Articles | Volume 20, issue 5
https://doi.org/10.5194/nhess-20-1463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-1463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Hurricane Dorian: automated near-real-time mapping of the “unprecedented” flooding in the Bahamas using synthetic aperture radar
Diego Cerrai
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
Connecticut, Storrs, CT 06279, USA
Qing Yang
College of Civil Engineering and Architecture, Guangxi University,
Nanning, Guangxi, 530004, China
Xinyi Shen
Department of Civil and Environmental Engineering, University of
Connecticut, Storrs, CT 06279, USA
Marika Koukoula
Department of Civil and Environmental Engineering, University of
Connecticut, Storrs, CT 06279, USA
Emmanouil N. Anagnostou
Department of Civil and Environmental Engineering, University of
Connecticut, Storrs, CT 06279, USA
Related authors
H. Wedegedara, C. Witharana, D. Joshi, D. Cerrai, and R. Fahey
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-M-2-2022, 217–224, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022, 2022
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-173, https://doi.org/10.5194/nhess-2023-173, 2023
Preprint under review for NHESS
Short summary
Short summary
~820 km2 of agricultural land is inundated in central Greece due to storm Daniel flood. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimated more than 14,000 ornithoids and 21,500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-226, https://doi.org/10.5194/hess-2023-226, 2023
Revised manuscript under review for HESS
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels, which are critical for the estimation of future floods. The proposed model, named TEmperature-dependent Non-Asymptotic statistical model for eXtreme return levels (TENAX), incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data is available.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
EGUsphere, https://doi.org/10.5194/egusphere-2023-1969, https://doi.org/10.5194/egusphere-2023-1969, 2023
Short summary
Short summary
Due to climate change, flooding is expected to become more frequent globally in the coming decades. Locally, storm-induced channel geometry changes can drastically affect flood hazards, yet rivers are mostly treated as static elements in flood studies. This study tried to gain an understanding of the effects of major storm events on future flood hazards, promoting a framework for incorporating channel conveyance adjustments into flood hazard assessment.
Mariam Khanam, Giulia Sofia, Wilmalis Rodriguez, Efthymios I. Nikolopoulos, Binghao Lu, Dongjin Song, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-120, https://doi.org/10.5194/nhess-2023-120, 2023
Preprint under review for NHESS
Short summary
Short summary
This study comprehends and predicts the socioeconomic effects of floods in the High Mountain Asia (HMA) region. We proposed a machine-learning strategy for mapping flood damages. We predicted the Lifeyears Index (LYI), which quantifies the financial cost and loss of life caused by floods, using variables including climate, geomorphology, and population. The study's overall goal is to offer useful information on flood susceptibility and subsequent risk mapping in the HMA region.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-69, https://doi.org/10.5194/nhess-2023-69, 2023
Preprint under review for NHESS
Short summary
Short summary
A framework combines a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference Normalized Burning Ratio (dNBR)) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under future projected climate conditions.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
H. Wedegedara, C. Witharana, D. Joshi, D. Cerrai, and R. Fahey
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-M-2-2022, 217–224, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022, https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022, 2022
Zhi Li, Mengye Chen, Shang Gao, Jonathan J. Gourley, Tiantian Yang, Xinyi Shen, Randall Kolar, and Yang Hong
Earth Syst. Sci. Data, 13, 3755–3766, https://doi.org/10.5194/essd-13-3755-2021, https://doi.org/10.5194/essd-13-3755-2021, 2021
Short summary
Short summary
This dataset is a compilation of multi-sourced flood records, retrieved from official reports, instruments, and crowdsourcing data since 1900. This study utilizes the flood database to analyze flood seasonality within major basins and socioeconomic impacts over time. It is anticipated that this dataset can support a variety of flood-related research, such as validation resources for hydrologic models, hydroclimatic studies, and flood vulnerability analysis across the United States.
Xiangjin Meng, Kebiao Mao, Fei Meng, Jiancheng Shi, Jiangyuan Zeng, Xinyi Shen, Yaokui Cui, Lingmei Jiang, and Zhonghua Guo
Earth Syst. Sci. Data, 13, 3239–3261, https://doi.org/10.5194/essd-13-3239-2021, https://doi.org/10.5194/essd-13-3239-2021, 2021
Short summary
Short summary
In order to improve the accuracy of China's regional agricultural drought monitoring and climate change research, we produced a long-term series of soil moisture products by constructing a time and depth correction model for three soil moisture products with the help of ground observation data. The spatial resolution is improved by building a spatial weight decomposition model, and validation indicates that the new product can meet application needs.
Mariam Khanam, Giulia Sofia, Marika Koukoula, Rehenuma Lazin, Efthymios I. Nikolopoulos, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 21, 587–605, https://doi.org/10.5194/nhess-21-587-2021, https://doi.org/10.5194/nhess-21-587-2021, 2021
Short summary
Short summary
Compound extremes correspond to events with multiple concurrent or consecutive drivers, leading to substantial impacts such as infrastructure failure. In many risk assessment and design applications, however, multihazard scenario events are ignored. In this paper, we present a general framework to investigate current and future climate compound-event flood impact on coastal critical infrastructures such as power grid substations.
