Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2567-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2567-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A risk-based network analysis of distributed in-stream leaky barriers for flood risk management
Lancaster Environment Centre, Lancaster University, Lancaster, UK
JBA Consulting, Skipton, UK
Ian Hewitt
Mathematical Institute, Oxford University, Oxford, UK
Graham Sander
School of Civil and Building Engineering, Loughborough University, Loughborough, UK
Federico Danieli
Mathematical Institute, Oxford University, Oxford, UK
Giuseppe Formetta
Department of Civil, Environmental and Mechanical Engineering,
University of Trento, Trento, Italy
Alissa Kamilova
Mathematical Institute, Oxford University, Oxford, UK
Ann Kretzschmar
Lancaster Environment Centre, Lancaster University, Lancaster, UK
Kris Kiradjiev
Mathematical Institute, Oxford University, Oxford, UK
Clint Wong
Mathematical Institute, Oxford University, Oxford, UK
Sam Pegler
School of Mathematics, University of Leeds, Leeds, UK
Director, JBA Trust, Skipton, UK
Lancaster Environment Centre, Lancaster University, Lancaster, UK
Related authors
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Martin Morlot, Simone Russo, Luc Feyen, and Giuseppe Formetta
Nat. Hazards Earth Syst. Sci., 23, 2593–2606, https://doi.org/10.5194/nhess-23-2593-2023, https://doi.org/10.5194/nhess-23-2593-2023, 2023
Short summary
Short summary
We analyzed recent trends in heat and cold wave (HW and CW) risk in a European alpine region, defined by a time and spatially explicit framework to quantify hazard, vulnerability, exposure, and risk. We find a statistically significant increase in HW hazard and exposure. A decrease in vulnerability is observed except in the larger cities. HW risk increased in 40 % of the region, especially in highly populated areas. Stagnant CW hazard and declining vulnerability result in reduced CW risk.
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023, https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary
Short summary
Solar radiation causes melting at and just below the surface of the Greenland ice sheet, forming a porous surface layer known as the weathering crust. The weathering crust is home to many microbes, and the growth of these microbes is linked to the melting of the weathering crust and vice versa. We use a mathematical model to investigate what controls the size and structure of the weathering crust, the number of microbes within it, and its sensitivity to climate change.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Daniel H. Richards, Samuel S. Pegler, and Sandra Piazolo
The Cryosphere, 16, 4571–4592, https://doi.org/10.5194/tc-16-4571-2022, https://doi.org/10.5194/tc-16-4571-2022, 2022
Short summary
Short summary
Understanding the orientation of ice grains is key for predicting ice flow. We explore the evolution of these orientations using a new efficient model. We present an exploration of the patterns produced under a range of temperatures and 2D deformations, including for the first time a universal regime diagram. We do this for deformations relevant to ice sheets but not studied in experiments. These results can be used to understand drilled ice cores and improve future modelling of ice sheets.
Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari
Hydrol. Earth Syst. Sci., 26, 4773–4800, https://doi.org/10.5194/hess-26-4773-2022, https://doi.org/10.5194/hess-26-4773-2022, 2022
Short summary
Short summary
The
Digital Earth(DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
EGUsphere, https://doi.org/10.5194/egusphere-2022-340, https://doi.org/10.5194/egusphere-2022-340, 2022
Short summary
Short summary
We analyzed the water budget of nested karst catchments with simple methods and modelling. Whilst karst pathways are not elusive, we exploit techniques to have information from the available data of precipitation and discharge which result in a reliable determination of the response lag-time. We also modelled snow cover dynamics and evapotranspiration obtaining a parsimonious account of the water budget of the basin and its subbasins. Data, models and workflows has been made available.
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
Keith J. Beven, Mike J. Kirkby, Jim E. Freer, and Rob Lamb
Hydrol. Earth Syst. Sci., 25, 527–549, https://doi.org/10.5194/hess-25-527-2021, https://doi.org/10.5194/hess-25-527-2021, 2021
Short summary
Short summary
The theory that forms the basis of TOPMODEL was first outlined by Mike Kirkby some 45 years ago. This paper recalls some of the early developments: the rejection of the first journal paper, the early days of digital terrain analysis, model calibration and validation, the various criticisms of the simplifying assumptions, and the relaxation of those assumptions in the dynamic forms of TOPMODEL, and it considers what we might do now with the benefit of hindsight.
Marialaura Bancheri, Francesco Serafin, Michele Bottazzi, Wuletawu Abera, Giuseppe Formetta, and Riccardo Rigon
Geosci. Model Dev., 11, 2189–2207, https://doi.org/10.5194/gmd-11-2189-2018, https://doi.org/10.5194/gmd-11-2189-2018, 2018
Short summary
Short summary
This paper presents a new modeling package for the spatial interpolation of environmental variables. It includes 11 theoretical semivariogram models and four types of Kriging interpolations. To test the performances of the package, two applications are performed: the interpolation of 1 year of temperatures
and a rainfall event. Both interpolations gave good results. In comparison with gstat, the SIK package proved to be a good alternative, regarding both the easiness of use and the accuracy.
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary
Short summary
Flooding is a significant hazard and extreme events in recent years have focused attention on effective means of reducing its risk. An approach known as natural flood management (NFM) seeks to increase flood resilience by a range of measures that work with natural processes. The paper develops a modelling approach to assess one type NFM of intervention – distributed additional hillslope storage features – and demonstrates that more strategic placement is required than has hitherto been applied.
