Articles | Volume 20, issue 4
https://doi.org/10.5194/nhess-20-1025-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-20-1025-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures
Timothy Tiggeloven
CORRESPONDING AUTHOR
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Hans de Moel
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Hessel C. Winsemius
Deltares, Delft, the Netherlands
Water Management Department, Delft University of Technology, Delft,
the Netherlands
Dirk Eilander
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Deltares, Delft, the Netherlands
Gilles Erkens
Deltares, Delft, the Netherlands
Eskedar Gebremedhin
Deltares, Delft, the Netherlands
Andres Diaz Loaiza
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Hydraulic Structures and Flood Risk, Delft University of Technology, Delft, the Netherlands
Samantha Kuzma
World Resources Institute, Washington, DC, USA
Tianyi Luo
World Resources Institute, Washington, DC, USA
Charles Iceland
World Resources Institute, Washington, DC, USA
Arno Bouwman
PBL Netherlands Environmental Assessment Agency, The Hague, the
Netherlands
Jolien van Huijstee
PBL Netherlands Environmental Assessment Agency, The Hague, the
Netherlands
Willem Ligtvoet
PBL Netherlands Environmental Assessment Agency, The Hague, the
Netherlands
Philip J. Ward
Institute for Environmental Studies (IVM), Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
Related authors
Gwendoline Ducros, Timothy Tiggeloven, Lin Ma, Anne Sophie Daloz, Nina Schuhen, and Marleen C. de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3158, https://doi.org/10.5194/egusphere-2024-3158, 2024
Short summary
Short summary
Our study finds that heatwave, drought and wildfire events occurring simultaneously in Scandinavia are pronounced in the summer months; and the heat-drought 2018 event led to a drop in gross domestic product, affecting agriculture and forestry imports, further impacting Europe’s trade balance. This research shows the importance of ripple effects of multi-hazard, and that forest management and adaptation measures are vital to reducing the risks of heat-related multi-hazards in vulnerable areas.
This article is included in the Encyclopedia of Geosciences
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-137, https://doi.org/10.5194/nhess-2024-137, 2024
Preprint under review for NHESS
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection is limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTPROS-EU, which compiles coastal flood protection standards in Europe.
This article is included in the Encyclopedia of Geosciences
Wiebke S. Jäger, Marleen C. de Ruiter, Timothy Tiggeloven, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-134, https://doi.org/10.5194/nhess-2024-134, 2024
Preprint under review for NHESS
Short summary
Short summary
Multiple hazards, occurring at the same time or shortly after one another, can have more extreme impacts than single hazards. We examined the disaster records in the global emergency events database EM-DAT to better understand this phenomenon. We developed a method to identify such multi-hazards and analyzed their reported impacts using statistics. Multi-hazards have accounted for a disproportionate amount of the overall impacts, but there are different patterns in which the impacts compound.
This article is included in the Encyclopedia of Geosciences
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
This article is included in the Encyclopedia of Geosciences
Gwendoline Ducros, Timothy Tiggeloven, Lin Ma, Anne Sophie Daloz, Nina Schuhen, and Marleen C. de Ruiter
EGUsphere, https://doi.org/10.5194/egusphere-2024-3158, https://doi.org/10.5194/egusphere-2024-3158, 2024
Short summary
Short summary
Our study finds that heatwave, drought and wildfire events occurring simultaneously in Scandinavia are pronounced in the summer months; and the heat-drought 2018 event led to a drop in gross domestic product, affecting agriculture and forestry imports, further impacting Europe’s trade balance. This research shows the importance of ripple effects of multi-hazard, and that forest management and adaptation measures are vital to reducing the risks of heat-related multi-hazards in vulnerable areas.
