Articles | Volume 21, issue 5
https://doi.org/10.5194/nhess-21-1409-2021
https://doi.org/10.5194/nhess-21-1409-2021
Research article
 | Highlight paper
 | 
05 May 2021
Research article | Highlight paper |  | 05 May 2021

Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019)

Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin

Related authors

Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024,https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Everest South Col Glacier did not thin during the period 1984–2017
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023,https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Coherent backscatter enhancement in bistatic Ku- and X-band radar observations of dry snow
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022,https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
MONITORING HANGING GLACIER DYNAMICS FROM SAR IMAGES USING CORNER REFLECTORS AND FIELD MEASUREMENTS IN THE MONT-BLANC MASSIF
S. Kaushik, S. Leinss, L. Ravanel, E. Trouvé, Y. Yan, and F. Magnin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 325–332, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022,https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, 2022
Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021,https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024,https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024,https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Assessing landslide damming susceptibility in Central Asia
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024,https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024,https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary

Cited articles

Bessette-Kirton, E. K. and Coe, J. A.: A 36-year record of rock avalanches in the Saint Elias Mountains of alaska, with implications for future hazards, Front. Earth Sci., 8, 293, https://doi.org/10.3389/feart.2020.00293, 2020. a
Clarke, G., Collins, S., and Thompson, D.: Flow, thermal structure, and subglacial conditions of a surge-type glacier, Can. J. Earth Sci., 21, 232–240, https://doi.org/10.1139/e84-024, 2011. a
Copernicus Climate Change Service – C3S: C3S ERA5-Land reanalysis, https://doi.org/10.24381/cds.68d2bb30, 2019. a
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2010. a
Davies, T. R. H.: Spreading of rock avalanche debris by mechanical fluidization, Rock Mech., 15, 9–24, https://doi.org/10.1007/BF01239474, 1982. a
Download
Short summary
A cluster of 13 large mass flow events including five detachments of entire valley glaciers was observed in the Petra Pervogo range, Tajikistan, in 1973–2019. The local clustering provides additional understanding of the influence of temperature, seismic activity, and geology. Most events occurred in summer of years with mean annual air temperatures higher than the past 46-year trend. The glaciers rest on weak bedrock and are rather short, making them sensitive to friction loss due to meltwater.
Altmetrics
Final-revised paper
Preprint