Colin R. Meyer and Ian J. Hewitt
The Cryosphere, 11, 2799–2813, https://doi.org/10.5194/tc-11-2799-2017, https://doi.org/10.5194/tc-11-2799-2017, 2017
Short summary
Short summary
We describe a new model for the evolution of snow temperature, density, and water content on the surface of glaciers and ice sheets. The model encompasses the surface hydrology of accumulation and ablation areas, allowing us to explore the transition from one to the other as thermal forcing varies. We predict year-round liquid water storage for intermediate values of the surface forcing. We also compare our model to data for the vertical percolation of meltwater in Greenland.
Rob Lamb, Willy Aspinall, Henry Odbert, and Thorsten Wagener
Nat. Hazards Earth Syst. Sci., 17, 1393–1409, https://doi.org/10.5194/nhess-17-1393-2017, https://doi.org/10.5194/nhess-17-1393-2017, 2017
Short summary
Short summary
Scour (erosion) during floods can cause bridges to collapse. Modern design and maintenance mitigates the risk, so failures are rare. The residual risk is uncertain, but expert knowledge can help constrain it. We asked 19 experts about scour risk using methods designed to treat judgements alongside other scientific data. The findings identified knowledge gaps about scour processes and suggest wider uncertainty about scour risk than might be inferred from observation, models or experiments alone.
Ian J. Hewitt and Christian Schoof
The Cryosphere, 11, 541–551, https://doi.org/10.5194/tc-11-541-2017, https://doi.org/10.5194/tc-11-541-2017, 2017
Short summary
Short summary
Many glaciers contain ice both below and at the melting temperature. Predicting the evolution of temperature and water content in such ice masses is important because they exert a strong control on the flow of the ice. We present two new models to calculate these quantities, demonstrate a number of example numerical calculations, and compare the results with existing methods. The novelty of the new methods is the inclusion of gravity-driven water transport within the ice.
Related subject area
Hydrological Hazards
Assessing typhoon-induced compound flood drivers: a case study in Ho Chi Minh City, Vietnam
Assessing the ability of a new seamless short-range ensemble rainfall product to anticipate flash floods in the French Mediterranean area
Sentinel-1-based analysis of the severe flood over Pakistan 2022
Sensitivity analysis of erosion on the landward slope of an earthen flood defense located in southern France submitted to wave overtopping
Better prepared but less resilient: the paradoxical impact of frequent flood experience on adaptive behavior and resilience
Assessing the spatial spread–skill of ensemble flood maps with remote-sensing observations
An integrated modeling approach to evaluate the impacts of nature-based solutions of flood mitigation across a small watershed in the southeast United States
Indicator-to-impact links to help improve agricultural drought preparedness in Thailand
The potential of open-access data for flood estimations: uncovering inundation hotspots in Ho Chi Minh City, Vietnam, through a normalized flood severity index
Analyzing the informative value of alternative hazard indicators for monitoring drought hazard for human water supply and river ecosystems at the global scale
A methodological framework for the evaluation of short-range flash-flood hydrometeorological forecasts at the event scale
Review article: Towards Improved Drought Prediction in the Mediterranean Region – Modelling Approaches and Future Directions
Hydrological drought forecasting under a changing environment in the Luanhe River basin
Multivariate regression trees as an ‘explainable machine learning’ approach to exploring relationships between hydroclimatic characteristics and agricultural and hydrological drought severity
A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 2: Historical context and relation to climate change
Brief communication: The potential use of low-cost acoustic sensors to detect rainfall for short-term urban flood warnings
Brief communication: On the extremeness of the July 2021 precipitation event in western Germany
A climate-conditioned catastrophe risk model for UK flooding
A globally applicable framework for compound flood hazard modeling
Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Evolution of multivariate drought hazard, vulnerability and risk in India under climate change
A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe – Part 1: Event description and analysis
Bare-earth DEM generation from ArcticDEM and its use in flood simulation
Comparison of estimated flood exposure and consequences generated by different event-based inland flood inundation maps
How uncertain are precipitation and peak flow estimates for the July 2021 flooding event?
Estimating the likelihood of roadway pluvial flood based on crowdsourced traffic data and depression-based DEM analysis
A multi-strategy-mode waterlogging-prediction framework for urban flood depth
Multiscale flood risk assessment under climate change: the case of the Miño River in the city of Ourense, Spain
Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data
Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July 2021 floods in Germany
Brief communication: Western Europe flood in 2021 – mapping agriculture flood exposure from synthetic aperture radar (SAR)
Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
A new index to quantify the extremeness of precipitation across scales
Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe
Assessing flood hazard changes using climate model forcing
Characterizing multivariate coastal flooding events in a semi-arid region: the implications of copula choice, sampling, and infrastructure
Different drought types and the spatial variability in their hazard, impact, and propagation characteristics
More than heavy rain turning into fast-flowing water – a landscape perspective on the 2021 Eifel floods
Integrated drought risk assessment to support adaptive policymaking in the Netherlands
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Assessing flooding impact to riverine bridges: an integrated analysis
Warming of 0.5 °C may cause double the economic loss and increase the population affected by floods in China
First application of the Integrated Karst Aquifer Vulnerability (IKAV) method – potential and actual vulnerability in Yucatán, Mexico
Brief communication: Seismological analysis of flood dynamics and hydrologically triggered earthquake swarms associated with Storm Alex
System vulnerability to flood events and risk assessment of railway systems based on national and river basin scales in China
Machine-learning blends of geomorphic descriptors: value and limitations for flood hazard assessment across large floodplains
A performance-based approach to quantify atmospheric river flood risk
Estimating soil moisture conditions for drought monitoring with random forests and a simple soil moisture accounting scheme
Francisco Rodrigues do Amaral, Nicolas Gratiot, Thierry Pellarin, and Tran Anh Tu
Nat. Hazards Earth Syst. Sci., 23, 3379–3405, https://doi.org/10.5194/nhess-23-3379-2023, https://doi.org/10.5194/nhess-23-3379-2023, 2023
Short summary
Short summary
We propose an in-depth analysis of typhoon-induced compound flood drivers in the megacity of Ho Chi Minh, Vietnam. We use in situ and satellite measurements throughout the event to form a holistic overview of its impact. No evidence of storm surge was found, and peak precipitation presents a 16 h time lag to peak river discharge, which evacuates only 1.5 % of available water. The astronomical tide controls the river level even during the extreme event, and it is the main urban flood driver.
