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Abstract. Assessing the risk of a historical-level flood is es-
sential for regional flood protection and resilience establish-
ment. However, due to the limited spatiotemporal coverage
of observations, the impact assessment relies on model simu-
lations and is thus subject to uncertainties from cascade phys-
ical processes. This study assesses the flood hazard map with
uncertainties subject to different combinations of runoff in-
puts, variables for flood frequency analysis and fitting dis-
tributions based on estimations by the CaMa-Flood global
hydrodynamic model. Our results show that deviation in the
runoff inputs is the most influential source of uncertainties in
the estimated flooded water depth and inundation area, con-
tributing more than 80 % of the total uncertainties investi-
gated in this study. Global and regional inundation maps for
floods with 1-in-100 year return periods show large uncer-
tainty values but small uncertainty ratios for river channels
and lakes, while the opposite results are found for dry zones
and mountainous regions. This uncertainty is a result of in-
creasing variation at tails among various fitting distributions.
In addition, the uncertainty between selected variables is lim-
ited but increases from the regular period to the rarer floods,
both for the water depth at points and for inundation area
over regions. The uncertainties in inundation area also lead to
uncertainties in estimating the population and economy ex-
posure to the floods. In total, inundation accounts for 9.1 %
[8.1 %–10.3 %] of the land area for a 1-in-100 year flood,
leading to 13.4 % [12.1 %–15 %] of population exposure and
13.1 % [11.8 %–14.7 %] of economic exposure for the globe.
The flood exposure and uncertainties vary by continent and
the results in Africa have the largest uncertainty, probably
due to the limited observations to constrain runoff simula-

tions, indicating a necessity to improve the performance of
different hydrological models especially for data-limited re-
gions.

1 Introduction

A flood hazard map (FHM) is a map of flood water depth or
inundation area at a specific return period (e.g., a 1-in-100
year return period). An FHM provides information for flood
risk assessment, which is helpful for stakeholders and insur-
ance services (Osti et al., 2008; Luke et al., 2018). FHM is a
theoretical map of an identical reoccurrence (e.g., a 1-in-100
year return period) over entire space. Production of the FHM
is based on flood frequency analysis (FFA) with simulations
of flow characteristics (e.g., discharge, water stage, water
volume) from flood models (Liscum and Massey, 1980; Wilt-
shire, 1986; Hamed and Rao, 2019) and a fitting regression
to a specific reoccurrence.

Winsemius et al. (2013) established a framework for river
flood risk assessment with cascaded global forcing datasets,
a global hydrological model, a global flood-routing model
and an inundation downscaling routine. These authors used
a single hydrological model (PCR-GLOBWB) to evaluate
flood risk in South Asia. However, they recommend that the
framework should be extended to a multi-model approach to
address any uncertainties. Trigg et al. (2016) analyzed eight
global flood hazard models over Africa and China and the
results showed that there was only 30 %–40 % agreement in
the flood extent and significantly large deviations in the flood
inundation area, economic loss and exposed population esti-
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mates. A similar multi-model approach was applied in Bern-
hofen et al. (2018) and Aerts et al. (2020). However, because
the eight global flood hazard models use different forcing
inputs, hydrological models, river routing models and spa-
tial resolutions, it is impossible to attribute how much each
process contributes to the uncertainties in the final results
or which process is dominant. These authors suggested that
component-level comparisons with limited variables could
be better able to attribute the uncertainties. Schellekens et al.
(2017) therefore controlled the forcing inputs but investi-
gated 10 global hydrological models in terms of evapotran-
spiration, runoff and soil moisture. However, the flood hazard
was not investigated because the river routing model was not
applied. Zhao et al. (2017) further evaluated routing models
in reproducing the peak river discharge, while uncertainties
and results of flood water depth and inundation are not dis-
cussed.

Running a flood model requires, for example, a large set
of model inputs, model parameters, topographic information.
Therefore, implementing flood models at a local or regional
scale is much easier than global implementations. The va-
riety of uncertainties has been discussed for specific flood
events at a local or regional scale in Merwade et al. (2008),
Bales and Wagner (2009) and Beven et al. (2015). The sen-
sitivity of the inundation to selection of forcing inputs (Ward
et al., 2013), digital elevation models (DEMs) (Tate et al.,
2015), roughness (Pappenberger et al., 2008), spatial resolu-
tions (Merwade et al., 2008) or fitting functions (Kidson and
Richards, 2005) has also been analyzed. However, because
the regional analysis is highly dependent on the availability
of local data, the results and conclusions are not necessarily
applicable to other regions or to the global scale. Therefore,
we are curious about the magnitude and the spatial patterns
of the sensitivity of FHMs to various factors at the global
scale.

Zhao et al. (2017) suggested that runoff differences will
lead to wide ranges of the uncertainty in peak discharge.
Therefore, runoff is selected as an uncertainty source to the
FHMs investigated in this study. Because the length of ob-
servations or forcing data is limited, obtaining an FHM with
a low-reoccurrence (e.g., 1-in-100 year) requires extrapola-
tion based on curve fitting to the existing data or simulations
(Kidson and Richards, 2005). The limitation of FFA is there-
fore apparent as the fitting based on an a priori assumption
about the underlying distribution of the flood events. How-
ever, because the limited length of the records hardly repre-
sents the complete characteristics, a range of more-or-less
skewed, relatively complex distributions is always consid-
ered to account for the uncertainties. Typical distributions
that are used include Pearson type III, log-Pearson, Gauss,
Gumbel and log-normal distributions (Radevski and Gorin,
2017; Drissia et al., 2019). However, no conclusion has been
found to support which of the fitting distributions is prefer-
able for most of the regions (Drissia et al., 2019). There-

fore, it is recommended that different distributions should be
tested with local records.