This article is included in the Encyclopedia of Geosciences
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-196, https://doi.org/10.5194/nhess-2024-196, 2024
Preprint under review for NHESS
Short summary
Short summary
This study develops a conceptual framework that uses active learning to accelerate compound flood risk assessments. A case study of Charleston County shows that the framework achieves faster and more accurate risk quantifications compared to the state-of-the-art. This win-win allows for increasing the number of flooding parameters, which results in an 11.6 % difference in the expected annual damages. Therefore, this framework allows for more comprehensive compound flood risk assessments.
This article is included in the Encyclopedia of Geosciences
Christopher J. White, Mohammed Sarfaraz Gani Adnan, Marcello Arosio, Stephanie Buller, YoungHwa Cha, Roxana Ciurean, Julia M. Crummy, Melanie Duncan, Joel Gill, Claire Kennedy, Elisa Nobile, Lara Smale, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-178, https://doi.org/10.5194/nhess-2024-178, 2024
Preprint under review for NHESS
Short summary
Short summary
Indicators contain observable and measurable characteristics to understand the state of a concept or phenomenon and/or monitor it over time. There have been limited efforts to understand how indicators are being used in multi-hazard and multi-risk contexts. We find most of existing indicators do not include the interactions between hazards or risks. We propose 12 recommendations to enable the development and uptake of multi-hazard and multi-risk indicators.
This article is included in the Encyclopedia of Geosciences
Nicole van Maanen, Joël J.-F. G. De Plaen, Timothy Tiggeloven, Maria Luisa Colmenares, Philip J. Ward, Paolo Scussolini, and Elco Koks
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-137, https://doi.org/10.5194/nhess-2024-137, 2024
Preprint under review for NHESS
Short summary
Short summary
Understanding coastal flood protection is vital for assessing risks from natural disasters and climate change. However, current global data on coastal flood protection is limited and based on simplified assumptions, leading to potential uncertainties in risk estimates. As a step in this direction, we propose a comprehensive dataset, COASTPROS-EU, which compiles coastal flood protection standards in Europe.
This article is included in the Encyclopedia of Geosciences
Lou Brett, Christopher J. White, Daniela I.V. Domeisen, Bart van den Hurk, Philip Ward, and Jakob Zscheischler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-182, https://doi.org/10.5194/nhess-2024-182, 2024
Preprint under review for NHESS
Short summary
Short summary
Compound events, where multiple weather or climate hazards occur together, pose significant risks to both society and the environment. These events, like simultaneous wind and rain, can have more severe impacts than single hazards. Our review of compound event research from 2012–2022 reveals a rise in studies, especially on events that occur concurrently, hot and dry events and compounding flooding. The review also highlights opportunities for research in the coming years.
This article is included in the Encyclopedia of Geosciences
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
This article is included in the Encyclopedia of Geosciences
Wiebke S. Jäger, Marleen C. de Ruiter, Timothy Tiggeloven, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-134, https://doi.org/10.5194/nhess-2024-134, 2024
Preprint under review for NHESS
Short summary
Short summary
Multiple hazards, occurring at the same time or shortly after one another, can have more extreme impacts than single hazards. We examined the disaster records in the global emergency events database EM-DAT to better understand this phenomenon. We developed a method to identify such multi-hazards and analyzed their reported impacts using statistics. Multi-hazards have accounted for a disproportionate amount of the overall impacts, but there are different patterns in which the impacts compound.
This article is included in the Encyclopedia of Geosciences
Sanneke van Asselen, Gilles Erkens, Christian Fritz, Rudi Hessel, and Jan J. H. van den Akker
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-152, https://doi.org/10.5194/hess-2024-152, 2024
Preprint under review for HESS
Short summary
Short summary
In general, water infiltration systems in peat meadows reduce groundwater level lowering and yearly vertical soil dynamics. Groundwater level fluctuations induce soil volume decreases and increases in both the saturated and unsaturated zone, causing yearly soil dynamics of up to 10 cm. Multi-year subsidence rates are in the order of mm/yr. Such research is vital to increase knowledge on subsidence processes and to develop effective measures to reduce land subsidence and greenhouse gas emission.
