Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-3083-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-3083-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017
Chair of Climatology, Institute of Ecology, Technische Universität Berlin, 12165 Berlin, Germany
Section II 1.5 Environmental Medicine and Health Effects Assessment, German Environment Agency,
14195 Berlin, Germany
Daniel Fenner
Chair of Climatology, Institute of Ecology, Technische Universität Berlin, 12165 Berlin, Germany
current address: Urban Climatology, Institute of Geography, Faculty of Geosciences, Ruhr University Bochum, 44801 Bochum, Germany
Hans-Guido Mücke
Section II 1.5 Environmental Medicine and Health Effects Assessment, German Environment Agency,
14195 Berlin, Germany
Dieter Scherer
Chair of Climatology, Institute of Ecology, Technische Universität Berlin, 12165 Berlin, Germany
Related authors
No articles found.
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064, https://doi.org/10.5194/egusphere-2025-2064, 2025
Short summary
Short summary
In this study we use very high resolution numerical weather prediction model simulations of the Berlin, Germany region along with assessment of field campaign observations to understand better the impact of urban areas on the near-surface boundary layer. We find that there a clear affect of urban areas up to 15 kilometers downwind of the city centre in both the field campaign observations and the high resolution model.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4331–4348, https://doi.org/10.5194/hess-28-4331-2024, https://doi.org/10.5194/hess-28-4331-2024, 2024
Short summary
Short summary
We study the drivers behind the changes in lake levels, creating a series of models from least to most complex. In this study, we have shown that the decreasing levels of Groß Glienicker Lake in Germany are not simply the result of changes in climate but are affected by other processes. In our example, reduced inflow from a growing forest, regionally sinking groundwater levels and the modifications in the local rainwater infrastructure together resulted in an increasing lake level loss.
Xun Wang, Marco Otto, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, https://doi.org/10.5194/nhess-21-2125-2021, https://doi.org/10.5194/nhess-21-2125-2021, 2021
Short summary
Short summary
We applied a high-resolution, gridded atmospheric data set combined with landslide inventories to investigate the atmospheric triggers, define triggering thresholds, and characterize the climatic disposition of landslides in Kyrgyzstan and Tajikistan. Our results indicate the crucial role of snowmelt in landslide triggering and prediction in Kyrgyzstan and Tajikistan, as well as the added value of climatic disposition derived from atmospheric triggering conditions.
Cited articles
Analitis, A., Michelozzi, P., D'Ippoliti, D., De'Donato, F., Menne, B.,
Matthies, F., Atkinson, R. W., Iñiguez, C., Basagaña, X., Schneider, A.,
Lefranc, A., Paldy, A., Bisanti, L., and Katsouyanni, K.: Effects of Heat
Waves on Mortality, Epidemiology, 25, 15–22,
https://doi.org/10.1097/EDE.0b013e31828ac01b, 2014. a, b
Analitis, A., de' Donato, F., Scortichini, M., Lanki, T., Basagana, X.,
Ballester, F., Astrom, C., Paldy, A., Pascal, M., Gasparrini, A., Michelozzi,