Bing Zhao, Kebiao Mao, Yulin Cai, Jiancheng Shi, Zhaoliang Li, Zhihao Qin, Xiangjin Meng, Xinyi Shen, and Zhonghua Guo
Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, https://doi.org/10.5194/essd-12-2555-2020, 2020
Short summary
Short summary
Land surface temperature is a key variable for climate and ecological environment research. We reconstructed a land surface temperature dataset (2003–2017) to take advantage of the ground observation site through building a reconstruction model which overcomes the effects of cloud. The reconstructed dataset exhibited significant improvements and can be used for the spatiotemporal evaluation of land surface temperature and for high-temperature and drought-monitoring studies.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Efthymios I. Nikolopoulos, Elisa Destro, Md Abul Ehsan Bhuiyan, Marco Borga, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 18, 2331–2343, https://doi.org/10.5194/nhess-18-2331-2018, https://doi.org/10.5194/nhess-18-2331-2018, 2018
Short summary
Short summary
Debris flows, following wildfires, constitute a significant threat to downstream populations and infrastructure. Therefore, developing measures to reduce the vulnerability of local communities to debris flows is of paramount importance. This work proposes a new model for predicting post-fire debris flow occurrence on a regional scale and demonstrates that the proposed model has notably higher skill than the currently used approaches.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Pere Quintana-Seguí, and Anaïs Barella-Ortiz
Hydrol. Earth Syst. Sci., 22, 1371–1389, https://doi.org/10.5194/hess-22-1371-2018, https://doi.org/10.5194/hess-22-1371-2018, 2018
Short summary
Short summary
This study investigates the use of a nonparametric model for combining multiple global precipitation datasets and characterizing estimation uncertainty. Inputs to the model included three satellite precipitation products, an atmospheric reanalysis precipitation dataset, satellite-derived near-surface daily soil moisture data, and terrain elevation. We evaluated the technique based on high-resolution reference precipitation data and further used generated ensembles to force a hydrological model.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
Yiwen Mei, Xinyi Shen, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2277–2299, https://doi.org/10.5194/hess-21-2277-2017, https://doi.org/10.5194/hess-21-2277-2017, 2017
H. Seyyedi, E. N. Anagnostou, E. Beighley, and J. McCollum
Hydrol. Earth Syst. Sci., 18, 5077–5091, https://doi.org/10.5194/hess-18-5077-2014, https://doi.org/10.5194/hess-18-5077-2014, 2014
Short summary
Short summary
The paper presents a methodology for using global precipitation products from satellite remote sensing to error-correct and downscale global atmospheric reanalysis precipitation data sets. It is shown that streamflow simulations from the satellite-adjusted precipitation reanalysis give similar statistics to the ones derived by high-resolution ground-based radar rainfall data sets. This approach can be applied globally to derive improved flood frequency maps over data-poor areas.
E. Picciotti, F. S. Marzano, E. N. Anagnostou, J. Kalogiros, Y. Fessas, A. Volpi, V. Cazac, R. Pace, G. Cinque, L. Bernardini, K. De Sanctis, S. Di Fabio, M. Montopoli, M. N. Anagnostou, A. Telleschi, E. Dimitriou, and J. Stella
Nat. Hazards Earth Syst. Sci., 13, 1229–1241, https://doi.org/10.5194/nhess-13-1229-2013, https://doi.org/10.5194/nhess-13-1229-2013, 2013
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Shallow and deep learning of extreme rainfall events from convective atmospheres
Linking reported drought impacts with drought indices, water scarcity and aridity: the case of Kenya
Future heat extremes and impacts in a convection-permitting climate ensemble over Germany
Assessment of subseasonal-to-seasonal (S2S) ensemble extreme precipitation forecast skill over Europe
A long record of European windstorm losses and its comparison to standard climate indices
Assimilation of Meteosat Third Generation (MTG) Lightning Imager (LI) pseudo-observations in AROME-France – proof of concept
A phytoplankton bloom caused by the super cyclonic storm Amphan in the central Bay of Bengal
Apparent contradiction in the projected climatic water balance for Austria: wetter conditions on average versus higher probability of meteorological droughts
A decrease in rockfall probability under climate change conditions in Germany
Trends in heat and cold wave risks for the Italian Trentino-Alto Adige region from 1980 to 2018
Brief communication: Towards a universal formula for the probability of tornadoes
Propagation from meteorological to hydrological drought in the Horn of Africa using both standardized and threshold-based indices
Wind as a natural hazard in Poland
Review article: A European perspective on wind and storm damage – from the meteorological background to index-based approaches to assess impacts
The 2018 west-central European drought projected in a warmer climate: how much drier can it get?