The FFA can be conducted on any characteristics of river
flow but is mainly used with river discharge and water stage
(or water level or water depth) because they can be recorded
as gauge observations (Radevski and Gorin, 2017). There is
no preference for these two variables and the selection is de-
termined by data accessibility. The results of the FFA based
on the discharge will be slightly different from the results
with a water stage because of the loop rating curve relation-
ship between discharge and water stage (Domeneghetti et al.,
2012; Alvisi and Franchini, 2013). In addition, Pappenberger
et al. (2012) use river water storage provided from flood
models, which is then remapped to high-resolution inunda-
tion extent with a volume filling approach. The increase of
water storage and water stage is nonlinear because of the to-
pographical variety in river channels and floodplains. There-
fore, selection of different variables for the fitting is another
source of uncertainty for flood estimations.

There are many other uncertainties that can lead to devi-
ations in mapping the floods including forcing, routing and
downscaling. However, we need to limit the factors to avoid
adding too much complexity to the analysis. Therefore, in
this study, we will investigate FHMs along with uncertain-
ties due to selected factors (i.e., runoff generation models,
the fitting distributions and the variables to be fitted). Sec-
tion 2 describes the methods and data we used. In Sect. 3, we
assess the fitting performance of FFA for all combinations of
experiments with different flow variables used for FFA, fit-
ting distributions and the runoff that drives CaMa-Flood. We
then present the flood water depth and contributions from dif-
ferent factors over the globe and regional cases for a 1-in-100
year flood. The flood water depth for specific points and the
inundation area for specific regions at multiple return periods
are discussed, together with their uncertainties. The potential
impact (exposure) of the floods on the population and the
economy are investigated on different continents. The dis-
cussions and conclusions follow in Sect. 4.

2 Methods and datasets

2.1 Experiment design

The cascade of generating the global flood hazards maps
comprises the following steps: (1) global forcing data,
(2) global hydrological models, (3) global river routing mod-
els and (4) FFA (Winsemius et al., 2013). In this study,
we limit the factors investigated to the global hydrological
models and the FFA. The uncertainties investigated in this
study are attributed to three major sources: first, the variables
used for the FFA, second, the fitting distributions used for
FFA and, third, the runoff inputs to the river routing model,
the catchment-based macro-scale floodplain model (CaMa-
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Flood). Each experiment is therefore a combination of the
three sources (Table 1).

For the variables selection, V 1 represents that FFA is
based on the numeric results of “river water depth” provided
by CaMa-Flood. In V 2, the FFA was first conducted on the
estimated water storage, which is the only prognostic vari-
able in CaMa-Flood. Then, at each return period (e.g., 1-
in-100 year), the river water depth was estimated based on
the storage-water depth relation and the corresponding wa-
ter storage. Because of the nonlinear relation between water
level and storage, the fitting will lead to different results. The
differences between experiment V 1 and V 2 denote the un-
certainty that results from the selection of the target variables
that we used for the FFA. Despite river water depth and wa-
ter storage, discharge is the variable that is most frequently
used in engineering design because discharge is frequently
measured. However, with only discharge we cannot estimate
the water level (or water storage) because the relationship be-
tween discharge and water level is not one-to-one consistent
due to the loop rating curve. While with either river water
depth or water storage, we can estimate the flood extent and
the floodplain water depth for any target region using CaMa-
Flood.

The uncertainty due to the fitting distributions used for
FFA was evaluated as the resulting differences by applying
various fitting functions (i.e., F1–F6). These distributions are
generally used in FFA but for different variables in different
fields, and they were treated without priorities in this study.
The samples were automatically fitted with L-moments opti-
mization and without any manual modifications in their pa-
rameters.

The results of the FFA were based on the output of CaMa-
Flood associated with different runoff inputs. In our case, the
CaMa-Flood was driven by seven different kinds of runoff
forcing (i.e., R1–R7) from eartH2Observe (e2o) category
(Schellekens et al., 2017). The runoffs were driven by the
same WATCH Forcing Data methodology applied to ERA-
Interim data (WFDEI; Weedon et al., 2014) but with differ-
ent land surface or hydrological models. Therefore, the devi-
ation of the results in the FFA among the seven inputs was
the uncertainty caused by the runoff inputs, containing the
uncertainties in the rainfall-runoff model processes (model
structures and model parameters).

2.2 Global river routing model (CaMa-Flood)

CaMa-Flood is designed to simulate the hydrodynamics in
continental-scale rivers. Entire river networks are discretized
to irregular unit catchments with the sub-grid topographic pa-
rameters of the river channel and floodplains (Fig. 1a). The
river discharge and other flow characteristics can be calcu-
lated with the local inertial equations along the river net-
work map. The water storage of each unit catchment is the
only prognostic variable that is solved with the water bal-
ance equation. The water level and flooded area are diag-

nosed from the water storage at each unit catchment using the
sub-grid topographic information (Fig. 1b). Therefore, the
estimation of water level will contain additional uncertain-
ties in river bathymetry and topography, while uncertainties
in the water storage is dominated by the water flux. Detailed
descriptions of the CaMa-Flood can be found in the original
papers by Yamazaki et al. (2011, 2012, 2014).

The major advantage of the CaMa-Flood simulations is
their explicit representation of flood stage (water level and
flooded area) in addition to river discharge. This facilitates
the comparison of model results with satellite observations,
either the altimeters by synthetic aperture radar (SAR) or in-
undation images by optical or microwave imagers. The es-
timation of the flooded area is helpful in the assessment of
flood risk and flood damages by overlaying it with socioeco-
nomic datasets.