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023, https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Short summary
This article results from a master's research project which was part of a natural hazards programme developed by the French Ministry of Ecological Transition. The objective of this work was to investigate a possible way to improve the operational flash flood warning service by adding rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner
Nat. Hazards Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/nhess-23-3305-2023, https://doi.org/10.5194/nhess-23-3305-2023, 2023
Short summary
Short summary
In August and September 2022, millions of people were impacted by a severe flood event in Pakistan. Since many roads and other infrastructure were destroyed, satellite data were the only way of providing large-scale information on the flood's impact. Based on the flood mapping algorithm developed at Technische Universität Wien (TU Wien), we mapped an area of 30 492 km2 that was flooded at least once during the study's time period. This affected area matches about the total area of Belgium.
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
Nat. Hazards Earth Syst. Sci., 23, 3111–3124, https://doi.org/10.5194/nhess-23-3111-2023, https://doi.org/10.5194/nhess-23-3111-2023, 2023
Short summary
Short summary
We developed a system able to to predict, knowing the appropriate characteristics of the flood defense structure and sea state, the return periods of potentially dangerous events as well as a ranking of parameters by order of uncertainty.
The model is a combination of statistical and empirical methods that have been applied to a Mediterranean earthen dike. This shows that the most important characteristics of the dyke are its geometrical features, such as its height and slope angles.
Lisa Köhler, Torsten Masson, Sabrina Köhler, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 23, 2787–2806, https://doi.org/10.5194/nhess-23-2787-2023, https://doi.org/10.5194/nhess-23-2787-2023, 2023
Short summary
Short summary
We analyzed the impact of flood experience on adaptive behavior and self-reported resilience. The outcomes draw a paradoxical picture: the most experienced people are the most adapted but the least resilient. We find evidence for non-linear relationships between the number of floods experienced and resilience. We contribute to existing knowledge by focusing specifically on the number of floods experienced and extending the rare scientific literature on the influence of experience on resilience.
Helen Hooker, Sarah L. Dance, David C. Mason, John Bevington, and Kay Shelton
Nat. Hazards Earth Syst. Sci., 23, 2769–2785, https://doi.org/10.5194/nhess-23-2769-2023, https://doi.org/10.5194/nhess-23-2769-2023, 2023
Short summary
Short summary
Ensemble forecasts of flood inundation produce maps indicating the probability of flooding. A new approach is presented to evaluate the spatial performance of an ensemble flood map forecast by comparison against remotely observed flooding extents. This is important for understanding forecast uncertainties and improving flood forecasting systems.
Betina I. Guido, Ioana Popescu, Vidya Samadi, and Biswa Bhattacharya
Nat. Hazards Earth Syst. Sci., 23, 2663–2681, https://doi.org/10.5194/nhess-23-2663-2023, https://doi.org/10.5194/nhess-23-2663-2023, 2023
Short summary
Short summary
We used an integrated model to evaluate the impacts of nature-based solutions (NBSs) on flood mitigation across the Little Pee Dee and Lumber River watershed, the Carolinas, US. This area is strongly affected by climatic disasters, which are expected to increase due to climate change and urbanization, so exploring an NBS approach is crucial for adapting to future alterations. Our research found that NBSs can have visible effects on the reduction in hurricane-driven flooding.
Maliko Tanguy, Michael Eastman, Eugene Magee, Lucy J. Barker, Thomas Chitson, Chaiwat Ekkawatpanit, Daniel Goodwin, Jamie Hannaford, Ian Holman, Liwa Pardthaisong, Simon Parry, Dolores Rey Vicario, and Supattra Visessri
Nat. Hazards Earth Syst. Sci., 23, 2419–2441, https://doi.org/10.5194/nhess-23-2419-2023, https://doi.org/10.5194/nhess-23-2419-2023, 2023
Short summary
Short summary
Droughts in Thailand are becoming more severe due to climate change. Understanding the link between drought impacts on the ground and drought indicators used in drought monitoring systems can help increase a country's preparedness and resilience to drought. With a focus on agricultural droughts, we derive crop- and region-specific indicator-to-impact links that can form the basis of targeted mitigation actions and an improved drought monitoring and early warning system in Thailand.
Leon Scheiber, Mazen Hoballah Jalloul, Christian Jordan, Jan Visscher, Hong Quan Nguyen, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2313–2332, https://doi.org/10.5194/nhess-23-2313-2023, https://doi.org/10.5194/nhess-23-2313-2023, 2023
Short summary
Short summary
Numerical models are increasingly important for assessing urban flooding, yet reliable input data are oftentimes hard to obtain. Taking Ho Chi Minh City as an example, this paper explores the usability and reliability of open-access data to produce preliminary risk maps that provide first insights into potential flooding hotspots. As a key novelty, a normalized flood severity index is presented which combines flood depth and duration to enhance the interpretation of hydro-numerical results.