This article is included in the Encyclopedia of Geosciences
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1588, https://doi.org/10.5194/egusphere-2024-1588, 2024
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrology models in shaping policies to lessen drought impacts.
This article is included in the Encyclopedia of Geosciences
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1354, https://doi.org/10.5194/egusphere-2024-1354, 2024
Short summary
Short summary
Global flood models are key for mitigating coastal flooding impacts, yet they still have limitations to provide actionable insights locally. We present a multiscale framework that couples dynamic water level and flood models, and bridges between fully global and local modelling approaches. We apply it to three storms to present the merits of a multiscale approach. Our findings reveal that the importance of model refinements varies based on the study area characteristics and the storm’s nature.
This article is included in the Encyclopedia of Geosciences
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024, https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Short summary
We present the wflow_sbm distributed hydrological model, recently released by Deltares, as part of the Wflow.jl open-source modelling framework in the programming language Julia. Wflow_sbm has a fast runtime, making it suitable for large-scale modelling. Wflow_sbm models can be set a priori for any catchment with the Python tool HydroMT-Wflow based on globally available datasets, which results in satisfactory to good performance (without much tuning). We show this for a number of specific cases.
This article is included in the Encyclopedia of Geosciences
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
This article is included in the Encyclopedia of Geosciences
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-208, https://doi.org/10.5194/nhess-2023-208, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Critical infrastructures (CI) are exposed to natural hazards, which may result in significant damage and burden society. The vulnerability is a key determinant for reducing these risks, yet crucial information is scattered in literature. Our study reviews over 1,250 fragility and vulnerability curves for CI assets, creating a unique publicly available physical vulnerability database that can directly be used for hazard risk assessments, including floods, earthquakes, windstorms and landslides.
This article is included in the Encyclopedia of Geosciences
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, Wouter Botzen, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-17, https://doi.org/10.5194/egusphere-2024-17, 2024
Short summary
Short summary
SLR will lead to more frequent flooding, and salt intrusion in coastal areas will be a major concern for farming households that are highly dependent on the soil quality for their livelihoods. In this study, we simulated the risk of SLR and flooding to coastal farmers by assessing salt intrusion risk and flood damage to buildings.
This article is included in the Encyclopedia of Geosciences
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
This article is included in the Encyclopedia of Geosciences
Rhoda A. Odongo, Hans De Moel, and Anne F. Van Loon
Nat. Hazards Earth Syst. Sci., 23, 2365–2386, https://doi.org/10.5194/nhess-23-2365-2023, https://doi.org/10.5194/nhess-23-2365-2023, 2023
Short summary
Short summary
We characterize meteorological (P), soil moisture (SM) and hydrological (Q) droughts and the propagation from one to the other for 318 catchments in the Horn of Africa. We find that propagation from P to SM is influenced by soil properties and vegetation, while propagation from P to Q is from catchment-scale hydrogeological properties (i.e. geology, slope). We provide precipitation accumulation periods at the subbasin level that can be used as a proxy in drought forecasting in dryland regions.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
This article is included in the Encyclopedia of Geosciences
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
This article is included in the Encyclopedia of Geosciences
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
This article is included in the Encyclopedia of Geosciences
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
This article is included in the Encyclopedia of Geosciences
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
This article is included in the Encyclopedia of Geosciences
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
This article is included in the Encyclopedia of Geosciences
Weihua Zhu, Kai Liu, Ming Wang, Philip J. Ward, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 22, 1519–1540, https://doi.org/10.5194/nhess-22-1519-2022, https://doi.org/10.5194/nhess-22-1519-2022, 2022
Short summary
Short summary
We present a simulation framework to analyse the system vulnerability and risk of the Chinese railway system to floods. To do so, we develop a method for generating flood events at both the national and river basin scale. Results show flood system vulnerability and risk of the railway system are spatially heterogeneous. The event-based approach shows how we can identify critical hotspots, taking the first steps in developing climate-resilient infrastructure.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
This article is included in the Encyclopedia of Geosciences
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary
Short summary
Extratropical cyclones are one of the major causes of coastal floods in Europe and the world. Understanding the development process and the flooding of storm Xynthia, together with the damages that occurred during the storm, can help to forecast future losses due to other similar storms. In the present paper, an analysis of shallow water variables (flood depth, velocity, etc.) or coastal variables (significant wave height, energy flux, etc.) is done in order to develop damage curves.
