Articles | Volume 21, issue 6
Nat. Hazards Earth Syst. Sci., 21, 1721–1738, 2021
https://doi.org/10.5194/nhess-21-1721-2021

Special issue: Understanding compound weather and climate events and related...

Nat. Hazards Earth Syst. Sci., 21, 1721–1738, 2021
https://doi.org/10.5194/nhess-21-1721-2021

Research article 02 Jun 2021

Research article | 02 Jun 2021

Assessing internal changes in the future structure of dry–hot compound events: the case of the Pyrenees

Marc Lemus-Canovas and Joan Albert Lopez-Bustins

Related authors

Intra-annual variability of the Western Mediterranean Oscillation (WeMO) and occurrence of extreme torrential precipitation in Catalonia (NE Iberia)
Joan Albert Lopez-Bustins, Laia Arbiol-Roca, Javier Martin-Vide, Antoni Barrera-Escoda, and Marc Prohom
Nat. Hazards Earth Syst. Sci., 20, 2483–2501, https://doi.org/10.5194/nhess-20-2483-2020,https://doi.org/10.5194/nhess-20-2483-2020, 2020
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Review article: Risk management framework of environmental hazards and extremes in Mediterranean ecosystems
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana M. Tarquis
Nat. Hazards Earth Syst. Sci., 21, 1935–1954, https://doi.org/10.5194/nhess-21-1935-2021,https://doi.org/10.5194/nhess-21-1935-2021, 2021
Short summary
Global ground strike point characteristics in negative downward lightning flashes – Part 1: Observations
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021,https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Global ground strike point characteristics in negative downward lightning flashes – Part 2: Algorithm validation
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021,https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Changes in drought features at the European level over the last 120 years
Monica Ionita and Viorica Nagavciuc
Nat. Hazards Earth Syst. Sci., 21, 1685–1701, https://doi.org/10.5194/nhess-21-1685-2021,https://doi.org/10.5194/nhess-21-1685-2021, 2021
Short summary
Assimilation of Himawari-8 imager radiance data with the WRF-3DVAR system for the prediction of Typhoon Soudelor
Feifei Shen, Aiqing Shu, Hong Li, Dongmei Xu, and Jinzhong Min
Nat. Hazards Earth Syst. Sci., 21, 1569–1582, https://doi.org/10.5194/nhess-21-1569-2021,https://doi.org/10.5194/nhess-21-1569-2021, 2021
Short summary

Cited articles

Camarero, J. J.: The Multiple Factors Explaining Decline in Mountain Forests: Historical Logging and Warming-Related Drought Stress is Causing Silver-Fir Dieback in the Aragón Pyrenees, in: High Mountain Conservation in a Changing World, edited by: Catalan, J., Ninot, J., and Aniz, M., Advances in Global Change Research, vol 62, Springer, Cham, https://doi.org/10.1007/978-3-319-55982-7_6, 2017. 
Cannon, A. J.: Multivariate Bias Correction of Climate Model Output: Matching Marginal Distributions and Intervariable Dependence Structure, J. Climate, 29, 7045–7064, https://doi.org/10.1175/jcli-d-15-0679.1, 2016. 
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018a. 
Cannon, A. J.: Multivariate Bias Correction of Climate Model Outputs, available at: https://CRAN.R-project.org/package=MBC (last access: 30 April 2021), 2018b. 
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?, J. Climate, 28, 6938–6959, https://doi.org/10.1175/JCLI-D-14-00754.1, 2015. 
Download
Short summary
We present research that attempts to address recent and future changes in hot and dry compound events in the Pyrenees, which can induce severe environmental hazards in this area. The results show that during the last few decades, these kinds of compound events have only increased due to temperature increase. However, for the future, it is expected that the risk associated with these compound events will be raised by both the thermal increase and the longer duration of drought periods.
Altmetrics
Final-revised paper
Preprint