Claudia Herbert and Petra Döll
Nat. Hazards Earth Syst. Sci., 23, 2111–2131, https://doi.org/10.5194/nhess-23-2111-2023, https://doi.org/10.5194/nhess-23-2111-2023, 2023
Short summary
Short summary
This paper presents a new method for selecting streamflow drought hazard indicators for monitoring drought hazard for human water supply and river ecosystems in large-scale drought early warning systems. Indicators are classified by their inherent assumptions about the habituation of people and ecosystems to the streamflow regime and their level of drought characterization, namely drought magnitude (water deficit at a certain point in time) and severity (cumulated magnitude since drought onset).
Maryse Charpentier-Noyer, Daniela Peredo, Axelle Fleury, Hugo Marchal, François Bouttier, Eric Gaume, Pierre Nicolle, Olivier Payrastre, and Maria-Helena Ramos
Nat. Hazards Earth Syst. Sci., 23, 2001–2029, https://doi.org/10.5194/nhess-23-2001-2023, https://doi.org/10.5194/nhess-23-2001-2023, 2023
Short summary
Short summary
This paper proposes a methodological framework designed for event-based evaluation in the context of an intense flash-flood event. The evaluation adopts the point of view of end users, with a focus on the anticipation of exceedances of discharge thresholds. With a study of rainfall forecasts, a discharge evaluation and a detailed look at the forecast hydrographs, the evaluation framework should help in drawing robust conclusions about the usefulness of new rainfall ensemble forecasts.
Bouchra Zellou, Nabil El Moçayd, and EL Houcine Bergou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-63, https://doi.org/10.5194/nhess-2023-63, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
In this study, we underscore the critical importance of strengthening drought prediction capabilities in the Mediterranean region. We present an in-depth evaluation of current drought forecasting approaches, encompassing statistical, dynamical, and hybrid statistical-dynamical models, and highlight unexplored research opportunities. Additionally, we suggest forth viable directions to enhance drought prediction and early warning systems within the area.
Min Li, Mingfeng Zhang, Runxiang Cao, Yidi Sun, and Xiyuan Deng
Nat. Hazards Earth Syst. Sci., 23, 1453–1464, https://doi.org/10.5194/nhess-23-1453-2023, https://doi.org/10.5194/nhess-23-1453-2023, 2023
Short summary
Short summary
It is an important disaster reduction strategy to forecast hydrological drought. In order to analyse the impact of human activities on hydrological drought, we constructed the human activity factor based on the method of restoration. With the increase of human index (HI) value, hydrological droughts tend to transition to more severe droughts. The conditional distribution model involving of human activity factor can further improve the forecasting accuracy of drought in the Luanhe River basin.
Ana Paez-Trujilo, Jeffer Cañon, Beatriz Hernandez, Gerald Corzo, and Dimitri Solomatine
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-50, https://doi.org/10.5194/nhess-2023-50, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This study uses a machine learning technique, the multivariate regression tree approach to asses the hydroclimatic characteristics that govern agricultural and hydrological drought severity. The results show that the employed technique successfully identified the primary drivers of droughts and their critical thresholds. In addition, it provides relevant information to identify the areas most vulnerable to droughts and design strategies and interventions for drought management.
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Katharina Lengfeld, Paul Voit, Frank Kaspar, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 1227–1232, https://doi.org/10.5194/nhess-23-1227-2023, https://doi.org/10.5194/nhess-23-1227-2023, 2023
Short summary
Short summary
Estimating the severity of a rainfall event based on the damage caused is easy but highly depends on the affected region. A less biased measure for the extremeness of an event is its rarity combined with its spatial extent. In this brief communication, we investigate the sensitivity of such measures to the underlying dataset and highlight the importance of considering multiple spatial and temporal scales using the devastating rainfall event in July 2021 in central Europe as an example.
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023, https://doi.org/10.5194/nhess-23-891-2023, 2023
Short summary
Short summary
We present and validate a model that simulates current and future flood risk for the UK at high resolution (~ 20–25 m). We show that UK flood losses were ~ 6 % greater in the climate of 2020 compared to recent historical values. The UK can keep any future increase to ~ 8 % if all countries implement their COP26 pledges and net-zero ambitions in full. However, if only the COP26 pledges are fulfilled, then UK flood losses increase by ~ 23 %; and potentially by ~ 37 % in a worst-case scenario.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Omar Seleem, Georgy Ayzel, Axel Bronstert, and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 809–822, https://doi.org/10.5194/nhess-23-809-2023, https://doi.org/10.5194/nhess-23-809-2023, 2023
Short summary
Short summary
Data-driven models are becoming more of a surrogate that overcomes the limitations of the computationally expensive 2D hydrodynamic models to map urban flood hazards. However, the model's ability to generalize outside the training domain is still a major challenge. We evaluate the performance of random forest and convolutional neural networks to predict urban floodwater depth and investigate their transferability outside the training domain.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Venkataswamy Sahana and Arpita Mondal
Nat. Hazards Earth Syst. Sci., 23, 623–641, https://doi.org/10.5194/nhess-23-623-2023, https://doi.org/10.5194/nhess-23-623-2023, 2023
Short summary
Short summary
In an agriculture-dependent, densely populated country such as India, drought risk projection is important to assess future water security. This study presents the first comprehensive drought risk assessment over India, integrating hazard and vulnerability information. Future drought risk is found to be more significantly driven by increased vulnerability resulting from societal developments rather than climate-induced changes in hazard. These findings can inform planning for drought resilience.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Yinxue Liu, Paul D. Bates, and Jeffery C. Neal
Nat. Hazards Earth Syst. Sci., 23, 375–391, https://doi.org/10.5194/nhess-23-375-2023, https://doi.org/10.5194/nhess-23-375-2023, 2023
Short summary
Short summary
In this paper, we test two approaches for removing buildings and other above-ground objects from a state-of-the-art satellite photogrammetry topography product, ArcticDEM. Our best technique gives a 70 % reduction in vertical error, with an average difference of 1.02 m from a benchmark lidar for the city of Helsinki, Finland. When used in a simulation of rainfall-driven flooding, the bare-earth version of ArcticDEM yields a significant improvement in predicted inundation extent and water depth.
