Articles | Volume 20, issue 1
https://doi.org/10.5194/nhess-20-299-2020
https://doi.org/10.5194/nhess-20-299-2020
Research article
 | 
24 Jan 2020
Research article |  | 24 Jan 2020

Contribution of personal weather stations to the observation of deep-convection features near the ground

Marc Mandement and Olivier Caumont

Related authors

Assimilation of surface pressure observations from personal weather stations in AROME-France
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-103,https://doi.org/10.5194/nhess-2023-103, 2023
Revised manuscript accepted for NHESS
Short summary
A numerical study to investigate the roles of former Hurricane Leslie, orography and evaporative cooling in the 2018 Aude heavy-precipitation event
Marc Mandement and Olivier Caumont
Weather Clim. Dynam., 2, 795–818, https://doi.org/10.5194/wcd-2-795-2021,https://doi.org/10.5194/wcd-2-795-2021, 2021
Short summary
The heavy precipitation event of 14–15 October 2018 in the Aude catchment: a meteorological study based on operational numerical weather prediction systems and standard and personal observations
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci., 21, 1135–1157, https://doi.org/10.5194/nhess-21-1135-2021,https://doi.org/10.5194/nhess-21-1135-2021, 2021
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024,https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
High-resolution projections of ambient heat for major European cities using different heat metrics
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024,https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Heat wave characteristics: evaluation of regional climate model performances for Germany
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024,https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024,https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023,https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary

Cited articles

Adams-Selin, R. D. and Johnson, R. H.: Mesoscale Surface Pressure and Temperature Features Associated with Bow Echoes, Mon. Weather Rev., 138, 212–227, https://doi.org/10.1175/2009MWR2892.1, 2010. a, b
Bell, S., Cornford, D., and Bastin, L.: The state of automated amateur weather observations, Weather, 68, 36–41, https://doi.org/10.1002/wea.1980, 2013. a, b
Chapman, L., Bell, C., and Bell, S.: Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations, Int. J. Climatol., 37, 3597–3605, https://doi.org/10.1002/joc.4940, 2017. a, b
Clark, M. R.: An observational study of the exceptional `Ottery St Mary' thunderstorm of 30 October 2008, Meteorol. Appl., 18, 137–154, https://doi.org/10.1002/met.187, 2011. a
Clark, M. R., Webb, J. D. C., and Kirk, P. J.: Fine-scale analysis of a severe hailstorm using crowd-sourced and conventional observations, Meteorol. Appl., 25, 472–492, https://doi.org/10.1002/met.1715, 2018. a, b, c, d, e
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The number of connected personal weather stations has dramatically increased in the last years. These weather stations produce a high number of data that need a thorough quality control to unleash their potential. A novel quality-control algorithm now allows us to take full advantage of these data and observe thunderstorms with fine-scale details that cannot be caught by standard networks. These results pave the way for tremendous advances in both understanding and forecasting thunderstorms.
Altmetrics
Final-revised paper
Preprint