The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective
Characteristics of hail hazard in South Africa based on satellite detection of convective storms
Effect of extreme El Niño events on the precipitation of Ecuador
Rescuing historical weather observations improves quantification of severe windstorm risks
Development and evaluation of a method to identify potential release areas of snow avalanches based on watershed delineation
Heat wave monitoring over West African cities: uncertainties, characterization and recent trends
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Climatological occurrences of hail and tornado associated with mesoscale convective systems in the United States
Variations of extreme precipitation events with sub-daily data: a case study in the Ganjiang River basin
Human influence on growing-period frosts like in early April 2021 in central France
Improving the predictability of the Qendresa Medicane by the assimilation of conventional and atmospheric motion vector observations. Storm-scale analysis and short-range forecast
Investigation of an extreme rainfall event during 8–12 December 2018 over central Vietnam – Part 1: Analysis and cloud-resolving simulation
Increased spatial extent and likelihood of compound long-duration dry and hot events in China, 1961–2014
Return levels of extreme European windstorms, their dependency on the NAO, and potential future risks
Validating a tailored drought risk assessment methodology: drought risk assessment in local Papua New Guinea regions
Seasonal fire danger forecasts for supporting fire prevention management in an eastern Mediterranean environment: the case of Attica, Greece
Uncovering the veil of night light changes in times of catastrophe
Time of emergence of compound events: contribution of univariate and dependence properties
Skillful decadal prediction of German Bight storm activity
Comparison of two nationwide lightning location systems and characteristics of could-to-ground lightning in China
Droughts in Germany: performance of regional climate models in reproducing observed characteristics
Analysis of the relationship between yield in cereals and remotely sensed fAPAR in the framework of monitoring drought impacts in Europe
Meteorological, impact and climate perspectives of the 29 June 2017 heavy precipitation event in the Berlin metropolitan area
Using high-resolution global climate models from the PRIMAVERA project to create a European winter windstorm event set
Real-time urban rainstorm and waterlogging disaster detection by Weibo users
Sensitivity of simulating Typhoon Haiyan (2013) using WRF: the role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions
A satellite lightning observation operator for storm-scale numerical weather prediction
Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management
Idealized simulations of Mei-yu rainfall in Taiwan under uniform southwesterly flow using a cloud-resolving model
Hotspots for warm and dry summers in Romania
Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation
Tropical cyclone storm surge probabilities for the east coast of the United States: a cyclone-based perspective
Hydrometeorological analysis of the 12 and 13 September 2019 widespread flash flooding in eastern Spain
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023, https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
Short summary
This work shows how local observations can improve precipitation forecasting for severe weather events. The improvement lasts for at least 6 h of forecast.
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023, https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023, https://doi.org/10.5194/nhess-23-2873-2023, 2023
Short summary
Short summary
Using a convection-permitting regional climate ensemble, the magnitude of heat waves (HWs) over Germany is projected to increase by 26 % (100 %) in a 2 °C (3 °C) warmer world. The increase is strongest in late summer, relatively homogeneous in space, and accompanied by increasing variance in HW length. Tailored parameters to climate adaptation to heat revealed dependency on major landscapes, and a nonlinear, exponential increase for parameters characterizing strong heat stress is expected.
Pauline Rivoire, Olivia Martius, Philippe Naveau, and Alexandre Tuel
Nat. Hazards Earth Syst. Sci., 23, 2857–2871, https://doi.org/10.5194/nhess-23-2857-2023, https://doi.org/10.5194/nhess-23-2857-2023, 2023
Short summary
Short summary
Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties. Some of its impacts can be mitigated if reliable forecasts and warnings are available. In this article, we assess the capacity of the precipitation forecast provided by ECMWF to predict heavy precipitation events on a subseasonal-to-seasonal (S2S) timescale over Europe. We find that the forecast skill of such events is generally higher in winter than in summer.
Stephen Cusack
Nat. Hazards Earth Syst. Sci., 23, 2841–2856, https://doi.org/10.5194/nhess-23-2841-2023, https://doi.org/10.5194/nhess-23-2841-2023, 2023
Short summary
Short summary
The link from European windstorm research findings to insurance applications is strengthened by a new storm loss history spanning 1950 to 2022. It is based on ERA5 winds, together with long-term trends from observed gusts for improved validation. Correlations between losses and climate indices are around 0.4 for interannual variations, rising to 0.7 for decadal variations. A significant divergence between standard climate indices and storm losses over the past 20 years needs further research.
Felix Erdmann, Olivier Caumont, and Eric Defer
Nat. Hazards Earth Syst. Sci., 23, 2821–2840, https://doi.org/10.5194/nhess-23-2821-2023, https://doi.org/10.5194/nhess-23-2821-2023, 2023
Short summary
Short summary
This work develops a novel lightning data assimilation (LDA) technique to make use of Meteosat Third Generation (MTG) Lightning Imager (LI) data in a regional, convection-permitting numerical weather prediction model. The approach combines statistical Bayesian and 3-dimensional variational methods. Our LDA can promote missing convection and suppress spurious convection in the initial state of the model, and it has similar skill to the operational radar data assimilation for rainfall forecasts.
Haojie Huang, Linfei Bai, Hao Shen, Xiaoqi Ding, Rui Wang, and Haibin Lü
Nat. Hazards Earth Syst. Sci., 23, 2807–2819, https://doi.org/10.5194/nhess-23-2807-2023, https://doi.org/10.5194/nhess-23-2807-2023, 2023
Short summary
Short summary
The super cyclonic storm Amphan occurred in the central Bay of Bengal in May 2020, and a phytoplankton bloom occurred. Its dynamic mechanism was first researched. An inertial oscillation with a 2 d period appeared and lasted for approximately 2 weeks. With the weakened thermocline and thinner barrier layer thickness, nitrate and Chl a were uplifted to the upper ocean by upwelling. With the high photosynthetically available radiation, a phytoplankton bloom occurred.
Klaus Haslinger, Wolfgang Schöner, Jakob Abermann, Gregor Laaha, Konrad Andre, Marc Olefs, and Roland Koch
Nat. Hazards Earth Syst. Sci., 23, 2749–2768, https://doi.org/10.5194/nhess-23-2749-2023, https://doi.org/10.5194/nhess-23-2749-2023, 2023
Short summary
Short summary
Future changes of surface water availability in Austria are investigated. Alterations of the climatic water balance and its components are analysed along different levels of elevation. Results indicate in general wetter conditions with particular shifts in timing of the snow melt season. On the contrary, an increasing risk for summer droughts is apparent due to increasing year-to-year variability and decreasing snow melt under future climate conditions.
