Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-1071-2021
https://doi.org/10.5194/nhess-21-1071-2021
Research article
 | 
23 Mar 2021
Research article |  | 23 Mar 2021

The uncertainty of flood frequency analyses in hydrodynamic model simulations

Xudong Zhou, Wenchao Ma, Wataru Echizenya, and Dai Yamazaki

Related authors

An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024,https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
AltiMaP: altimetry mapping procedure for hydrography data
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024,https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023,https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Methodology for constructing a flood-hazard map for a future climate
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023,https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Assimilation of transformed water surface elevation to improve river discharge estimation in a continental-scale river
Menaka Revel, Xudong Zhou, Dai Yamazaki, and Shinjiro Kanae
Hydrol. Earth Syst. Sci., 27, 647–671, https://doi.org/10.5194/hess-27-647-2023,https://doi.org/10.5194/hess-27-647-2023, 2023
Short summary

Related subject area

Hydrological Hazards
Mind the gap: misalignment between drought monitoring and community realities
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 25, 893–912, https://doi.org/10.5194/nhess-25-893-2025,https://doi.org/10.5194/nhess-25-893-2025, 2025
Short summary
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025,https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary
Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the 2021 flood
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025,https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025,https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025,https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary

Cited articles

Aerts, J. P. M., Uhlemann-Elmer, S., Eilander, D., and Ward, P. J.: Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study, Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, 2020. a
Akaike, H.: A new look at the statistical model identification, IEEE T Automat. Contr., 19, 716–723, 1974. a
Alvisi, S. and Franchini, M.: A grey-based method for evaluating the effects of rating curve uncertainty on frequency analysis of annual maxima, J. Hydroinform., 15, 194–210, https://doi.org/10.2166/hydro.2012.127, 2013. a
Bales, J. D. and Wagner, C. R.: Sources of uncertainty in flood inundation maps, J. Flood Risk Manag., 2, 139–147, https://doi.org/10.1111/j.1753-318X.2009.01029.x, 2009. a
Bernhofen, M. V., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith, A. M., Sampson, C. C., Yamazaki, D., Ward, P. J., Rudari, R., Pappenberger, F., Dottori, F., Salamon, P., and Winsemius, H. C.: A first collective validation of global fluvial flood models for major floods in Nigeria and Mozambique, Environ. Res. Lett., 13, 104007, https://doi.org/10.1088/1748-9326/aae014, 2018. a
Download
Short summary
This article assesses different uncertainties in the analysis of flood risk and found the runoff generated before the river routing is the primary uncertainty source. This calls for attention to be focused on selecting an appropriate runoff for the flood analysis. The uncertainties are reflected in the flood water depth, inundation area and the exposure of the population and economy to the floods.
Share
Altmetrics
Final-revised paper
Preprint