Joseph L. Gutenson, Ahmad A. Tavakoly, Mohammad S. Islam, Oliver E. J. Wing, William P. Lehman, Chase O. Hamilton, Mark D. Wahl, and T. Christopher Massey
Nat. Hazards Earth Syst. Sci., 23, 261–277, https://doi.org/10.5194/nhess-23-261-2023, https://doi.org/10.5194/nhess-23-261-2023, 2023
Short summary
Short summary
Emergency managers use event-based flood inundation maps (FIMs) to plan and coordinate flood emergency response. We perform a case study test of three different FIM frameworks to see if FIM differences lead to substantial differences in the location and magnitude of flood exposure and consequences. We find that the FIMs are very different spatially and that the spatial differences do produce differences in the location and magnitude of exposure and consequences.
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Arefeh Safaei-Moghadam, David Tarboton, and Barbara Minsker
Nat. Hazards Earth Syst. Sci., 23, 1–19, https://doi.org/10.5194/nhess-23-1-2023, https://doi.org/10.5194/nhess-23-1-2023, 2023
Short summary
Short summary
Climate change, urbanization, and aging infrastructure contribute to flooding on roadways. This study evaluates the potential for flood reports collected from Waze – a community-based navigation app – to predict these events. Waze reports correlate primarily with low-lying depressions on roads. Therefore, we developed two data-driven models to determine whether roadways will flood. Analysis showed that in the city of Dallas, drainage area and imperviousness are the most significant contributors.
Zongjia Zhang, Jun Liang, Yujue Zhou, Zhejun Huang, Jie Jiang, Junguo Liu, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 4139–4165, https://doi.org/10.5194/nhess-22-4139-2022, https://doi.org/10.5194/nhess-22-4139-2022, 2022
Short summary
Short summary
An innovative multi-strategy-mode waterlogging-prediction framework for predicting waterlogging depth is proposed in the paper. The framework selects eight regression algorithms for comparison and tests the prediction accuracy and robustness of the model under different prediction strategies. Ultimately, the accuracy of predicting water depth after 30 min can exceed 86.1 %. This can aid decision-making in terms of issuing early warning information and determining emergency responses in advance.
Diego Fernández-Nóvoa, Orlando García-Feal, José González-Cao, Maite deCastro, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3957–3972, https://doi.org/10.5194/nhess-22-3957-2022, https://doi.org/10.5194/nhess-22-3957-2022, 2022
Short summary
Short summary
A multiscale analysis, where the historical and future precipitation data from the CORDEX project were used as input in a hydrological model (HEC-HMS) that, in turn, feeds a 2D hydraulic model (Iber+), was applied to the case of the Miño-Sil basin (NW Spain), specifically to Ourense city, in order to analyze future changes in flood hazard. Detailed flood maps indicate an increase in the frequency and intensity of future floods, implying an increase in flood hazard in important areas of the city.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022, https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Short summary
Nepal’s second-largest city has been rapidly growing since the 1970s, although its valley has been affected by rare, catastrophic floods in recent and historic times. We analyse potential impacts of such floods on urban areas and infrastructure by modelling 10 physically plausible flood scenarios along Pokhara’s main river. We find that hydraulic effects would largely affect a number of squatter settlements, which have expanded rapidly towards the river by a factor of up to 20 since 2008.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022, https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Short summary
Estimating the magnitude of rare to very rare floods is a challenging task due to a lack of sufficiently long observations. The challenge is even greater in large river basins, where precipitation patterns and amounts differ considerably between individual events and floods from different parts of the basin coincide. We show that a hydrometeorological model chain can provide plausible estimates in this setting and can thus inform flood risk and safety assessments for critical infrastructure.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 22, 2791–2805, https://doi.org/10.5194/nhess-22-2791-2022, https://doi.org/10.5194/nhess-22-2791-2022, 2022
Short summary
Short summary
To better understand how the frequency and intensity of heavy precipitation events (HPEs) will change with changing climate and to adapt disaster risk management accordingly, we have to quantify the extremeness of HPEs in a reliable way. We introduce the xWEI (cross-scale WEI) and show that this index can reveal important characteristics of HPEs that would otherwise remain hidden. We conclude that the xWEI could be a valuable instrument in both disaster risk management and research.
Angelica Tarpanelli, Alessandro C. Mondini, and Stefania Camici
Nat. Hazards Earth Syst. Sci., 22, 2473–2489, https://doi.org/10.5194/nhess-22-2473-2022, https://doi.org/10.5194/nhess-22-2473-2022, 2022
Short summary
Short summary
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they were able to observe. Results show that on average 58 % of flood events are potentially observable by Sentinel-1 and only 28 % by Sentinel-2 due to the obstacle of cloud coverage.