Katrin M. Nissen, Martina Wilde, Thomas M. Kreuzer, Annika Wohlers, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 23, 2737–2748, https://doi.org/10.5194/nhess-23-2737-2023, https://doi.org/10.5194/nhess-23-2737-2023, 2023
Short summary
Short summary
The effect of climate change on rockfall probability in the German low mountain regions is investigated in observations and in 23 different climate scenario simulations. Under a pessimistic greenhouse gas scenario, the simulations suggest a decrease in rockfall probability. This reduction is mainly caused by a decrease in the number of freeze–thaw cycles due to higher atmospheric temperatures.
Martin Morlot, Simone Russo, Luc Feyen, and Giuseppe Formetta
Nat. Hazards Earth Syst. Sci., 23, 2593–2606, https://doi.org/10.5194/nhess-23-2593-2023, https://doi.org/10.5194/nhess-23-2593-2023, 2023
Short summary
Short summary
We analyzed recent trends in heat and cold wave (HW and CW) risk in a European alpine region, defined by a time and spatially explicit framework to quantify hazard, vulnerability, exposure, and risk. We find a statistically significant increase in HW hazard and exposure. A decrease in vulnerability is observed except in the larger cities. HW risk increased in 40 % of the region, especially in highly populated areas. Stagnant CW hazard and declining vulnerability result in reduced CW risk.
Roberto Ingrosso, Piero Lionello, Mario Marcello Miglietta, and Gianfausto Salvadori
Nat. Hazards Earth Syst. Sci., 23, 2443–2448, https://doi.org/10.5194/nhess-23-2443-2023, https://doi.org/10.5194/nhess-23-2443-2023, 2023
Short summary
Short summary
Tornadoes represent disruptive and dangerous weather events. The prediction of these small-scale phenomena depends on the resolution of present weather forecast and climatic projections. This work discusses the occurrence of tornadoes in terms of atmospheric variables and provides analytical expressions for their conditional probability. These formulas represent a tool for tornado alert systems and for estimating the future evolution of tornado frequency and intensity in climate projections.
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, https://doi.org/10.5194/nhess-23-2365-2023, 2023
Short summary
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
Tadeusz Chmielewski and Piotr Bońkowski
EGUsphere, https://doi.org/10.5194/egusphere-2023-1359, https://doi.org/10.5194/egusphere-2023-1359, 2023
Short summary
Short summary
Poland is going to construct some important structures. So, knowledge about strong and extreme winds in our country is important for enginners who will design these structures. The authors’ study of maximum wind speeds in Poland is based on a set of annual maximum gust wind speeds measured at 39 meteorological stations from 1971 to 2010 (plotted on extremal probability paper), tornado reports collected from 1899 to 2019, and estimation of wind speeds of derechos and recent tornadoes in Poland.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Emma E. Aalbers, Erik van Meijgaard, Geert Lenderink, Hylke de Vries, and Bart J. J. M. van den Hurk
Nat. Hazards Earth Syst. Sci., 23, 1921–1946, https://doi.org/10.5194/nhess-23-1921-2023, https://doi.org/10.5194/nhess-23-1921-2023, 2023
Short summary
Short summary
To examine the impact of global warming on west-central European droughts, we have constructed future analogues of recent summers. Extreme droughts like 2018 further intensify, and the local temperature rise is much larger than in most summers. Years that went hardly noticed in the present-day climate may emerge as very dry and hot in a warmer world. The changes can be directly linked to real-world events, which makes the results very tangible and hence useful for climate change communication.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Heinz Jürgen Punge, Kristopher M. Bedka, Michael Kunz, Sarah D. Bang, and Kyle F. Itterly
Nat. Hazards Earth Syst. Sci., 23, 1549–1576, https://doi.org/10.5194/nhess-23-1549-2023, https://doi.org/10.5194/nhess-23-1549-2023, 2023
Short summary
Short summary
We have estimated the probability of hail events in South Africa using a combination of satellite observations, reanalysis, and insurance claims data. It is found that hail is mainly concentrated in the southeast. Multivariate stochastic modeling of event characteristics, such as multiple events per day or track dimensions, provides an event catalogue for 25 000 years. This can be used to estimate hail risk for return periods of 200 years, as required by insurance companies.
Dirk R. Thielen, Paolo Ramoni-Perazzi, Ezequiel Zamora-Ledezma, Mary L. Puche, Marco Marquez, José I. Quintero, Wilmer Rojas, Alberto Quintero, Guillermo Bianchi, Irma A. Soto-Werschitz, and Marco Aurelio Arizapana-Almonacid
Nat. Hazards Earth Syst. Sci., 23, 1507–1527, https://doi.org/10.5194/nhess-23-1507-2023, https://doi.org/10.5194/nhess-23-1507-2023, 2023
Short summary
Short summary
Extreme El Niño events are unique in their strong impacts and differ from other El Niños. In Ecuador, extreme eastern Pacific El Niño and coastal El Niño generate dangerous precipitation anomalies, particularly in areas with a high natural seasonality index, steep terrain, and a close proximity to the coast. These findings can help develop effective strategies to reduce vulnerability to potential increases in extreme El Niño frequency and intensity.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Cécile Duvillier, Nicolas Eckert, Guillaume Evin, and Michael Deschâtres
Nat. Hazards Earth Syst. Sci., 23, 1383–1408, https://doi.org/10.5194/nhess-23-1383-2023, https://doi.org/10.5194/nhess-23-1383-2023, 2023
Short summary
Short summary
This study develops a method that identifies individual potential release areas (PRAs) of snow avalanches based on terrain analysis and watershed delineation and demonstrates its efficiency in the French Alps context using an extensive cadastre of past avalanche limits. Results may contribute to better understanding local avalanche hazard. The work may also foster the development of more efficient PRA detection methods based on a rigorous evaluation scheme.