P., and Katsouyanni, K.: Synergistic Effects of Ambient Temperature and
Air Pollution on Health in Europe: Results from the PHASE
Project, Int. J. Env. Res. Pub. He., 15, 1856,
https://doi.org/10.3390/ijerph15091856, 2018. a, b, c, d, e
an der Heiden, M., Muthers, S., Niemann, H., Buchholz, U., Grabenhenrich, L.,
and Matzarakis, A.: Schätzung hitzebedingter Todesfälle in Deutschland
zwischen 2001 und 2015, Bundesgesundheitsblatt, 62, 571–579,
https://doi.org/10.1007/s00103-019-02932-y, 2019. a
Anderson, B. G. and Bell, M. L.: Weather-Related Mortality: How Heat,
Cold, and Heat Waves Affect Mortality in the United States,
Epidemiology, 20, 205–213, https://doi.org/10.1097/EDE.0b013e318190ee08, 2009. a, b, c, d
Atkinson, R. W., Yu, D., Armstrong, B. G., Pattenden, S., Wilkinson, P.,
Doherty, R. M., Heal, M. R., and Anderson, H. R.: Concentration–Response
Function for Ozone and Daily Mortality: Results from Five Urban
and Five Rural U.K. Populations, Environ. Health Perspect., 120,
1411–1417, https://doi.org/10.1289/ehp.1104108, 2012. a
Baccini, M., Kosatsky, T., Analitis, A., Anderson, H. R., D'Ovidio, M., Menne,
B., Michelozzi, P., Biggeri, A., and the PHEWE Collaborative Group: Impact
of heat on mortality in 15 European cities: attributable deaths under
different weather scenarios, J. Epidemiol. Commun. H., 65, 64–70,
https://doi.org/10.1136/jech.2008.085639, 2011. a, b
Bae, S., Lim, Y.-H., Kashima, S., Yorifuji, T., Honda, Y., Kim, H., and Hong,
Y.-C.: Non-Linear Concentration-Response Relationships between
Ambient Ozone and Daily Mortality, PLoS One, 10, e0129423,
https://doi.org/10.1371/journal.pone.0129423, 2015. a
Bassil, K. L., Cole, D. C., Moineddin, R., Craig, A. M., Wendy Lou, W.,
Schwartz, B., and Rea, E.: Temporal and spatial variation of heat-related
illness using 911 medical dispatch data, Environ. Res., 109, 600–606,
https://doi.org/10.1016/j.envres.2009.03.011, 2009. a
Bell, M. L.: Ozone and Short-term Mortality in 95 US Urban
Communities, 1987-2000, JAMA, J. Am. Med. Assoc., 292, 2372–2378,
https://doi.org/10.1001/jama.292.19.2372, 2004. a
Benmarhnia, T., Deguen, S., Kaufman, J. S., and Smargiassi, A.: Review
Article: Vulnerability to Heat-related Mortality, Epidemiology, 26,
781–793, https://doi.org/10.1097/EDE.0000000000000375, 2015. a
Breitner, S., Wolf, K., Devlin, R. B., Diaz-Sanchez, D., Peters, A., and
Schneider, A.: Short-term effects of air temperature on mortality and effect
modification by air pollution in three cities of Bavaria, Germany: A
time-series analysis, Sci. Total Environ., 485–486, 49–61,
https://doi.org/10.1016/j.scitotenv.2014.03.048, 2014. a, b, c, d
Burkart, K., Canário, P., Breitner, S., Schneider, A., Scherber, K., Andrade,
H., Alcoforado, M. J., and Endlicher, W.: Interactive short-term effects of
equivalent temperature and air pollution on human mortality in Berlin and
Lisbon, Environ. Pollut., 183, 54–63,
https://doi.org/10.1016/j.envpol.2013.06.002, 2013. a, b, c, d, e, f, g, h
Camalier, L., Cox, W., and Dolwick, P.: The effects of meteorology on ozone in
urban areas and their use in assessing ozone trends, Atmos. Environ., 41,
7127–7137, https://doi.org/10.1016/j.atmosenv.2007.04.061, 2007. a
Chen, K., Bi, J., Chen, J., Chen, X., Huang, L., and Zhou, L.: Influence of
heat wave definitions to the added effect of heat waves on daily mortality in