Another apparent advantage of CaMa-Flood is its high
computational efficiency of the global river simulations.
CaMa-Flood utilizes a diagnostic scheme at the scale of unit
catchment to approximate the complex floodplain inundation
processes. The prognostic computation for water storage is
optimized by implementing the local inertial equation and
the adaptive time step scheme. The high computational ef-
ficiency is beneficial for implementations at a global scale.
This is critically important because ensemble simulations are
frequently applied to account for uncertainties but computa-
tion time will be multiplied manyfold. In this study, CaMa-
Flood was driven by different runoff inputs (see Sect. 2.1) to
achieve the flow characteristics at each unit catchment at the
global scale. The FFA is conducted based on the flow char-
acteristics using CaMa-Flood.

2.3 Flood frequency analysis (FFA)

The runoff inputs are available from 1980 to 2014 (35 years
in total). For a specific unit catchment defined in the CaMa-
Flood, the maximum value of the daily river water depth or
catchment water storage was obtained for each year and was
then sorted. The frequency as the return period (Pm) was cal-
culated with the following equation:

Pm =
m

N + 1
, (1)

where m is the sorted ranking and N denotes the number of
total years (herein 35).

The parameters of the fitting distributions were then cal-
culated based on these sorted annual values with the L-
moments method (Hosking, 2015; Drissia et al., 2019). This
is defined as a linear combination of probability-weighted
moments of the time series. The parameter estimations us-
ing L-moments and quantile functions used for different dis-
tributions have been described in detail in Hosking (1990).
The computation of the parameters was done in the Python
lmoments3 library. Note that the Wakeby (WAK) is a five-
parameter function, the GEV, PE3 and WEI are three-
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Table 1. Experiments used in this study for uncertainty analysis. There are three groups: (A) the variables for FFA, (B) the fitting distributions
and (C) the runoff inputs. Different runoffs are generated by using the same forcing (WFDEI) but with different land surface models or global
hydrological models (as specified in the brackets) (Schellekens et al., 2017).

A Variables B Fitting distribution C Runoff

V 1 rivdph F1 GEV (generalized extreme value) R1 e2o_anu (W3)
V 2 storage F2 GAM (gamma) R2 e2o_cnrs (ORCHIDEE)

F3 PE3 (Pearson type III) R3 e2o_jrc (Lisflood)
F4 GUM (Gumbel) R4 e2o_ecmwf (HTESSEL)
F5 WEI (Weibull) R5 e2o_nerc (JULES)
F6 WAK (Wakeby) R6 e2o_univk (WaterGAP3)

R7 e2o_univu (PCR-GLOWB)

Figure 1. (a) Illustration of a river channel reservoir and a floodplain reservoir defined in each unit catchment. The water level for the river
channel and floodplain is assumed to be the same in each unit catchment. The denotation of each parameter and its calculation refer to
(Yamazaki et al., 2011). (b) The relationship between the water level and water storage (or flooded area) for a specific unit catchment. The
shape of the curve within the river channel is determined by the profile of the river channel, and the curve above the river channel is mainly
affected by floodplain topography.

parameter functions, and GAM and GUM are two-parameter
functions.

The Akaike information criterion (AIC; Akaike, 1974)
was used to evaluate the performance of the FFA against the
annual values. AIC is calculated as

AIC= 2k+ n · log
(∑

(S−O)2

n

)
, (2)

where k is the number of parameters needed for the fitting
distribution, S represents the simulated values (here, the fit-
ting values), O represents the observed values (here, the val-
ues to be fitted) and n denotes the number of samples. A
smaller AIC denotes higher fitting performance because of
smaller deviations between simulations and observations. Al-
though there are various performance metrics to measure the
goodness of fit, the AIC is used in our study because it will
enlarge the tiny difference between samples and estimations.
We only have 35 samples and these are sorted, therefore the
fitting performance should be very high and the fitting results
should not have large differences.

2.4 Downscaling to high-resolution inundation map

To reduce the computation cost due to high-resolution sim-
ulations, the CaMa-Flood was run initially at a 0.25◦ spatial

resolution globally, which means that only one unit catch-
ment was assigned for each 25 km by 25 km grid. The per-
formance of the FFA was evaluated with AIC at the global
scale to capture the overall features (see Sect. 3.1).

However, it is difficult to characterize the river water depth
or inundation area in detail with local topography at such
a low resolution (0.25◦). Meanwhile it is difficult to visu-
alize the inundation map at a high resolution (< 100 m) for
the globe. Therefore, high-resolution (3 arcsec,∼ 90 m at the
Equator) regional analysis related to the flood water depth
and inundation area with their uncertainties was only con-
ducted regionally over deltas, which are vulnerable to floods
(Shin et al., 2020). The corresponding results on the uncer-
tainties in water depth (including at specific points) and in-
undation area will be presented.

The estimated low-resolution storage was downscaled to
the high-resolution inundation map at 90 m with the multi-
error-removed improved-terrain (MERIT) DEM topography
map (Yamazaki et al., 2017). The fundamental assumption is
that the movement of water within a unit catchment is instan-
taneous and that the water surface is flat within the unit catch-
ment at each time step (Zhou et al., 2020). The total water
storage under the identical water level should be equal to the
water storage estimated in this unit catchment (see Fig. 1a).
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The area of lowest elevation is inundated first until the total
water volume approximates the estimated water storage of
the unit catchment. The relationship between the water level
and water storage or the flooded area is illustrated in Fig. 1b.
When the floodplain has been inundated, the small increases
of water level corresponds to large changes in the water stor-
age and the flooded area. River water depth can be saturated
after inundation (it does not react significantly to the increase
of storage after flooding) and this might cause an error in
function fitting. The assumption of a flat water surface is not
valid for large water bodies (e.g., large lakes or reservoirs
with water surface gradient) and steep river segments (e.g.,
mountainous area). However, the impact of violation is lim-
ited at the catchment scale with a grid size of 25 km (which
is consistent with the global scale). The inundation area over
the mountainous area is also limited compared to that in the
floodplains.