Cedric Gacial Ngoungue Langue, Christophe Lavaysse, Mathieu Vrac, and Cyrille Flamant
Nat. Hazards Earth Syst. Sci., 23, 1313–1333, https://doi.org/10.5194/nhess-23-1313-2023, https://doi.org/10.5194/nhess-23-1313-2023, 2023
Short summary
Short summary
Heat waves (HWs) are climatic hazards that affect the planet. We assess here uncertainties encountered in the process of HW detection and analyse their recent trends in West Africa using reanalysis data. Three types of uncertainty have been investigated. We identified 6 years with higher frequency of HWs, possibly due to higher sea surface temperatures in the equatorial Atlantic. We noticed an increase in HW characteristics during the last decade, which could be a consequence of climate change.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-39, https://doi.org/10.5194/nhess-2023-39, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as wind, extreme rainfall and hail. We find that cold-frontal cell days are associated with higher cell frequency and that cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storms and improved forecasting.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-16, https://doi.org/10.5194/nhess-2023-16, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistics of MCS-related hazard production is presented.
Guangxu Liu, Aicun Xiang, Zhiwei Wan, Yang Zhou, Jie Wu, Yuandong Wang, and Sichen Lin
Nat. Hazards Earth Syst. Sci., 23, 1139–1155, https://doi.org/10.5194/nhess-23-1139-2023, https://doi.org/10.5194/nhess-23-1139-2023, 2023
Short summary
Short summary
This paper focuses on investigating the thresholds of extreme precipitation using sub-daily records in the Ganjiang River basin using gamma distribution, the L-moment method and the Mann–Kendall (M–K) test. The main findings are (1) run 3 (36 h) precipitation events would be key events for flood monitoring. (2)The intensity and the occasional probability of extreme precipitation will increase in spring in the future in stations like Yifeng, Zhangshu and Ningdu.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Diego S. Carrió
Nat. Hazards Earth Syst. Sci., 23, 847–869, https://doi.org/10.5194/nhess-23-847-2023, https://doi.org/10.5194/nhess-23-847-2023, 2023
Short summary
Short summary
The accurate prediction of medicanes still remains a key challenge in the scientific community because of their poor predictability. In this study we assimilate different observations to improve the trajectory and intensity forecasts of the Qendresa Medicane. Results show the importance of using data assimilation techniques to improve the estimate of the atmospheric flow in the upper-level atmosphere, which has been shown to be key to improve the prediction of Qendresa.
Chung-Chieh Wang and Duc Van Nguyen
Nat. Hazards Earth Syst. Sci., 23, 771–788, https://doi.org/10.5194/nhess-23-771-2023, https://doi.org/10.5194/nhess-23-771-2023, 2023
Short summary
Short summary
A record-breaking rainfall event over central Vietnam is investigated. Key factors include the combined effect of northeasterly wind, easterly wind blowing to central Vietnam from the western North Pacific (WNP), southeasterly wind, local topography, and high sea surface temperature (SST) over WNP and the South China Sea (SCS). The cloud-resolving storm simulator (CReSS) is applied to simulate this event. The results show that the model mostly captured the quantitative rainfall of this event.
Yi Yang, Douglas Maraun, Albert Ossó, and Jianping Tang
Nat. Hazards Earth Syst. Sci., 23, 693–709, https://doi.org/10.5194/nhess-23-693-2023, https://doi.org/10.5194/nhess-23-693-2023, 2023
Short summary
Short summary
This study quantifies the spatiotemporal variation and characteristics of compound long-duration dry and hot events in China over the 1961–2014 period. The results show that over the past few decades, there has been a substantial increase in the frequency of these compound events across most parts of China, which is dominated by rising temperatures. We detect a strong increase in the spatially contiguous areas experiencing concurrent dry and hot conditions.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-22, https://doi.org/10.5194/nhess-2023-22, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. Largest gusts are found across NW Europe and these are larger when the North Atlantic Oscillation is positive. Using future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Isabella Aitkenhead, Yuriy Kuleshov, Jessica Bhardwaj, Zhi-Weng Chua, Chayn Sun, and Suelynn Choy
Nat. Hazards Earth Syst. Sci., 23, 553–586, https://doi.org/10.5194/nhess-23-553-2023, https://doi.org/10.5194/nhess-23-553-2023, 2023
Short summary
Short summary
A case study assessing drought risk in Papua New Guinea (PNG) provinces for retrospective years (2014–2020) was conducted to demonstrate the development and validate the application of a tailored and semi-dynamic drought risk assessment methodology. Hazard, vulnerability, and exposure indicators appropriate for monitoring drought in PNG provinces were selected. The risk assessment accurately indicated a strong drought event in 2015–2016 and a moderate event in 2019.