Nanjing, China, Sci. Total Environ., 506–507, 18–25,
https://doi.org/10.1016/j.scitotenv.2014.10.092, 2015. a
Cheng, Y. and Kan, H.: Effect of the Interaction Between Outdoor Air
Pollution and Extreme Temperature on Daily Mortality in Shanghai,
China, J. Epidemiol., 22, 28–36, https://doi.org/10.2188/jea.JE20110049,
2012. a
Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing
Scatterplots, J. Am. Stat. Assoc., 74, 829–836,
https://doi.org/10.1080/01621459.1979.10481038, 1979. a
Curriero, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L., and
Patz, J. A.: Temperature and mortality in 11 cities of the eastern United
States, Am. J. Epidemiol., 155, 80–87, https://doi.org/10.1093/aje/155.1.80, 2002. a
Díaz, J., Ortiz, C., Falcón, I., Salvador, C., and Linares, C.: Short-term
effect of tropospheric ozone on daily mortality in Spain, Atmos. Environ.,
187, 107–116, https://doi.org/10.1016/j.atmosenv.2018.05.059, 2018. a, b
EEA: Elevation map of Europe,
available at: https://www.eea.europa.eu/ds_resolveuid/070F2DAD-1AED-4B9B-950F-0047E5ADDF35
(last access: 27 January 2020), 2016. a
EEA: Unequal exposure and unequal impacts: social vulnerability to air
pollution, noise and extreme temperatures in Europe, EEA Report, 22/2018,
https://doi.org/10.2800/324183, 2019a. a
EEA: Corine Land Cover (CLC) 2018, Version 20,
available at: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018,
last access: 18 November 2019b. a
Fenner, D., Holtmann, A., Krug, A., and Scherer, D.: Heat waves in Berlin and
Potsdam, Germany – Long‐term trends and comparison of heat wave
definitions from 1893 to 2017, Int. J. Climatol., 39, 2422–2437,
https://doi.org/10.1002/joc.5962, 2019. a
Filleul, L., Cassadou, S., Médina, S., Fabres, P., Lefranc, A., Eilstein, D.,
Le Tertre, A., Pascal, L., Chardon, B., Blanchard, M., Declercq, C., Jusot,
J.-F., Prouvost, H., and Ledrans, M.: The Relation Between Temperature,
Ozone, and Mortality in Nine French Cities During the Heat
Wave of 2003, Environ. Health Perspect., 114, 1344–1347,
https://doi.org/10.1289/ehp.8328, 2006. a, b
Gabriel, K. M. and Endlicher, W. R.: Urban and rural mortality rates during
heat waves in Berlin and Brandenburg, Germany, Environ. Pollut., 159, 2044–2050, https://doi.org/10.1016/j.envpol.2011.01.016, 2011. a
Gasparrini, A. and Armstrong, B.: The Impact of Heat Waves on
Mortality, Epidemiology, 22, 68–73, https://doi.org/10.1097/EDE.0b013e3181fdcd99,
2011. a
Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz,
J., Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario,
M., Bell, M. L., Guo, Y.-L. L., Wu, C.-f., Kan, H., Yi, S.-M., de Sousa
Zanotti Stagliorio Coelho, M., Saldiva, P. H. N., Honda, Y., Kim, H., and
Armstrong, B.: Mortality risk attributable to high and low ambient
temperature: a multicountry observational study, Lancet, 386, 369–375,
https://doi.org/10.1016/S0140-6736(14)62114-0, 2015. a
Hajat, S., Armstrong, B., Baccini, M., Biggeri, A., Bisanti, L., Russo, A.,
Paldy, A., Menne, B., and Kosatsky, T.: Impact of High Temperatures on
Mortality, Epidemiology, 17, 632–638,
https://doi.org/10.1097/01.ede.0000239688.70829.63, 2006. a
Hůnová, I., Malý, M., Řezáčová, J., and Braniš, M.: Association between
ambient ozone and health outcomes in Prague, Int. Arch. Occup. Environ.