The flood exposure of the population and economy is es-
timated based on the inundation map and the 2015 popula-
tion density map (Gridded Population of the World (GPW))
(CIESIN, 2018) as well as the 2015 Gross Domestic Pro-
duction map (Kummu et al., 2018). The two maps are in
30 arcsec resolution, therefore the 3 arcsec inundation map
was aggregated to the 30 arcsec.

3 Results

3.1 Fitting performance

In this section, we will first analyze the fitting performance
using AIC for the different experiments listed in Table 1.
Note that the river water depth and the river water storage
are in different units or magnitudes. AIC is therefore only ap-
plied to the normalized values of water depth or water stor-
age ([0, 1]) for each grid (divided by the maximum value
of each grid). The fitting performance was evaluated by the
AIC value (Eq. 2). A lower AIC indicates a better fitting
performance. Figure 2a and b display a sample result for
e2o_ecmwf (R4) and GEV fitting distribution (F1) for wa-
ter level and storage, respectively. The difference between
the two maps is shown in Fig. 2c.

The fitting performance is relatively high with low AIC
(<−50) in most of the unit catchments. This happens be-
cause we have only a few samples (35) and the time series
is normalized to a range between 0 and 1. The advantage of
the AIC is that it enlarges the small difference so that we can
see a large deviation between different experiments. Rela-
tively low fitting performance is found in the Greenland area
and those dry areas in the Sahara, Mongolia and middle Aus-
tralia (Fig. 2a). The area with low fitting performance (high
AIC) increases when dealing with the storage (V 2), typically
in Mongolia, Australia, South Africa, south Latin America
and in the western part of North America. These regions are
mainly dominated by dry climate or mountainous topogra-

phy. The accumulative river discharge over those regions is
small and the magnitude is highly dependent on single pre-
cipitation events, leading to an unstable relationship between
the high floods in different years.

The difference of the AIC values for the river water depth
(V 1) and that for the storage (V 2) is mapped as Fig. 2c.
Negative values indicate that the fitting performance is better
for water depth than for the water storage. Despite the near-
zero values, negative values (red scatters) are distributed in
the main parts of the world. The places with the largest dif-
ferences are distributed in the northern and southern Africa,
Australia, northern China and western North America, which
are consistent with the high values in Fig. 2b. Although pos-
itive values are also found, the values are not large. The re-
sults indicate that for most of the lands, the fitting on the
data of river water depth is better than the fitting on the wa-
ter storage. However, this is only the result of a case with
e2o_ecmwf runoff input and GEV distribution.

An overall evaluation of all of the distributions and runoff
inputs is shown in Fig. 3. The probability distribution of the
AIC values for all the global grids are plotted in Fig. 3a
and b using water river depth and storage, respectively. The
pdf curves have two peaks; one is normally distributed with
mean values around −200 (or −220) and the other is near 0.
The latter peak around 0 corresponds to the red scatters in
Fig. 2a and b, showing poor fitting performance of the distri-
butions over the coastal regions. The difficulties in represent-
ing coastal rivers in CaMa-Flood should be the reason or this.
From the variations of curves in different curve in the same
color, we find that the performance metric AIC is not too
sensitive to the runoff. Regarding the differences among dif-
ferent distributions, WAK (yellow lines) has the lowest AIC
values with the best performance while GAM (red lines) and
GUM (black lines) have the largest values with the poorest
performance in Fig. 3a. The other three distributions (GEV,
PE3 and WEI) have a similar and moderate performance for
water depth. The differences of the fitting performance are
mainly due to the degree of freedom of each fitting distribu-
tion because the WAK has five parameters, GAM and GUM
have two parameters, and the others have three. With a higher
degree of freedom, the fitting performance will be better.
Meanwhile, compared to fitting with the river water depth,
the curves for the water storage were not so distinguishable
in Fig. 3b, indicating a lower sensitivity to the fitting distri-
bution. As shown in Fig. 1a, the water level is calculated by
allocating the water storage to the river channel and flood-
plain from the bottom to the top. In the channel, the rela-
tionship between water level and storage is linear, while it is
nonlinear in the floodplains. So, if the maximum water level
for the different years locates in both the river channel and
the floodplain, then fitting the water level becomes more dif-
ficult, especially for GAM and GUM because they have only
two parameters. Given that the storage is not affected by the
channel shape, fitting the water storage with different fitting
functions will not make a large difference.
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Figure 2. Fitting performance of FFA for (a) V 1 (river water depth) and (b) V 2 (water storage). The performance was quantified with AIC
and (c) is the AIC difference of (a) and (b). This is only an example for the e2o_ecmwf and GEV fitting distribution.

Figure 3. Overall performance of FFA for (a) V 1 (river water depth) and (b) V 2 (water storage). The performance AIC over all the land
grids are collected and displayed as a histogram. Panel (c) is the AIC difference between (a) and (b). Negative difference indicates better
performance of FFA for V 1. Different colors represent different fitting distributions and the multiple lines in a specific color represents results
driven by different runoff inputs. The types of runoff inputs are not specified in these three graphics.