David P. Callaghan and Michael G. Hughes
Nat. Hazards Earth Syst. Sci., 22, 2459–2472, https://doi.org/10.5194/nhess-22-2459-2022, https://doi.org/10.5194/nhess-22-2459-2022, 2022
Short summary
Short summary
A new method was developed to estimate changes in flood hazard under climate change. We use climate projections covering New South Wales, Australia, with two emission paths of business as usual and one with reduced emissions. We apply our method to the lower floodplain of the Gwydir Valley with changes in flood hazard provided over the next 90 years compared with the previous 50 years. We find that changes in flood hazard decrease over time within the Gwydir Valley floodplain.
Joseph T. D. Lucey and Timu W. Gallien
Nat. Hazards Earth Syst. Sci., 22, 2145–2167, https://doi.org/10.5194/nhess-22-2145-2022, https://doi.org/10.5194/nhess-22-2145-2022, 2022
Short summary
Short summary
Coastal flooding can result from multiple flood drivers (e.g., tides, waves, river flows, rainfall) occurring at the same time. This study characterizes flooding events caused by high marine water levels and rain. Results show that wet-season coinciding sampling may better describe extreme flooding events in a dry, tidally dominated region. A joint-probability-based function is then used to estimate sea wall impacts on urban coastal flooding.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Marjolein J. P. Mens, Gigi van Rhee, Femke Schasfoort, and Neeltje Kielen
Nat. Hazards Earth Syst. Sci., 22, 1763–1776, https://doi.org/10.5194/nhess-22-1763-2022, https://doi.org/10.5194/nhess-22-1763-2022, 2022
Short summary
Short summary
Many countries have to prepare for droughts by proposing policy actions to increase water supply, reduce water demand, or limit the societal impact. Societal cost–benefit analysis is required to support decision-making for a range of future scenarios, accounting for climate change and socio-economic developments. This paper presents a framework to assess drought policy actions based on quantification of drought risk and exemplifies it for the Netherlands’ drought risk management strategy.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Maria Pregnolato, Andrew O. Winter, Dakota Mascarenas, Andrew D. Sen, Paul Bates, and Michael R. Motley
Nat. Hazards Earth Syst. Sci., 22, 1559–1576, https://doi.org/10.5194/nhess-22-1559-2022, https://doi.org/10.5194/nhess-22-1559-2022, 2022
Short summary
Short summary
The interaction of flow, structure and network is complex, and yet to be fully understood. This study aims to establish rigorous practices of computational fluid dynamics (CFD) for modelling hydrodynamic forces on inundated bridges, and understanding the consequences of such impacts on the surrounding network. The objectives of this study are to model hydrodynamic forces as the demand on the bridge structure, to advance a structural reliability and network-level analysis.
Lulu Liu, Jiangbo Gao, and Shaohong Wu
Nat. Hazards Earth Syst. Sci., 22, 1577–1590, https://doi.org/10.5194/nhess-22-1577-2022, https://doi.org/10.5194/nhess-22-1577-2022, 2022
Short summary
Short summary
The impact of extreme events is increasing with global warming. Based on future scenario data and an improved quantitative assessment model of natural-disaster risk, this study analyses the spatial and temporal patterns of floods in China at 1.5 °C and 2 °C of global warming, quantitatively assesses the socioeconomic risks posed by floods, and determines the integrated risk levels. Global warming of 1.5 °C can effectively reduce the population affected and the economic risks of floods.
Miguel Moreno-Gómez, Carolina Martínez-Salvador, Rudolf Liedl, Catalin Stefan, and Julia Pacheco
Nat. Hazards Earth Syst. Sci., 22, 1591–1608, https://doi.org/10.5194/nhess-22-1591-2022, https://doi.org/10.5194/nhess-22-1591-2022, 2022
Short summary
Short summary
Current vulnerability methods, as tools to protect groundwater resources from pollution, present some limitations and drawbacks: the roles of population and economic activities are not considered by such methods. The methodology presented in this work combines natural characteristics and human-driven conditions of a given region to improve the process of groundwater vulnerability analysis. Results indicate the reliability of this alternative method to improve groundwater protection strategies.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 22, 1469–1486, https://doi.org/10.5194/nhess-22-1469-2022, https://doi.org/10.5194/nhess-22-1469-2022, 2022
Short summary
Short summary
We retrieve descriptors of the terrain morphology from a digital elevation model of a 105 km2 study area and blend them through decision tree models to map flood susceptibility and expected water depth. We investigate this approach with particular attention to (a) the comparison with a selected single-descriptor approach, (b) the goodness of decision trees, and (c) the performance of these models when applied to data-scarce regions. We find promising pathways for future research.
Corinne Bowers, Katherine A. Serafin, and Jack Baker
Nat. Hazards Earth Syst. Sci., 22, 1371–1393, https://doi.org/10.5194/nhess-22-1371-2022, https://doi.org/10.5194/nhess-22-1371-2022, 2022
Short summary
Short summary
Atmospheric rivers (ARs) cause significant flooding on the US west coast. We present a new Performance-based Atmospheric River Risk Analysis (PARRA) framework that connects models of atmospheric forcings, hydrologic impacts, and economic consequences to better estimate losses from AR-induced river flooding. We apply the PARRA framework to a case study in Sonoma County, CA, USA, and show that the framework can quantify the potential benefit of flood mitigation actions such as home elevation.