This article is included in the Encyclopedia of Geosciences
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
This article is included in the Encyclopedia of Geosciences
Lucas Wouters, Anaïs Couasnon, Marleen C. de Ruiter, Marc J. C. van den Homberg, Aklilu Teklesadik, and Hans de Moel
Nat. Hazards Earth Syst. Sci., 21, 3199–3218, https://doi.org/10.5194/nhess-21-3199-2021, https://doi.org/10.5194/nhess-21-3199-2021, 2021
Short summary
Short summary
This research introduces a novel approach to estimate flood damage in Malawi by applying a machine learning model to UAV imagery. We think that the development of such a model is an essential step to enable the swift allocation of resources for recovery by humanitarian decision-makers. By comparing this method (EUR 10 140) to a conventional land-use-based approach (EUR 15 782) for a specific flood event, recommendations are made for future assessments.
This article is included in the Encyclopedia of Geosciences
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
This article is included in the Encyclopedia of Geosciences
Marleen Carolijn de Ruiter, Anaïs Couasnon, and Philip James Ward
Geosci. Commun., 4, 383–397, https://doi.org/10.5194/gc-4-383-2021, https://doi.org/10.5194/gc-4-383-2021, 2021
Short summary
Short summary
Many countries can get hit by different hazards, such as earthquakes and floods. Generally, measures and policies are aimed at decreasing the potential damages of one particular hazard type despite their potential of having unwanted effects on other hazard types. We designed a serious game that helps professionals to improve their understanding of these potential negative effects of measures and policies that reduce the impacts of disasters across many different hazard types.
This article is included in the Encyclopedia of Geosciences
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
This article is included in the Encyclopedia of Geosciences
Jens A. de Bruijn, James E. Daniell, Antonios Pomonis, Rashmin Gunasekera, Joshua Macabuag, Marleen C. de Ruiter, Siem Jan Koopman, Nadia Bloemendaal, Hans de Moel, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-282, https://doi.org/10.5194/nhess-2020-282, 2020
Revised manuscript not accepted
Short summary
Short summary
Following hurricanes and other natural hazards, it is important to quickly estimate the damage caused by the hazard such that recovery aid can be granted from organizations such as the European Union and the World Bank. To do so, it is important to estimate the vulnerability of buildings to the hazards. In this research, we use post-disaster observations from social media to improve these vulnerability assessments and show its application in the Bahamas following Hurricane Dorian.
This article is included in the Encyclopedia of Geosciences
Paolo De Luca, Gabriele Messori, Davide Faranda, Philip J. Ward, and Dim Coumou
Earth Syst. Dynam., 11, 793–805, https://doi.org/10.5194/esd-11-793-2020, https://doi.org/10.5194/esd-11-793-2020, 2020
Short summary
Short summary
In this paper we quantify Mediterranean compound temperature and precipitation dynamical extremes (CDEs) over the 1979–2018 period. The strength of the temperature–precipitation coupling during summer increased and is driven by surface warming. We also link the CDEs to compound hot–dry and cold–wet events during summer and winter respectively.
This article is included in the Encyclopedia of Geosciences
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary
Short summary
We review the scientific literature on natural hazard risk assessments at the global scale. In doing so, we examine similarities and differences between the approaches taken across the different hazards and identify potential ways in which different hazard communities can learn from each other. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales.