Figure 3c shows the difference of fitting performance for
water depth and water storage (corresponding to Fig. 2c if
e2o_ecmwf and GEV are specified). As in Fig. 2c, negative
values indicate that the fitting performance for water depth
(V 1) is better than that for the water storage (V 2). More neg-
ative values were found for the distributions of WAK, GEV,
PE3 and WEI, especially within the range of [−50, 0]. While
for GAM and GUM, more positive values are found within
the range of [0, 25], showing better performance for water
storage than that for water depth. However, as we see from
Fig. 3a and b, the fitting performance of GAM and GUM is
not as good as other functions. Because the normalization did
not change the ranking of different values, the difference be-
tween fitting river water depth and water storage results from
their relationship (Fig. 1). For the floods (tails of the fitting
distribution), the changes in water storage should be larger

than the changes in the water level if the flood frequency
shifts. This leads to the resulting difference in the fitting per-
formance. What is limited here is higher fitting performance
does not necessarily mean the fitting is appropriate for floods
without validation against historical events, which are diffi-
cult to access at the global scale. However, measurement of
the fitting performance with current available CaMa-Flood
estimates is the only way to interpret the variations among
different fitting distribution and the small variation of the
AIC will be reflected in the extrapolation for flood estimates.
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3.2 Flood water depth at a 1-in-100 year return period

3.2.1 Global flood depth

This section summaries the flood water depth and the re-
lated uncertainties over the globe at a 1-in-100 year return
period (Fig. 4). The results are based on the original esti-
mations of the FFA, rather than the results after normaliza-
tion presented in the previous section. For the mean values
(Fig. 4a), the floodplain water depth will only exceed 10 m
in most of the main channels of large rivers, especially in
the Amazon River and large rivers in southern China, south-
eastern Asia and Siberia. The standard deviation of the flood
water depth (Fig. 4b) shares the same spatial patterns with
the mean values. The deviation in large rivers can reach 5 m
or more, which indicates a high degree of uncertainty in esti-
mating the water depth. However, the spatial patterns of the
coefficient of variation (Cv, ratio of the standard deviation to
the mean) are opposite because Cv is lower where the mean
or deviation is higher, and vice versa. The regions with high
Cv are likely to be the dry zones (e.g., the Sahara, central
Australia and central Asia) and the originating river basins in
mountainous regions (e.g., the Rocky Mountains, the Andes
and the Tibetan Plateau).

This deviation in the flood water depth can be caused by
various factors, including the used variables, runoffs and the
functions listed in Table 1. Figure 4d, e and f show the pro-
portion of the standard deviation due to each factor to the
total standard deviation in Fig. 4b. A larger proportion indi-
cates that the deviation due to the corresponding factor con-
tributes more to the total standard deviation. Therefore, for
most of the global grids, runoff deviation from different land
surface models or global hydrological models is the major
contributor, taking a proportion larger than 80 % (Fig. 4e).
Schellekens et al. (2017) evaluated the monthly anomalies
with the signal-to-noise ratio (SNR) among all runoff inputs
that are used in this study. Their results suggested that the
runoff has a larger spread over cold regions (e.g., high lati-
tudes in Asia and North America, and the Tibetan Plateau)
and dry zones (e.g., the Sahara and central Asia). However,
the spatial patterns of runoff spread in their results and the
variation in Fig. 4c are not seen in Fig. 4e, indicating that the
contribution of runoff to the total uncertainty in flood water
depth is not sensitive to climate zones or topography.

The deviation among different variables (Fig. 4d) or func-
tions (Fig. 4f) contributes similarly with a very small pro-
portion to the total deviation. The difference in the deviation
due to variables is scatter distributed and likely have larger
values in dry regions or coastal areas. While a larger de-
viation among different fitting functions is primarily found
along the large rivers. The difference indicates that the flood
water depth will be more sensitive to the functions while less
sensitive to selected variables in large rivers (higher water
level or larger water storage). Therefore, despite the runoff,

more attention is also needed to select the fitting function
when evaluating the flood risks for large river basins.

3.2.2 Regional flood water depth

The global analysis is at the spatial resolution of 0.25◦, which
is insufficient to show enough spatial detail. In this section,
we evaluate the uncertainty range in the water level and in-
undation at a much higher spatial resolution (i.e., ∼ 90 m)
after applying the downscaling (see Sect. 2.4). The analysis
presented in the main text is for the lower Mekong region
where the delta is vulnerable to floods. We also provide re-
sults and analyses for other large river basins (e.g., the Ama-
zon, Yangtze, Mississippi, Lena and Nile) in the supporting
material (Figs. S1–S5 in the Supplement).

Figure 5a displays the flood water depth for the 1-in-100
year flood at 90 m for the lower Mekong. The largest water
depth (> 10.0 m) is found in the center of Tonle Sap Lake and
the main channel of the Mekong River. A large extent in the
lower Mekong delta suffers relatively low inundation water
depth (in dark red). Low water depth also occurs along the
boundaries of lakes and main channels. The river tributaries
have low average water depth in all of the experiments.

Figure 5b shows the uncertainties resulting from the dif-
ferent experiments listed in Table 1. In general, the uncer-
tainty range is higher where the estimated water depth is
deeper (Fig. 5a) because the largest uncertainties are found in
the main channel of Mekong River with a magnitude higher
than 2.0 m, while the lowest uncertainties are found in the
deltas. The uncertainty in the Tonle Sap Lake is homoge-
neous with a magnitude around 1.0 m. The coefficient of vari-
ation (Fig. 5c) is higher where the mean flood water depth
and the deviation is smaller. The overall uncertainties mainly
result from the runoff inputs (Fig. 5e) and from the fitting
distributions (Fig. 5f) and the variables (Fig. 5d). This is con-
sistent with the conclusions from the global analysis.

We also investigated the flood water depth for other rivers,
including the Amazon, Yangtze, Mississippi, Lena and Nile
(see Figs. S1–S5 in the Supplement) while the conclusions
remain similar. Floods will cause a large inundation area in
the deltas although the flood water depth is small. Higher un-
certainty in water depth with lower coefficient of variation is
found in the river channels. While lower uncertainty of wa-
ter depth with higher coefficient of variation is found for the
delta plains. The uncertainties are still mainly caused by the
runoff inputs. The selected variables and fitting functions will
not lead to large deviations compared to the runoff inputs.