Yves Tramblay and Pere Quintana Seguí
Nat. Hazards Earth Syst. Sci., 22, 1325–1334, https://doi.org/10.5194/nhess-22-1325-2022, https://doi.org/10.5194/nhess-22-1325-2022, 2022
Short summary
Short summary
Monitoring soil moisture is important during droughts, but very few measurements are available. Consequently, land-surface models are essential tools for reproducing soil moisture dynamics. In this study, a hybrid approach allowed for regionalizing soil water content using a machine learning method. This approach proved to be efficient, compared to the use of soil property maps, to run a simple soil moisture accounting model, and therefore it can be applied in various regions.
Cited articles
Addy, S. and Wilkinson, M.: An assessment of engineered log jam structures
in response to a flood event in an upland gravel-bed river, Earth Surf.
Proc. Land., 1, 1658–1670, https://doi.org/10.1002/esp.3936, 2016.
Addy, S. and Wilkinson, M.: Representing natural and artificial in-channel
large wood in numerical hydraulic and hydrological models, WIREs Water,
6, e1389, https://doi.org/10.1002/wat2.1389, 2019.
Bridges, T. S., Bourne, E. M., King, J. K., Kuzmitski, H. K., Moynihan, E. B., and Suedel, B. C.: Engineering With Nature: an atlas, ERDC/EL SR-18-8,
US Army Engineer Research and Development Center, Vicksburg, MS,
https://doi.org/10.21079/11681/27929, 2018.
Burgess-Gamble, L., Ngai, R., Wilkinson, M., Nisbet, T., Pontee, N., Harvey,
R., Kipling, K., Addy, S., Rose, S., Maslen, S., Jay, H., Nicholson, A.,
Page, T., Jonczyk, J., and Quin, P.: Working with Natural Processes – Evidence Directory, Environment Agency Project SC150005, available at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/681411/Working_with_natural_processes_evidence_directory.pdf (last access: 24 September 2020), 2017.
Butler, D. R. and Malanson, G. P.: The geomorphic influences of beaver dams and failures of beaver dams, Geomorphology, 71, 48–60, 2005.
Dadson, S., Hall, J. W., Murgatroyd, A., Acreman, M., Bates, P., Beven, K., Heathwaite, L., Holden, J., Holman, I. P., Lane, S. N., O'Connell, E., Penning-Rowsell, E., Reynard, N., Sear, D., Thorne, C., and Wilby, R.: A restatement of the natural science evidence concerning catchment-based natural flood management in the UK, P. Roy. Soc. A, 473, 20160706, https://doi.org/10.1098/rspa.2016.0706, 2017.
Defra: A Green Future: Our 25 Year Plan to Improve the Environment, Department for Environment, Food & Rural Affairs, London, available at:
https://www.gov.uk/government/publications/25-year-environment-plan (last access: 24 September 2020), 2019.
Dixon, S. and Sear, D.: The influence of geomorphology on large wood dynamics in a low gradient headwater stream, Water Resour. Res., 50, 9194–9210, https://doi.org/10.1002/2014WR015947, 2014.
EEA: Exploring nature-based solutions: The role of green infrastructure in
mitigating the impacts of weather- and climate change-related natural hazards, Technical report No. 12/2015, available at:
https://www.eea.europa.eu/publications/exploring-nature-based-solutions-2014 (last access: 24 September 2020), 2015.
Environment Agency: Fluvial Design Guide, available at: https://www.gov.uk/government/publications/fluvial-design-guide (last access: 24 September 2020), 2010.
Environment Agency: Long-term investment scenarios (LTIS) 2019, available at:
https://www.gov.uk/government/publications/flood-and-coastal-risk-management-in-england-long-term-
(last access: 24 September 2020), 2019.
European Commission: Floods Directive, 2007/60/EC, available at:
https://eur-lex.europa.eu/eli/dir/2007/60/oj (last access: 24 September 2020), 2007.
European Commission: Green Infrastructure (GI) — Enhancing Europe's Natural Capital – COM(2013) 149, available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX::52013DC0249
(last access: 24 September 2020), 2013a.
European Commission: Building a green infrastructure for Europe, Publ. Office of the European Union, Luxembourg, 2013b.
Hall, J. W., Dawson, R. J., Sayers, P., Rosu, C., Chatterton, J., and Deakin, R.: A methodology for national-scale flood risk assessment, Proc. Inst. Civ. Eng., 156, 235–247, 2003.
Hankin, B., Lamb, R., Craigen, I., Page, T., Chappell, N., and Metcalfe, P.: A whole catchment approach to improve flood resilience in the Eden, Winning
entry to the Defra Flood Modelling Competition 2016 [Internet], available at: https://consult.defra.gov.uk/water-and-flood-risk-management/flood-risk-management-modelling-competition/results/jba_defra_winning_entry_full_report.pdf (last access: 19 January 2017), 2017a.
Hankin, B., Metcalfe, P., Craigen, I., Page, T., Chappell, N., Lamb, R., Beven, K., and Johnson, D.: Strategies for testing the impact of natural flood risk management measures. Chapter in Flood Risk Management, ISBN 978-953-51-5526-3, available at:
https://www.intechopen.com/books/flood-risk-management/strategies-for-testing-the-impact-of-natural-flood-risk
(last access: 24 September 2020), 2017b.
Hankin, B., Hewitt, I., Sander, G., Danieli, F., Formetta, G., Kamilova, A., Kretzschmar, A., Kiradjiev, K., Wong, C., Pegler, S., and Lamb, R.: A risk-based network analysis of distributed in-stream leaky barriers for flood risk management: code and data, Zenodo, https://doi.org/10.5281/zenodo.4059378, 2020.
