Articles | Volume 20, issue 10
https://doi.org/10.5194/nhess-20-2567-2020
https://doi.org/10.5194/nhess-20-2567-2020
Research article
 | 
01 Oct 2020
Research article |  | 01 Oct 2020

A risk-based network analysis of distributed in-stream leaky barriers for flood risk management

Barry Hankin, Ian Hewitt, Graham Sander, Federico Danieli, Giuseppe Formetta, Alissa Kamilova, Ann Kretzschmar, Kris Kiradjiev, Clint Wong, Sam Pegler, and Rob Lamb

Related authors

The importance of retention times in Natural Flood Management interventions
Elizabeth Follett, Keith Beven, Barry Hankin, David Mindham, and Nick Chappell
Proc. IAHS, 385, 197–201, https://doi.org/10.5194/piahs-385-197-2024,https://doi.org/10.5194/piahs-385-197-2024, 2024
Short summary
UPH Problem 20 – reducing uncertainty in model prediction: a model invalidation approach based on a Turing-like test
Keith Beven, Trevor Page, Paul Smith, Ann Kretzschmar, Barry Hankin, and Nick Chappell
Proc. IAHS, 385, 129–134, https://doi.org/10.5194/piahs-385-129-2024,https://doi.org/10.5194/piahs-385-129-2024, 2024
Short summary
A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage
Peter Metcalfe, Keith Beven, Barry Hankin, and Rob Lamb
Hydrol. Earth Syst. Sci., 22, 2589–2605, https://doi.org/10.5194/hess-22-2589-2018,https://doi.org/10.5194/hess-22-2589-2018, 2018
Short summary

Related subject area

Hydrological Hazards
Drought propagation in high-latitude catchments: insights from a 60-year analysis using standardized indices
Claudia Teutschbein, Thomas Grabs, Markus Giese, Andrijana Todorović, and Roland Barthel
Nat. Hazards Earth Syst. Sci., 25, 2541–2564, https://doi.org/10.5194/nhess-25-2541-2025,https://doi.org/10.5194/nhess-25-2541-2025, 2025
Short summary
Brief communication: Hydrological and hydraulic investigation of the extreme September 2024 flood on the Lamone River in Emilia-Romagna, Italy
Alessia Ferrari, Giulia Passadore, Renato Vacondio, Luca Carniello, Mattia Pivato, Elena Crestani, Francesco Carraro, Francesca Aureli, Sara Carta, Francesca Stumpo, and Paolo Mignosa
Nat. Hazards Earth Syst. Sci., 25, 2473–2479, https://doi.org/10.5194/nhess-25-2473-2025,https://doi.org/10.5194/nhess-25-2473-2025, 2025
Short summary
Improving pluvial flood simulations with a multi-source digital elevation model super-resolution method
Yue Zhu, Paolo Burlando, Puay Yok Tan, Christian Geiß, and Simone Fatichi
Nat. Hazards Earth Syst. Sci., 25, 2271–2286, https://doi.org/10.5194/nhess-25-2271-2025,https://doi.org/10.5194/nhess-25-2271-2025, 2025
Short summary
It could have been much worse: spatial counterfactuals of the July 2021 flood in the Ahr Valley, Germany
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025,https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Rapid high-resolution impact-based flood early warning is possible with RIM2D: a showcase for the 2023 pluvial flood in Braunschweig
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025,https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary

Cited articles

Addy, S. and Wilkinson, M.: An assessment of engineered log jam structures in response to a flood event in an upland gravel-bed river, Earth Surf. Proc. Land., 1, 1658–1670, https://doi.org/10.1002/esp.3936, 2016. 
Addy, S. and Wilkinson, M.: Representing natural and artificial in-channel large wood in numerical hydraulic and hydrological models, WIREs Water, 6, e1389, https://doi.org/10.1002/wat2.1389, 2019. 
Bridges, T. S., Bourne, E. M., King, J. K., Kuzmitski, H. K., Moynihan, E. B., and Suedel, B. C.: Engineering With Nature: an atlas, ERDC/EL SR-18-8, US Army Engineer Research and Development Center, Vicksburg, MS, https://doi.org/10.21079/11681/27929, 2018. 
Burgess-Gamble, L., Ngai, R., Wilkinson, M., Nisbet, T., Pontee, N., Harvey, R., Kipling, K., Addy, S., Rose, S., Maslen, S., Jay, H., Nicholson, A., Page, T., Jonczyk, J., and Quin, P.: Working with Natural Processes – Evidence Directory, Environment Agency Project SC150005, available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/681411/Working_with_natural_processes_evidence_directory.pdf (last access: 24 September 2020), 2017. 
Butler, D. R. and Malanson, G. P.: The geomorphic influences of beaver dams and failures of beaver dams, Geomorphology, 71, 48–60, 2005. 
Download
Short summary
With growing support for nature-based solutions to reduce flooding by local communities, government authorities and international organisations, it is still important to improve how we assess risk reduction. We demonstrate an efficient, simplified 1D network model that allows us to explore the whole-system response of numerous leaky barriers placed in different stream networks, whilst considering utilisation, synchronisation effects and cascade failure, and we provide advice on their siting.
Share
Altmetrics
Final-revised paper
Preprint