3.3 Flood water depth for multiple return periods

3.3.1 Point analysis

In addition to the global and regional flood pattern at a sin-
gle return period (1-in-100 year as shown in the previous
section), we are also curious to understand how the uncer-
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Figure 4. The mean and uncertainties of the flood water depth for the 1-in-100 year flood. The mean flood water depth (a), the standard
deviation (b) and the coefficient of variation (c) are estimated based on all of the experiments. The deviation proportion to the overall standard
deviation (b) is displayed in (d–f) for different variables, runoffs and fitting functions, respectively.

tainty varies at different return periods from 1-in-2 year to
1-in-1000 year. We selected the Phnom Penh GRDC sta-
tion (Latitude: 11.5617, Longitude: 104.9317, yellow cross
in Fig. 5a), which is a representative GRDC gauge at the con-
fluence point of the outlet of the Tonle Sap Lake Lake and
the main Mekong River. The estimated mean water depth
and the uncertainty range (standard deviation) for different
conditions are plotted as the solid line and shaded area, re-
spectively, in Fig. 6. The mean water depth for a 1-in-2 year
flood is 8.14 m and 9.58 m for a 1-in-100 year flood (Fig. 6a).
The overall standard deviation is large, up to 0.69 m, and it is
generally the same for different return periods.

In Fig. 6b, the differences between mean flood water depth
using river depth (V 1) and storage (V 2) is very small, while
the uncertainty range is still as large as that in Fig. 6a. This
indicates that the uncertainty receives little contribution from
the variables for FFA. Similarly, subtracting the uncertainty

from fitting distributions does not apparently decrease the un-
certainty range (Fig. 6d), indicating a small contribution of
fitting distributions to the uncertainty. In particular, the mean
value for the GUM function in the tails of the floods (more
than in the 1-in-20 year flood) is higher than the results of
other functions, indicating that GUM may provide a rela-
tively deviated estimate of mean floodplain water depth for
the extreme flood events. This difference for GUM mainly
happens because GUM only has two degrees of freedom.
The uncertainty ranges of other uncertainties except GUM
are similar, which indicates that the uncertainty from experi-
ments excluding the fitting distribution is still large.

Figure 6c separates the uncertainties of the runoff inputs
from the overall uncertainties. It is notable that the mean
values significantly vary from different runoff inputs (solid
lines). For the 1-in-100 year flood, the mean water depth
ranges from 8.57 m in e2o_univk to 10.58 m in e2o_cnrs
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Figure 5. The mean and uncertainties of the flood water depth for the 1-in-100 year flood in the lower Mekong River basin. The mean flood-
plain water depth (a), the standard deviation (b) and the coefficient of variation (c) are estimated based on all the experiments. The deviation
proportion to the overall standard deviation (b) is displayed in (d–f) for different variables, runoffs and fitting functions, respectively. The
area with floodplain water depth less than 0.01 m are masked out. We use multi-error-removed improved-terrain DEM (MERIT DEM) as the
terrain model. The cross in yellow in (a) is the representative GRDC gauge analyzed in the next subsection.

(2.01 m in difference). As for each of the runoffs, the un-
certainty caused by other sources (variables and fitting distri-
butions; the shaded area in Fig. 6c) is now very small, espe-
cially within the normal period covered by the modeled sim-
ulations (35 years in this study). Meanwhile, the uncertainty
range starts to increase for the extreme floods, as it increases
to 0.3–0.5 m for a 1-in-100 year flood (on average 5 % of the
total uncertainty) and 0.4–0.6 m for a 1-in-200 year flood, al-
though the uncertainty range is still much smaller than the
deviations of the mean values. Similar results are found for
other specific points in other river basins and further details
can be found in the Supplement.

3.3.2 Inundation area

The uncertainties are also reflected in the inundation area
which can be used for assessing the flood exposure of the
population or economic losses. Figure 7 displays the results
for the lower Mekong River basin at all return periods. The
mean values (solid line) and also the uncertainty (standard
deviation, colored shades) are displayed in different groups.
The mean inundation area increases from 52098 km2 for a
normal flood (1-in-2 year return period) to 59330 km2 corre-
sponding to a 1-in-100 year flood (Fig. 7a).

Similar to the features of flood water depth at Phnom Penh
(Fig. 6), the magnitude of the uncertainty range in the inun-

https://doi.org/10.5194/nhess-21-1071-2021 Nat. Hazards Earth Syst. Sci., 21, 1071–1085, 2021



1080 X. Zhou et al.: The uncertainty of flood frequency analyses in hydrodynamic model simulations

Figure 6. The uncertainties in the estimated flood water depth at Phnom Penh (104.9317◦ E, 11.5617◦ N) in the Mekong River basin in
different groups. (a) The mean flood water depth and overall uncertainty. (b) The mean and uncertainty in groups of different variables for
FFA; the uncertainty is then not related to the selected variable. (c) The mean and uncertainty in groups of different runoff inputs. (d) The
mean and uncertainty in groups of different fitting distributions.

Figure 7. The uncertainties in the estimated inundation area for the study area: (a) shows the mean inundation area and the overall uncertainty;
(b–d) show the mean and uncertainty in different groups by variables, runoff inputs and the fitting functions, respectively.
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dation area is similar for all the return periods (Fig. 7a). The
uncertainties also mainly result from the deviation of mean
values in different runoff inputs (Fig. 7c) rather than the vari-
ables (Fig. 7b) or the fitting functions (Fig. 7d). The predicted
inundation area for a 1-in-100 year flood ranges from 54 000
to 64 000 km2 in different experiments, indicating a 20 % dif-
ference to the largest extent. The standard deviation of the in-
undation area for a 1-in-100 year flood is around 2000 km2,
which increases to 3000 km2 for a 1-in-200 year flood.