Hillman, G. R.: Flood Wave Attenuation by a Wetland Following a beaver dam
failure on a second order boreal system, Wetlands, 18, 21, 1998.
HM Government: National flood resilience review, available at:
https://www.gov.uk/government/publications/national-flood-resilience-review
(last access: 24 September 2020), 2016.
Institute of Hydrology: The Flood Estimation Handbook, Wallingford, Oxfordshire, ISBN 9781906698003, 1999.
Kjeldsen, T. R.: The Revitalised FSR/FEH rainfall-runoff method. Centre for
Ecology and Hydrology, ISBN 0 903741 157, available at:
https://www.ceh.ac.uk/sites/default/files/FEH Supplementary Report hi-res.pdf (last access: 24 September 2020), 2007.
Lamb, R., Keef, C., Tawn, J., Laeger, S., Meadowcroft, I., Surendran, S., Dunning P., and Batstone, C.: A new method to assess the risk of local and widespread flooding on rivers and coasts, J. Flood Risk Manage., 3, 323–336, https://doi.org/10.1111/j.1753-318X.2010.01081.x, 2010.
Lamb, R., Garside, P., Pant, R., ad Hall, J. W.: A Probabilistic Model of the
Economic Risk to Britain's Railway Network from Bridge Scour During Floods,
Risk Anal., 39, 2457–2478, https://doi.org/10.1111/risa.13370, 2019.
Lancaster Environment Centre: NERC Quantifying the likely magnitude of nature-based flood mitigation effects across large catchments (Q-NFM), available at: https://www.lancaster.ac.uk/lec/sites/qnfm/ (last access: 13 July 2020), 2017.
Lane, S. N.: Natural flood management, Wiley Interdisciplin. Rev.: Water, 4, e1211, https://doi.org/10.1002/wat2.1211, 2017.
Metcalfe, P., Beven, K. J., Hankin, B., and Lamb, R.: A modelling framework
for evaluation of the hydrological impacts of nature-based approaches to
flood risk management, with application to in-channel interventions across a
29-km2 scale catchment in the United Kingdom, Hydrol. Process., 31, 1734–1748, https://doi.org/10.1002/hyp.11140, 2017.
Metcalfe, P., Beven, K., Hankin, B., and Lamb, R.: A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage, Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018, 2018.
Munson, B. R., Okiishi, T. H., Huebsch, W. W., and Rothmayer, A. P.: Fluid
Mechanics, 7th Edn., Wiley and Sons, Singapore, 2013.
Nicholson, A. R., O'Donnell, G. M., Wilkinson, M. E., and Quinn, P. F.: The potential of runoff attenuation features as a Natural Flood Management approach, J. Flood Risk Manage., 13, e12565, https://doi.org/10.1111/jfr3.12565, 2019.
Pattison, I., Lane, S. N., Hardy, R. J., and Reaney, S. M.: The role of tributary relative timing and sequencing in controlling large floods, Water Resour. Res., 50, 5444–5458, https://doi.org/10.1002/2013WR014067, 2014.
Pitt, M.: The Pitt Review, 2008. Learning lessons from the 2007 floods, available at:
https://webarchive.nationalarchives.gov.uk/20100812084907/http://archive.cabinetoffice.gov.uk/pittreview/_/media/assets/www.cabinetoffice.gov.uk/flooding_review/pitt_review_full pdf.pdf (last access: 24 September 2020), 2008.
Puttock, A., Graham, H. A., Cunliffe, A. M., Elliott, M., and Brazier, R. E.:
Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands, Sci. Total Environ., 576, 430–443, https://doi.org/10.1016/j.scitotenv.2016.10.122, 2017.
Puttock, A., Graham, H. A., Carless, D., and Brazier, R.: Sediment and nutrient storage in a beaver engineered wetland, Earth Surf. Proc. Land., 43, 2358–2370, https://doi.org/10.1002/esp.4398, 2018.
Quinn, P., O'Donnell, G., Nicholson, A., Wilkinson, M., Owen, G., Jonczyk,
J., Barber, N., Hardwick, N., and Davies, G.: Potential use of runoff attenuation features in small rural catchments for flood mitigation:
evidence from Belford, Powburn and Hepscott, Joint Newcastle University,
Royal Haskoning and Environment Agency report, available at: https://research.ncl.ac.uk/proactive/belford/newcastlenfmrafreport/reportpdf/June NFM RAF Report.pdf (last access: 16 July 2020), 2013.
UK Government: RP33: Large leaky woody dams, available at:
https://www.gov.uk/countryside-stewardship-grants/rp33-large-leaky-woody-dams
(last access: 13 July 2020), 2017.
World Wildlife Fund: The Flood Green Guide. Natural and Nature-Based Flood
Management: A Green Guide, available at:
https://c402277.ssl.cf1.rackcdn.com/publications/1058/files/original/WWF_Flood_Green_Guide_FINAL.pdf?1495628174
(last access: 24 September 2020), 2016.
Short summary
With growing support for nature-based solutions to reduce flooding by local communities, government authorities and international organisations, it is still important to improve how we assess risk reduction. We demonstrate an efficient, simplified 1D network model that allows us to explore the
whole-systemresponse of numerous leaky barriers placed in different stream networks, whilst considering utilisation, synchronisation effects and cascade failure, and we provide advice on their siting.
With growing support for nature-based solutions to reduce flooding by local communities,...
Altmetrics
Final-revised paper
Preprint