This article is included in the Encyclopedia of Geosciences
Henk Kooi and Gilles Erkens
Proc. IAHS, 382, 493–498, https://doi.org/10.5194/piahs-382-493-2020, https://doi.org/10.5194/piahs-382-493-2020, 2020
Short summary
Short summary
Minimizing land subsidence is of increasing importance in urban areas in The Netherlands. Modelling was done to shed light on various measures to control the water table in reducing land subsidence. Calculations were done for conditions that occur in the city of Gouda. Results suggest, amongst others, that measures that can more permanently raise the water table by a small amount are more effective than measures that prevention a large water table drop during an occasional drought.
This article is included in the Encyclopedia of Geosciences
Henk Kooi and Gilles Erkens
Proc. IAHS, 382, 499–503, https://doi.org/10.5194/piahs-382-499-2020, https://doi.org/10.5194/piahs-382-499-2020, 2020
Short summary
Short summary
Creep of soft soils such as clays and peat are important in settlement caused by surface loads. By contrast, creep is not commonly considered in land subsidence driven by groundwater pumping. This is odd, because the subsidence involves the same types of soft soils. A new MODFLOW-2005 land subsidence package is introduced that includes creep. In an application to northern Jakarta it is shown amongst others that creep contributes to subsidence long after drawdown in pumped aquifers has stabilized
This article is included in the Encyclopedia of Geosciences
Sanneke van Asselen, Gilles Erkens, and Francis de Graaf
Proc. IAHS, 382, 189–194, https://doi.org/10.5194/piahs-382-189-2020, https://doi.org/10.5194/piahs-382-189-2020, 2020
Short summary
Short summary
Levelling and extensometers are applied to monitor subsidence in a cultivated peatland in Overijssel, The Netherlands, in the period end 2018 to end 2019. Preliminary results show vertical movements in the order of centimeters related to seasonal dynamics (rise in autumn/winter, subsidence in spring/summer) and shorter-term dynamics related to groundwater level fluctuations. Additional data collection is needed to assess long term net subsidence.
This article is included in the Encyclopedia of Geosciences
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020, https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Short summary
Ongoing subsidence is a complex problem for the Netherlands. Old strategies for coping have limits. In the Dutch National Scientific Research Program on Land Subsidence (2020–2025), we will develop an integrative approach to achieve feasible, legitimate and sustainable solutions for managing the negative societal effects of land subsidence, connecting fundamental research on subsidence processes to socio-economic impact of subsidence and to governance and legal framework design.
This article is included in the Encyclopedia of Geosciences
Gilles Erkens and Esther Stouthamer
Proc. IAHS, 382, 733–740, https://doi.org/10.5194/piahs-382-733-2020, https://doi.org/10.5194/piahs-382-733-2020, 2020
Short summary
Short summary
For many subsiding coastal areas, solutions to subsidence are readily available, but difficult to implement. To facilitate decision making and implementation of measures to subsidence, a sound and shared knowlegde base is required. But how to start creating such a knowledge base? This paper presents a comprehensive, step-by-step approach to address land subsidence, illustrated by best practise examples from around the world. This 6M approach will contribute to lowering the threshold to act.
This article is included in the Encyclopedia of Geosciences
Huite Bootsma, Henk Kooi, and Gilles Erkens
Proc. IAHS, 382, 415–420, https://doi.org/10.5194/piahs-382-415-2020, https://doi.org/10.5194/piahs-382-415-2020, 2020
Short summary
Short summary
A tool is presented that allows efficient and largely automated production of predictive land subsidence maps on a national scale in the Netherlands. The tool, based on Python scripts, is named Atlantis and calculates the subsidence induced by phreatic groundwater level management in Holocene soft-soil areas through peat oxidation and consolidation. Process formulation, input datasets and data handling procedures are elucidated. Maps produced with Atlantis will soon be available online.