In conclusion, the uncertainties for the inundation area
share similar patterns to the results for specific points. These
results demonstrate that runoff input is the primary source
of uncertainty in river water depth simulation. This uncer-
tainty is mainly due to the systematic bias in the runoff in-
puts. While for a specific runoff input, the uncertainty is
small, especially during the normal period when the esti-
mated values are available (35 years simulation in our case).
That extrapolation is applied to FFA in the tails, where the
uncertainty range is increased, mainly due to the different
tail shape of various fitting distributions. However, the un-
certainty range is still smaller than the deviation between
results driven by different runoff inputs. Therefore, for im-
pact assessment over the extreme events, the runoff inputs
or the average state of the extremes should be evaluated first
with observed information, if allowed. Attention can then be
given to the selection of different fitting distributions if ob-
servations of large floods can be used to optimize the fitting
performance, especially in the tails.

3.3.3 Population and economic exposure to floods

Previous results show that the inundation area varies in floods
with different return periods in the lower Mekong River basin
and many other river basins. This inundation will lead to
migration and economic losses, and the impact should be
taken with caution because of the uncertainties in inunda-
tion estimations. In this section, we evaluate the exposure of
the population and economy to the floods at a global scale.
The results are summarized for each continent (see Fig. S11
in the Supplement for a location map). The global popula-
tion density (period per km2) and the economic development
(GDP in USD per km2) can be found in Figs. S12 and S13
in the Supplement. Given that runoff is the major source of
these uncertainties, we did not show uncertainty ranges due
to sources other than the runoff in Fig. 8, although the uncer-
tainty ranges can be found in Fig. S14 in the Supplement.

In total, the inundation area for a 1-in-100 year flood
reaches 13× 106 km2, accounting for 9.1 % of the global
area (excluding Antarctica). The ratio for different runoff in-
puts ranges is 8.1 %–10.3 %. Regarding the population expo-
sure, the gross number is 1.17 billion, accounting for 13.4 %
[12.1 %–15 %] of the total population. The potential impact
on the GDP will reach up to USD 14.9 trillion on average
with a proportion of 13.1 % [11.8 %–14.7 %] of the total val-
ues.

Among all continents, Asia will suffer the largest flood ex-
tent and also the largest population exposure (above 0.6 mil-
lion) and economic exposure (above USD 6 trillion) to the
floods. Although these values are not the actual flood dam-
ages, the potential impact of the flood in Asia (AS) is the
highest. The areas with highest population density and eco-
nomic development is highly consistent with the flood-prone
areas (e.g., the Yangtze, Mekong, Ganges and Indus). Com-
pared to AS, North America (NA) will also suffer a large
flood extent, while the population and economic exposure is
relatively small because the area with high population den-
sity or economic development (i.e., the eastern coastal area
of the US) is not consistent with the flood-prone area (cen-
tral plain or Mississippi area). The other continents will suf-
fer smaller inundation area and lower total exposure of the
population and economy to the floods. However, it is better
to compare the relative values (compared to the specific con-
tinent) rather than absolute values because of the area differ-
ence.

Regarding the relative inundation and flood exposure (the
second row in Fig. 8), the inundation area accounts for
12.5 %–15 % of the continental area in NA while the flood
exposure of population and economy is around 7 %–9 %. In
comparison, the inundation area accounts for 3 %–8 % of the
continental area in Africa (AF), the population exposure ratio
is 7 %–13 % and the economic exposure is 10 %–18 %, indi-
cating a high vulnerability in AF to the floods. The ratio of
population exposure in AS (12 %–19 %) is higher than that
in AF due to the high consistency of population distribution
in southern Asia and the flood-prone areas. The economy in
AS (12 %–20 %) is less fragile than that in AF, given a rela-
tively larger flood inundation (7.5 %–10 %). The inundation
ratios and flood exposure ratios in other continents are sim-
ilar, which suggests an even distribution of population and
economy in the flood-prone and other regions.

In Fig. 8, the deviations of curves in the same color reflect
the uncertainties (Fig. 8d). It is notable that the uncertainties
in AF for the economy is the largest. For instance, the highest
economic exposure to 1-in-100 year floods approaches 19 %
for a certain runoff, while it is 13 % for the lowest with a up
to 6 % difference. The economic exposure for a 1-in-2 year
flood for the former runoff (> 15 %) is already higher than
that for the latter 1-in-100 year flood. This deviation is pri-
marily caused by the various processes in the land surface
models or hydrological models. However, the parameteriza-
tion in AF is not well solved among different models com-
pared to other continents, which is probably due to the com-
plexity of the topography and climate zones in AF and data
scarcity to calibrate and validate hydrological models. This
high degree of uncertainty makes it difficult to accurately as-
sess the economic impact of the floods in the current situation
and also for the future projections.
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Figure 8. Population and economic exposure to floods in different return periods and the uncertainties due to runoff. The first row shows the
absolute values, while the second shows the proportion of total values in the specific continent. The left-hand column shows the population,
while the right-hand column shows the gross domestic product. Different colors represent different continents and the values for four different
return periods (i.e., 1-in-2, 1-in-10, 1-in-50 and 1-in-100 year) are marked. Different curves in the same color represent the results for various
runoff inputs. The names of different runoff inputs are not specified.

4 Discussions and conclusion

4.1 Discussions

This study assessed the FHM based on simulations with
a global hydrodynamic model (CaMa-Flood). The analysis
of flood hazards can be uncertain because of the multiple
choices of runoff inputs, fitting distributions for the FFA and
the variables for the FFA. Our results show that variation in
runoff derived from different land surface models and hydro-
logical models is the primary factor behind the uncertainties
in flood water depth and the inundation area, as well as the
potential flood impact on population and economy.

The FHM and FFA only use the annual maximum water
level (or water storage); therefore, the variety only demon-
strates the performance of rainfall-runoff models and CaMa-
Flood in reproducing the peak discharge. Separation of sur-
face runoff and subsurface runoff, and the evaporation rate
during the extreme rain events can lead to the deviations
in total runoff and the hydrography after routing. However,
in this study, the runoff and the river discharge estimated
by CaMa-Flood were not calibrated against observations for

each specific runoff because additional calibration will ruin
the designed sensitivity test.