Health, 86, 89–97, https://doi.org/10.1007/s00420-012-0751-y, 2013. a
IPCC: Managing the Risks of Extreme Events and Disasters to Advance
Climate Change Adaptation. A Special Report of Working Groups
I and II of the Intergovernmental Panel on Climate Change, edited
by: Field, C. B., Barros, V., Stocker, T. F., Qin, D.,
Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J.,
Plattner, G.-K., Allen, S. K., Tignor, M., and
Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA,
582 pp., 2012. a
Jänicke, B., Holtmann, A., Kim, K. R., Kang, M., Fehrenbach, U., and Scherer,
D.: Quantification and evaluation of intra-urban heat-stress variability in
Seoul, Korea, Int. J. Biometeorol., 63, 1–12,
https://doi.org/10.1007/s00484-018-1631-2, 2018. a
Kalisa, E., Fadlallah, S., Amani, M., Nahayo, L., and Habiyaremye, G.:
Temperature and air pollution relationship during heatwaves in Birmingham,
UK, Sustain. Cities Soc., 43, 111–120, https://doi.org/10.1016/j.scs.2018.08.033,
publisher: Elsevier, 2018. a
Karlsson, M. and Ziebarth, N. R.: Population health effects and health-related
costs of extreme temperatures: Comprehensive evidence from Germany, J.
Environ. Econ. Manag., 91, 93–117, https://doi.org/10.1016/j.jeem.2018.06.004, 2018. a
Monks, P. S.: A review of the observations and origins of the spring ozone
maximum, Atmos. Environ., 34, 3545–3561,
https://doi.org/10.1016/S1352-2310(00)00129-1, 2000. a
Muthers, S., Laschewski, G., and Matzarakis, A.: The Summers 2003 and 2015 in
South-West Germany: Heat Waves and Heat-Related Mortality in
the Context of Climate Change, Atmosphere, 8, 224,
https://doi.org/10.3390/atmos8110224, 2017. a
Otero, N., Sillmann, J., Schnell, J. L., Rust, H. W., and Butler, T.: Synoptic
and meteorological drivers of extreme ozone concentrations over Europe,
Environ. Res. Lett., 11, 024005, https://doi.org/10.1088/1748-9326/11/2/024005, 2016. a
Phalitnonkiat, P., Hess, P. G. M., Grigoriu, M. D., Samorodnitsky, G., Sun, W., Beaudry, E., Tilmes, S., Deushi, M., Josse, B., Plummer, D., and Sudo, K.: Extremal dependence between temperature and ozone over the continental US, Atmos. Chem. Phys., 18, 11927–11948, https://doi.org/10.5194/acp-18-11927-2018, 2018. a, b
Powell, H., Lee, D., and Bowman, A.: Estimating constrained
concentration-response functions between air pollution and health,
Environmetrics, 23, 228–237, https://doi.org/10.1002/env.1150, 2012. a
Scherer, D., Fehrenbach, U., Lakes, T., Lauf, S., Meier, F., and Schuster, C.:
Quantification of heat-Stress related mortality hazard, vulnerability and
risk in Berlin, Germany, Die Erde, 144, 238–259,
https://doi.org/10.12854/erde-144-17, 2013. a, b, c, d
Shen, L., Mickley, L. J., and Gilleland, E.: Impact of increasing heat waves on
U.S. ozone episodes in the 2050s: Results from a multimodel analysis
using extreme value theory, Geophys. Res. Lett., 43, 4017–4025,
https://doi.org/10.1002/2016GL068432, 2016. a, b, c
Stafoggia, M., Forastiere, F., Agostini, D., Biggeri, A., Bisanti, L., Cadum,
E., Caranci, N., de'Donato, F., De Lisio, S., De Maria, M., Michelozzi, P.,
Miglio, R., Pandolfi, P., Picciotto, S., Rognoni, M., Russo, A., Scarnato,
C., and Perucci, C. A.: Vulnerability to Heat-Related Mortality: A
Multicity, Population-Based, Case-Crossover Analysis,
Epidemiology, 17, 315–323, https://doi.org/10.1097/01.ede.0000208477.36665.34, 2006. a
Steiner, A. L., Davis, A. J., Sillman, S., Owen, R. C., Michalak, A. M., and
Fiore, A. M.: Observed suppression of ozone formation at extremely high
temperatures due to chemical and biophysical feedbacks, P. Natl. Acad.