This article is included in the Encyclopedia of Geosciences
Peter A. Fokker and Gilles Erkens
Proc. IAHS, 382, 1–4, https://doi.org/10.5194/piahs-382-1-2020, https://doi.org/10.5194/piahs-382-1-2020, 2020
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
This article is included in the Encyclopedia of Geosciences
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
This article is included in the Encyclopedia of Geosciences
Johanna Englhardt, Hans de Moel, Charles K. Huyck, Marleen C. de Ruiter, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 19, 1703–1722, https://doi.org/10.5194/nhess-19-1703-2019, https://doi.org/10.5194/nhess-19-1703-2019, 2019
Short summary
Short summary
Large-scale risk assessments can be improved by a more direct relation between the type of exposed buildings and their flood impact. Compared to the common land-use-based approach, this model reflects heterogeneous structures and defines building-material-based vulnerability classes. This approach is particularly interesting for areas with large variations of building types, such as developing countries and large scales, and enables vulnerability comparison across different natural disasters.
This article is included in the Encyclopedia of Geosciences
Jannis M. Hoch, Dirk Eilander, Hiroaki Ikeuchi, Fedor Baart, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 19, 1723–1735, https://doi.org/10.5194/nhess-19-1723-2019, https://doi.org/10.5194/nhess-19-1723-2019, 2019
Short summary
Short summary
Flood events are often complex in their origin and dynamics. The choice of computer model to simulate can hence determine which level of complexity can be represented. We here compare different models varying in complexity (hydrology with routing, 1-D routing, 1D/2D hydrodynamics) and assess how model choice influences the accuracy of results. This was achieved by using GLOFRIM, a model coupling framework. Results show that accuracy depends on the model choice and the output variable considered.
This article is included in the Encyclopedia of Geosciences
Shiqiang Du, Xiaotao Cheng, Qingxu Huang, Ruishan Chen, Philip J. Ward, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 19, 715–719, https://doi.org/10.5194/nhess-19-715-2019, https://doi.org/10.5194/nhess-19-715-2019, 2019
Short summary
Short summary
A mega-flood in 1998 caused tremendous losses in China and triggered major policy adjustments in flood-risk management. This paper rethinks these policy adjustments and discusses how China should adapt to newly emerging flood challenges. We suggest that China needs novel flood-risk management approaches to address the new challenges from rapid urbanization and climate change. These include risk-based urban planning and a coordinated water governance system.
This article is included in the Encyclopedia of Geosciences
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
This article is included in the Encyclopedia of Geosciences
Anouk I. Gevaert, Ted I. E. Veldkamp, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 4649–4665, https://doi.org/10.5194/hess-22-4649-2018, https://doi.org/10.5194/hess-22-4649-2018, 2018
Short summary
Short summary
Drought is a natural hazard that has severe environmental and socioeconomic impacts around the globe. Here, we quantified the time taken for drought to propagate from precipitation droughts to soil moisture and streamflow droughts. Results show that propagation timescales are strongly related to climate type, with fast responses in tropical regions and slow responses in arid regions. Insight into the timescales of drought propagation globally may help improve seasonal drought forecasting.
This article is included in the Encyclopedia of Geosciences
Iris Manola, Bart van den Hurk, Hans De Moel, and Jeroen C. J. H. Aerts
Hydrol. Earth Syst. Sci., 22, 3777–3788, https://doi.org/10.5194/hess-22-3777-2018, https://doi.org/10.5194/hess-22-3777-2018, 2018
Short summary
Short summary
In a warmer climate, it is expected that precipitation intensities will increase and form a considerable risk of high-impact precipitation extremes. We investigate how observed extreme precipitation events would look like if they took place in a future warmer climate. This study applies three methods to transform a historic extreme precipitation event in the Netherlands to a similar event in a future warmer climate, thus compiling a
This article is included in the Encyclopedia of Geosciences
future weatherscenario.