There is a lack of studies that have assessed the sensitiv-
ities of runoff selection to the flood inundation at a global
scale. Although Hirabayashi et al. (2013) assessed the global
inundation and population exposure with multiple runoff in-
puts, their results are simulations for each year rather than
for a low-reoccurrence flood. For regions, the estimated in-
undation area ranges from 3.5 %–9.0 % for a 1-in-100 year
flood in Africa (Trigg et al., 2016). It is 4.5 % for the exper-
iment “GloFRIS”, which is the same as our experiment R7
but with different routing DynRout, approximating our re-
sults in Africa of 4.4 % [3.5 %–5.2 %]. This suggests that the
deviation due to routing models (i.e., DynRout and CaMa-
Flood) is limited. However, runoff input is not the direct
dominator to the flood but the peak discharge (or peak wa-
ter level), which is closely associated with the river routing
model. Specifically, the topography (Tate et al., 2015), the
roughness (Pappenberger et al., 2008; Jung and Merwade,
2012) and spatial resolution of routing (Yu and Lane, 2006;
Horritt and Bates, 2001) will slightly change the routing pro-
cess. The use of different routing methods (namely, linear
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reservoir, TRIP, travel time routing, Zhao et al., 2017), will
lead to larger variations (34 %–85 %) in bias of annual peak
discharge for global different GRDC gauges. While using a
single routing model (i.e., CaMa-Flood), the bias decreases
to 39 %–50 %. However, the sensitivity of the inundation area
to routing methods is yet to be investigated and the spatial
variation deserves further studies.

With the flood hazard map, the exposure of population
and economy to the historical flood can be assessed. This
step also has uncertainties as there have been various kinds
of products for population and economy. These products are
generated with different source data, methods, spatial reso-
lution and time slots (Leyk et al., 2019). Smith et al. (2019)
evaluated the population exposure to a 1-in-100 year flood in
18 developing countries. The total exposed population ranges
from 101 to 134 million when using three different products,
but with an up to 60 % difference in population in Uganda.
Changes in the spatial resolution of the population data from
30 to 900 m increases the exposure by 22 %, while decreas-
ing the spatial resolution of flood hazard map from 90 to
900 m increases the exposure by 51 % to 94 % for different
products. Therefore, the spatial resolution of the flood haz-
ard map is a particularly important determiner of impact as-
sessment. Validation of the population exposure to real flood
events with comparable level should be conducted to decide
which spatial resolution is appropriate considering the uncer-
tainties in both the flood estimation and the population prod-
ucts. Such an investigation on the economic impact has not
been conducted at a large scale but is required.

One limitation of our study is that we lack validation be-
cause the FHMs are not measurable. However, from compar-
ison of long-term water frequency with Landsat and GIEMS
data, we noticed that there are some limitations in the cur-
rent CaMa-Flood that will lead to different results in the un-
certainty evaluation. CaMa-Flood does not include flood de-
fense projects (e.g., levees, dams), which will lead to over-
estimation of the flood inundation in the floodplains and the
uncertainty, but lead to underestimation of flood water depth
and uncertainties in the river channel. Meanwhile, represent-
ing the flood defenses remains a big challenge because the
global data for flood defenses are strongly limited (Sampson
et al., 2015). Attempts to improve CaMa-Flood by integrat-
ing the dam regulation (Shin et al., 2020) and levees (Tanaka
and Yamazaki, 2019) have been tested at a regional scale.

5 Conclusions

This study assessed the uncertainties in the FHMs from un-
certainty sources, including the variables for FFA, fitting
distributions and the runoff inputs, which drive the routing
model for estimating the water depth. Among all the uncer-
tainty sources, deviations in runoff inputs contribute the most
to the total uncertainty, mainly due to the deviated mean val-
ues of extreme water depth. This suggests the importance of

rainfall-runoff model calibration (or runoff bias correction)
if gauge discharge observation is available. The FHM for the
global and specific river basins show the distribution of the
mean flood water depth and the uncertainties. Larger devia-
tion values are found in wet regions and along the river chan-
nels, while a larger deviation ratio (uncertainty in percentage)
is found in dry zones and mountainous regions. Analysis of
the flood water depth at specific points and inundation ar-
eas for regions displays the uncertainty changes in different
return periods. Higher uncertainty is found for a rarer flood
compared to normal floods, which is mainly caused by the
deviation in the tail shapes of various fitting distributions.
Uncertainties in inundation area leads to uncertainties in pop-
ulation and economic exposure to the floods. Globally, 9.1 %
of the inundation area for 1-in-100 year floods with 2.2 % un-
certainty leads to 13.4 % population exposure (2.9 % uncer-
tainty) and 13.1 % economic exposure (2.9 % uncertainty).
The uncertainty is the largest in Africa, which suggests a
large deviation in the structures or parameters of hydrolog-
ical models that are applied in Africa. Overall, model cali-
bration and validation with advanced tools (assimilation of
remote sensing products) and also model improvement by
taking into account human interventions are needed to reduce
the various uncertainties.

Data availability. The latest global hydrody-
namic model CaMa-Flood (v4) is available from
https://doi.org/10.5281/zenodo.4609655 (Yamazaki et al.,
2021). The topography data MERIT are available from
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/index.html
(last access: 17 March 2021) (Yamazaki et al., 2017). The
estimated floodplain water depth and related source codes
are available from the authors upon request. The library lmo-
ments3 for L-moments parameter estimation is available from
https://github.com/OpenHydrology/lmoments3 (last access:
17 March 2021) (Hollebrandse et al., 2015).
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