Sci. USA, 107, 19685–19690, https://doi.org/10.1073/pnas.1008336107, 2010. a, b, c
Tai, A. P., Mickley, L. J., and Jacob, D. J.: Correlations between fine
particulate matter (PM2.5) and meteorological variables in the United
States: Implications for the sensitivity of PM2.5 to climate change,
Atmos. Environ., 44, 3976–3984, https://doi.org/10.1016/j.atmosenv.2010.06.060, 2010. a
Tong, S., FitzGerald, G., Wang, X.-Y., Aitken, P., Tippett, V., Chen, D., Wang,
X., and Guo, Y.: Exploration of the health risk-based definition for
heatwave: A multi-city study, Environ. Res., 142, 696–702,
https://doi.org/10.1016/j.envres.2015.09.009, 2015.
a, b, c, d
Vaneckova, P., Neville, G., Tippett, V., Aitken, P., FitzGerald, G., and Tong,
S.: Do Biometeorological Indices Improve Modeling Outcomes of
Heat-Related Mortality?, J. Appl. Meteorol. Clim., 50, 1165–1176,
https://doi.org/10.1175/2011JAMC2632.1, 2011. a
Vanos, J. K., Cakmak, S., Kalkstein, L. S., and Yagouti, A.: Association of
weather and air pollution interactions on daily mortality in 12 Canadian
cities, Air Qual., Atmos. Health, 8, 307–320,
https://doi.org/10.1007/s11869-014-0266-7, 2015. a, b
Varotsos, K. V., Giannakopoulos, C., and Tombrou, M.: Ozone-temperature
relationship during the 2003 and 2014 heatwaves in Europe, Reg. Environ.
Change, 19, 1653–1665, https://doi.org/10.1007/s10113-019-01498-4, 2019. a
Vicedo-Cabrera, A. M., Sera, F., Liu, C., Armstrong, B., Milojevic, A., Guo,
Y., Tong, S., Lavigne, E., Kyselý, J., Urban, A., Orru, H., Indermitte, E.,
Pascal, M., Huber, V., Schneider, A., Katsouyanni, K., Samoli, E., Stafoggia,
M., Scortichini, M., Hashizume, M., Honda, Y., Ng, C. F. S., Hurtado-Diaz,
M., Cruz, J., Silva, S., Madureira, J., Scovronick, N., Garland, R. M., Kim,
H., Tobias, A., Íñiguez, C., Forsberg, B., Åström, C., Ragettli, M. S.,
Röösli, M., Guo, Y.-L. L., Chen, B.-Y., Zanobetti, A., Schwartz, J., Bell,
M. L., Kan, H., and Gasparrini, A.: Short term association between ozone and
mortality: global two stage time series study in 406 locations in 20
countries, BMJ Brit. Med. J., 368, m108, https://doi.org/10.1136/bmj.m108, 2020. a
Yu, W., Vaneckova, P., Mengersen, K., Pan, X., and Tong, S.: Is the association
between temperature and mortality modified by age, gender and socio-economic
status?, Sci. Total Environ., 408, 3513–3518,
https://doi.org/10.1016/j.scitotenv.2010.04.058, 2010. a, b
Zhang, H., Wang, Y., Park, T.-W., and Deng, Y.: Quantifying the relationship
between extreme air pollution events and extreme weather events, Atmos. Res.,
188, 64–79, https://doi.org/10.1016/j.atmosres.2016.11.010, 2017. a
Short summary
This study investigates hot weather episodes in eight German cities which are statistically associated with increased mortality. Besides air temperature, ozone concentrations partly explain these mortality rates. The strength of the respective contributions of the two stressors varies across the cities. Results highlight that during hot weather episodes, not only high air temperature affects urban populations; concurrently high ozone concentrations also play an important role in public health.
This study investigates hot weather episodes in eight German cities which are statistically...
Altmetrics
Final-revised paper
Preprint