Anna Karali, Konstantinos V. Varotsos, Christos Giannakopoulos, Panagiotis P. Nastos, and Maria Hatzaki
Nat. Hazards Earth Syst. Sci., 23, 429–445, https://doi.org/10.5194/nhess-23-429-2023, https://doi.org/10.5194/nhess-23-429-2023, 2023
Short summary
Short summary
As climate change leads to more frequent and severe fires, forecasting fire danger before fire season begins can support fire management. This study aims to provide high-resolution probabilistic seasonal fire danger forecasts in a Mediterranean environment and assess their ability to capture years with increased fire activity. Results indicate that forecasts are skillful in predicting above-normal fire danger conditions and can be exploited by regional authorities in fire prevention management.
Vincent Schippers and Wouter Botzen
Nat. Hazards Earth Syst. Sci., 23, 179–204, https://doi.org/10.5194/nhess-23-179-2023, https://doi.org/10.5194/nhess-23-179-2023, 2023
Short summary
Short summary
Researchers studying economic impacts of natural disasters increasingly use night light as a proxy for local economic activity, when socioeconomic data are unavailable. But often it is unclear what changes in light intensity represent in the context of disasters. We study this in detail for Hurricane Katrina and find a strong correlation with building damage and changes in population and employment. We conclude that night light data are useful to study local impacts of natural disasters.
Bastien François and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 23, 21–44, https://doi.org/10.5194/nhess-23-21-2023, https://doi.org/10.5194/nhess-23-21-2023, 2023
Short summary
Short summary
Compound events (CEs) result from a combination of several climate phenomena. In this study, we propose a new methodology to assess the time of emergence of CE probabilities and to quantify the contribution of marginal and dependence properties of climate phenomena to the overall CE probability changes. By applying our methodology to two case studies, we show the importance of considering changes in both marginal and dependence properties for future risk assessments related to CEs.
Daniel Krieger, Sebastian Brune, Patrick Pieper, Ralf Weisse, and Johanna Baehr
Nat. Hazards Earth Syst. Sci., 22, 3993–4009, https://doi.org/10.5194/nhess-22-3993-2022, https://doi.org/10.5194/nhess-22-3993-2022, 2022
Short summary
Short summary
Accurate predictions of storm activity are desirable for coastal management. We investigate how well a climate model can predict storm activity in the German Bight 1–10 years in advance. We let the model predict the past, compare these predictions to observations, and analyze whether the model is doing better than simple statistical predictions. We find that the model generally shows good skill for extreme periods, but the prediction timeframes with good skill depend on the type of prediction.
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-255, https://doi.org/10.5194/nhess-2022-255, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
It is the first comparison and assessment of two Chinese nationwide lightning location systems. The spatial and temporal distribution of long-term lightning activity in China is analyzed, indicating that low latitude, undulating terrain, seaside, and humid surface are favorable factors for lightning occurrence. What is interesting is that high cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 22, 3875–3895, https://doi.org/10.5194/nhess-22-3875-2022, https://doi.org/10.5194/nhess-22-3875-2022, 2022
Short summary
Short summary
The influence of model resolution and settings on drought reproduction in Germany between 1980–2009 is investigated here. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Gridded observational data sets serve as reference. Regarding the reproduction of drought characteristics, all models perform on a similar level, while for trends, only the modified model produces reliable outputs.
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022, https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Short summary
We evaluated the ability of vegetation indices derived from satellite data to capture annual yield variations across Europe. The strength of the relationship varies throughout the year, with March–October representing the optimal period in most cases. Spatial differences were also observed, with the best results obtained in the Mediterranean regions.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Julia F. Lockwood, Galina S. Guentchev, Alexander Alabaster, Simon J. Brown, Erika J. Palin, Malcolm J. Roberts, and Hazel E. Thornton
Nat. Hazards Earth Syst. Sci., 22, 3585–3606, https://doi.org/10.5194/nhess-22-3585-2022, https://doi.org/10.5194/nhess-22-3585-2022, 2022
Short summary
Short summary
We describe how we developed a set of 1300 years' worth of European winter windstorm footprints, using a multi-model ensemble of high-resolution global climate models, for use by the insurance industry to analyse windstorm risk. The large amount of data greatly reduces uncertainty on risk estimates compared to using shorter observational data sets and also allows the relationship between windstorm risk and predictable large-scale climate indices to be quantified.
Haoran Zhu, Priscilla Obeng Oforiwaa, and Guofeng Su
Nat. Hazards Earth Syst. Sci., 22, 3349–3359, https://doi.org/10.5194/nhess-22-3349-2022, https://doi.org/10.5194/nhess-22-3349-2022, 2022
Short summary
Short summary
We promote a new method to detect waterlogging disasters. Residents are directly affected by waterlogging, and we can collect their comments on social networks. Compared to official-authentication and personal-certification users, the microblogs posted by general users can better show the intensity and timing of waterlogging. Through text and sentiment features, we can separate microblogs with waterlogging information from other ones and mark high-risk regions on maps.
