climatic Change, 109, 33, https://doi.org/10.1007/s10584-011-0149-y, 2011.
Salameh, A. A. M., Gámiz-Fortis, S. R., Castro-Díez, Y., Abu Hammad, A., and Esteban-Parra, M. J.:
Spatio-temporal analysis for extreme temperature indices over the Levant region,
Int. J. Climatol.,
39, 5556–5582, https://doi.org/10.1002/joc.6171, 2019.
Sen, P. K.:
Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 62, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A., and de Luis, M.: SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview, Earth Syst. Sci. Data, 9, 721–738, https://doi.org/10.5194/essd-9-721-2017, 2017.
Serrano-Notivoli, R., Beguería, S., and de Luis, M.: STEAD: a high-resolution daily gridded temperature dataset for Spain, Earth Syst. Sci. Data, 11, 1171–1188, https://doi.org/10.5194/essd-11-1171-2019, 2019.
Sharma, S. and Mujumdar, P.:
Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India,
Sci. Rep., 7, 15582, https://doi.org/10.1038/s41598-017-15896-3, 2017.
Singh, D., Tsiang, M., Rajaratnam, B., and Diffenbaugh, N. S.:
Observed changes in extreme wet and dry spells during the south Asian summer monsoon season,
Nat. Clim. Change, 4, 456–461, https://doi.org/10.1038/nclimate2208, 2014.
Sousa, P. M., Trigo, R. M., Barriopedro, D., Soares, P. M., and Santos, J. A.:
European temperature responses to blocking and ridge regional patterns,
Clim. Dynam., 50, 457–477, https://doi.org/10.1007/s00382-017-3620-2, 2018.
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.):
Climate change 2013: The physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change,
Cambridge University Press, Cambridge, 2014.
Teutschbein, C. and Seibert, J.:
Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,
J. Hydrol.,
456–457, 12–29, 2012.
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J.:
Global warming and changes in drought,
Nat. Clim. Chang., 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
Turco, M., von Hardenberg, J., AghaKouchak, A., Llasat, M. C., Provenzale, A., and Trigo, R. M.:
On the key role of droughts in the dynamics of summer fires in Mediterranean Europe,
Sci. Rep.,
7, 1–10, https://doi.org/10.1038/s41598-017-00116-9, 2017.
Vrac, M. and Friederichs, P.:
Multivariate-intervariable, spatial, and temporal-bias correction,
J. Climate,
28, 218–237, 2015.
Wilcke, R. A. I., Mendlik, T., and Gobiet, A.:
Multi-variable error correction of regional climate models,
Climatic Change, 120, 871–887, https://doi.org/10.1007/s10584-013-0845-x, 2013.
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., and Edmonds, J.:
Implications of limiting CO2 concentrations for land use and energy,
Science, 324, 1183–1186, https://doi.org/10.1126/science.1168475, 2009.
Wu, X., Hao, Z., Hao, F., Singh, V. P., and Zhang, X.:
Dry-hot magnitude index: A joint indicator for compound event analysis,
Environ. Res. Lett., 14, 1–9, https://doi.org/10.1088/1748-9326/ab1ec7, 2019.
Wu, X., Hao, Z., Tang, Q., Singh, V. P., Zhang, X., and Hao, F.:
Projected increase in compound dry and hot events over global land areas,
Int. J. Climatol., 41, 393–403, https://doi.org/10.1002/joc.6626, 2020.
Ye, H. and Fetzer, E. J.:
Asymmetrical Shift Toward Longer Dry Spells Associated with Warming Temperatures During Russian Summers,
Geophys. Res. Lett., 46, 11455–11462, https://doi.org/10.1029/2019GL084748, 2019.
Zolina, O., Simmer, C., Belyaev, K., Gulev, S. K., and Koltermann, P.:
Changes in the duration of European wet and dry spells during the last 60 years,
J. Climate, 16, 2022–2047, https://doi.org/10.1175/JCLI-D-11-00498.1, 2013.
Zscheischler, J. and Seneviratne, S. I.:
Dependence of drivers affects risks associated with compound events,
Science Advances, 3, e17002, https://doi.org/10.1126/sciadv.1700263, 2017.
Zscheischler, J., Orth, R., and Seneviratne, S. I.: Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields, Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, 2017.
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.:
Future climate risk from compound events,
Nat. Clim. Change, 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
We present research that attempts to address recent and future changes in hot and dry compound events in the Pyrenees, which can induce severe environmental hazards in this area. The results show that during the last few decades, these kinds of compound events have only increased due to temperature increase. However, for the future, it is expected that the risk associated with these compound events will be raised by both the thermal increase and the longer duration of drought periods.
We present research that attempts to address recent and future changes in hot and dry compound...
Altmetrics
Final-revised paper
Preprint