Rafaela Jane Delfino, Gerry Bagtasa, Kevin Hodges, and Pier Luigi Vidale
Nat. Hazards Earth Syst. Sci., 22, 3285–3307, https://doi.org/10.5194/nhess-22-3285-2022, https://doi.org/10.5194/nhess-22-3285-2022, 2022
Short summary
Short summary
We showed the effects of altering the choice of cumulus schemes, surface flux options, and spectral nudging with a high level of sensitivity to cumulus schemes in simulating an intense typhoon. We highlight the advantage of using an ensemble of cumulus parameterizations to take into account the uncertainty in simulating typhoons such as Haiyan in 2013. This study is useful in addressing the growing need to plan and prepare for as well as reduce the impacts of intense typhoons in the Philippines.
Pauline Combarnous, Felix Erdmann, Olivier Caumont, Éric Defer, and Maud Martet
Nat. Hazards Earth Syst. Sci., 22, 2943–2962, https://doi.org/10.5194/nhess-22-2943-2022, https://doi.org/10.5194/nhess-22-2943-2022, 2022
Short summary
Short summary
The objective of this study is to prepare the assimilation of satellite lightning data in the French regional numerical weather prediction system. The assimilation of lightning data requires an observation operator, based on empirical relationships between the lightning observations and a set of proxies derived from the numerical weather prediction system variables. We fit machine learning regression models to our data to yield those relationships and to investigate the best proxy for lightning.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Chung-Chieh Wang, Pi-Yu Chuang, Shi-Ting Chen, Dong-In Lee, and Kazuhisa Tsuboki
Nat. Hazards Earth Syst. Sci., 22, 1795–1817, https://doi.org/10.5194/nhess-22-1795-2022, https://doi.org/10.5194/nhess-22-1795-2022, 2022
Short summary
Short summary
In this study, cloud-resolving simulations are performed under idealized and uniform southwesterly flow direction and speed to investigate the rainfall regimes in the Mei-yu season and the role of complex mesoscale topography on rainfall without the influence of unwanted disturbances, including a low-Froude number regime where the thermodynamic effects and island circulation dominate, a high-Froude number regime where topographic rainfall in a flow-over scenario prevails, and a mixed regime.
Viorica Nagavciuc, Patrick Scholz, and Monica Ionita
Nat. Hazards Earth Syst. Sci., 22, 1347–1369, https://doi.org/10.5194/nhess-22-1347-2022, https://doi.org/10.5194/nhess-22-1347-2022, 2022
Short summary
Short summary
Here we have assessed the variability and trends of hot and dry summers in Romania. The length, spatial extent, and frequency of heat waves in Romania have increased significantly over the last 70 years, while no significant changes have been observed in the drought conditions. The increased frequency of heat waves, especially after the 1990s, could be partially explained by an increase in the geopotential height over the eastern part of Europe.
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Katherine L. Towey, James F. Booth, Alejandra Rodriguez Enriquez, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 22, 1287–1300, https://doi.org/10.5194/nhess-22-1287-2022, https://doi.org/10.5194/nhess-22-1287-2022, 2022
Short summary
Short summary
Coastal flooding due to storm surge from tropical cyclones is a significant hazard. The influence of tropical cyclone characteristics, including its proximity, intensity, path angle, and speed, on the magnitude of storm surge is examined along the eastern United States. No individual characteristic was found to be strongly related to how much surge occurred at a site, though there is an increased likelihood of high surge occurring when tropical cyclones are both strong and close to a location.
Arnau Amengual
Nat. Hazards Earth Syst. Sci., 22, 1159–1179, https://doi.org/10.5194/nhess-22-1159-2022, https://doi.org/10.5194/nhess-22-1159-2022, 2022
Short summary
Short summary
On 12 and 13 September 2019, a long-lasting heavy precipitation episode resulted in widespread flash flooding over eastern Spain. Well-organized and quasi-stationary convective structures impacted a vast area with rainfall amounts over 200 mm. The very dry initial soil moisture conditions resulted in a dampened hydrological response: until runoff thresholds were exceeded, infiltration-excess generation did not start. This threshold-based behaviour is explored through simple scaling theory.
Cited articles
Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and
streams, Science, 361, 585–588, 2018.
Chen, X., Shen, X., Li, H., Cui, Y., Liu, B., Fang, W., Yang, Q., and Hong,
Y.: Construct Channel Network Topology From Remote Sensing Images by
Morphology and Graph Analysis, IEEE Geosci. Remote S., https://doi.org/10.1109/LGRS.2019.2942107, accepted,
2019.
Chini, M., Hostache, R., Giustarini, L., and Matgen, P.: A hierarchical
split-based approach for parametric thresholding of SAR images: Flood
inundation as a test case, IEEE T. Geosci. Remote, 55, 6975–6988, 2017.
Cian, F., Marconcini, M., and Ceccato, P.: Normalized Difference Flood Index
for rapid flood mapping: Taking advantage of EO big data, Remote Sens.
Environ., 209, 712–730, 2018.
Covello, F., Battazza, F., Coletta, A., Lopinto, E., Fiorentino, C.,
Pietranera, L., Valentini, G., and Zoffoli, S.: COSMO-SkyMed an existing
opportunity for observing the Earth, J. Geodyn., 49,
171–180, 2010.
ESRI: Ocean [basemap], World Ocean Base, available at: https://www.arcgis.com/home/item.html?id=1e126e7520f9466c9ca28b8f28b5e500. (last access: 18 September 2019), 2014.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., and Seal, D.: The shuttle
radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J. P., Bates, P. D., and
Mason, D. C.: A change detection approach to flood mapping in urban areas
using TerraSAR-X, IEEE T. Geosci. Remote, 51,
2417–2430, 2012.
Hijmans, R. and University of California, Berkeley, Museum of Vertebrate
Zoology: Boundary, Bahamas, UC Berkeley, Museum of Vertebrate Zoology, available at:
http://purl.stanford.edu/gr421mg4744 (last access: 18 September 2019), 2015.
Horritt, M. S., Mason, D. C., Cobby, D. M., Davenport, I. J., and Bates, P. D.:
Waterline mapping in flooded vegetation from airborne SAR imagery, Remote
Sens. Environ., 85, 271–281, 2003.
HRD: Dorian 2019 missions, available at:
https://www.aoml.noaa.gov/hrd/Storm_pages/dorian2019/mission.html, last access: 18 September 2019.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.: GPM IMERG
Late Precipitation L3 1 day 0.1 degree x 0.1 degree V06, edited by:
Savtchenko, A., Goddard Earth Sciences Data and Information
Services Center (GES DISC), Greenbelt, MD, USA, https://doi.org/10.5067/GPM/IMERGDL/DAY/06, 2019.
Kankaku, Y., Suzuki, S., and Osawa, Y.: ALOS-2 mission and development
status, in: 2013 IEEE International Geoscience and Remote Sensing
Symposium – IGARSS, 21–26 July 2013, Melbourne, VIC, Australia, 2396–2399, IEEE, 2013.
Landsea, C. W., Hagen, A., Bredemeyer, W., Carrasco, C., Glenn, D. A., Santiago,
A., Strahan-Sakoskie, D., and Dickinson, M.: A Reanalysis of the 1931–43
Atlantic Hurricane Databasem, J. Climate, 27, 6093–6118, 2014.
Lu, J., Giustarini, L., Xiong, B., Zhao, L., Jiang, Y., and Kuang, G.:
Automated flood detection with improved robustness and efficiency using
multi-temporal SAR data, Remote Sens. Lett., 5, 240–248, 2014.
Martinis, S., Twele, A., and Voigt, S.: Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data, Nat. Hazards Earth Syst. Sci., 9, 303–314, https://doi.org/10.5194/nhess-9-303-2009, 2009.
Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., and
Savenije, H. H. G.: Towards an automated SAR-based flood monitoring system:
Lessons learned from two case studies, Phys. Chem. Earth A/B/C, 36, 241–252, 2011.
Morena, L. C., James, K. V., and Beck, J.: An introduction to the RADARSAT-2
mission, Can. J. Remote Sens., 30, 221–234, 2004.
NHC: Hurricane Dorian Advisory Archive, available at:
https://www.nhc.noaa.gov/archive/2019/DORIAN.shtml?, last access: 18 September 2019.
NOAA: National Weather Service (NWS) Radar Operations Center: NOAA Next
Generation Radar (NEXRAD) Level 2 Base Data. NOAA National Centers for
Environmental Information, https://doi.org/10.7289/V5W9574V, 1991.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term
changes, Nature, 540, 418–422, 2016.
Shen, X., Anagnostou, E. N., Allen, G. H., Brakenridge, G. R., and Kettner, A. J.:
Near-real-time non-obstructed flood inundation mapping using synthetic
aperture radar, Remote Sens. Environ., 221, 302–315, 2019a.
Shen, X., Dacheng, W., Kebiao, M., Anagnostou, E. N., and Hong, Y.: Inundation
Extent Mapping by Synthetic Aperture Radar: A Review, Remote Sens., 11,
879, https://doi.org/10.3390/rs11070879, 2019b.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., and Traver, I. N.: GMES
Sentinel-1 mission, Remote Sens. Environ., 120, 9–24, 2012.
Werninghaus, R. and Buckreuss, S.: The TerraSAR-X mission and system design,
IEEE T. Geosci. Remote, 48, 606–614, 2009.
Yamazaki, D., O'Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M., and
Bates, P. D.: Development of the global width database for large
rivers, Water Resour. Res., 50, 3467–3480, 2014.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G., and Pavelsky,
T.: MERIT Hydro: A high-resolution global hydrography map based on latest
topography datasets, Water Resour. Res., 55, 5053–5073, https://doi.org/10.1029/2019WR024873, 2019.
Yang, Q., Shen, X., Anagnostou, E. N., Eggleston, J. R., and Kettner, A. J.:
An unprecedented High-Resolution Inundation Dataset delineated from SAR over
the CONUS-from 2016 to Present, B.
Am. Meteorol. Soc., accepted, 2019.
Yang, Q., Cerrai, D., Shen, Q., Koukoula, M., and Anagnostou, E. N.: Rapid NRT Events, available at: https://s3.console.aws.amazon.com/s3/buckets/rapid-nrt-events/Dorian-2019/?region=us-west-2&tab=overview, last access: 22 May 2020.
Short summary
On 1 September 2019 Hurricane Dorian made landfall on Great Abaco, unleashing unprecedented destruction on the northern Bahamas. Dorian was characterized by extreme winds, extensive coastal flooding, and impressive precipitation. We studied the event through images acquired by the synthetic aperture radars (SARs) mounted on European Space Agency satellites to derive flooding maps showing the extent of the devastation. We found that the flooded area in the Bahamas was at least 3000 km2.
On 1 September 2019 Hurricane Dorian made landfall on Great Abaco, unleashing unprecedented...
Altmetrics
Final-revised paper
Preprint