Konstantinos Bischiniotis, Bart van den Hurk, Brenden Jongman, Erin Coughlan de Perez, Ted Veldkamp, Hans de Moel, and Jeroen Aerts
Nat. Hazards Earth Syst. Sci., 18, 271–285, https://doi.org/10.5194/nhess-18-271-2018, https://doi.org/10.5194/nhess-18-271-2018, 2018
Short summary
Short summary
Preparedness activities and flood forecasting have received increasing attention and have led towards new science-based early warning systems. Understanding the flood triggering mechanisms will result in increasing warning lead times, providing sufficient time for early action. Findings of this study indicate that the consideration of short- and long-term antecedent conditions can be used by humanitarian organizations and decision makers for improved flood risk management.
This article is included in the Encyclopedia of Geosciences
Jannis M. Hoch, Jeffrey C. Neal, Fedor Baart, Rens van Beek, Hessel C. Winsemius, Paul D. Bates, and Marc F. P. Bierkens
Geosci. Model Dev., 10, 3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, https://doi.org/10.5194/gmd-10-3913-2017, 2017
Short summary
Short summary
To improve flood hazard assessments, it is vital to model all relevant processes. We here present GLOFRIM, a framework for coupling hydrologic and hydrodynamic models to increase the number of physical processes represented in hazard computations. GLOFRIM is openly available, versatile, and extensible with more models. Results also underpin its added value for model benchmarking, showing that not only model forcing but also grid properties and the numerical scheme influence output accuracy.
This article is included in the Encyclopedia of Geosciences
Naze Candogan Yossef, Rens van Beek, Albrecht Weerts, Hessel Winsemius, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 4103–4114, https://doi.org/10.5194/hess-21-4103-2017, https://doi.org/10.5194/hess-21-4103-2017, 2017
Short summary
Short summary
This paper presents a skill assessment of the global seasonal streamflow forecasting system FEWS-World. For 20 large basins of the world, forecasts using the ESP procedure are compared to forecasts using actual S3 seasonal meteorological forecast ensembles by ECMWF. The results are discussed in the context of prevailing hydroclimatic conditions per basin. The study concludes that in general, the skill of ECMWF S3 forecasts is close to that of the ESP forecasts.
This article is included in the Encyclopedia of Geosciences
Marleen C. de Ruiter, Philip J. Ward, James E. Daniell, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 17, 1231–1251, https://doi.org/10.5194/nhess-17-1231-2017, https://doi.org/10.5194/nhess-17-1231-2017, 2017
Short summary
Short summary
This study provides cross-discipline lessons for earthquake and flood vulnerability assessment methods by comparing indicators used in both fields. It appears that there is potential for improvement of these methods that can be obtained for both earthquake and flood vulnerability assessment indicators. This increased understanding is beneficial for both scientists as well as practitioners working with earthquake and/or flood vulnerability assessment methods.
This article is included in the Encyclopedia of Geosciences
Jens de Bruijn, Hans de Moel, Brenden Jongman, Jurjen Wagemaker, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-203, https://doi.org/10.5194/nhess-2017-203, 2017
Revised manuscript not accepted
Short summary
Short summary
In this work we present TAGSS, an algorithm that extracts and geolocates tweets using locations mentioned in the text of a tweet. We have applied TAGGS to flood events. However, TAGGS has enormous potential for application in the broad field of geosciences and natural hazards of any kind in particular, where availability of timely and accurate information about the impacts of an ongoing event can assist relief organizations in enhancing their disaster response activities.
This article is included in the Encyclopedia of Geosciences
Tom Brouwer, Dirk Eilander, Arnejan van Loenen, Martijn J. Booij, Kathelijne M. Wijnberg, Jan S. Verkade, and Jurjen Wagemaker
Nat. Hazards Earth Syst. Sci., 17, 735–747, https://doi.org/10.5194/nhess-17-735-2017, https://doi.org/10.5194/nhess-17-735-2017, 2017
Short summary
Short summary
The increasing number and severity of floods, driven by e.g. urbanization, subsidence and climate change, create a growing need for accurate and timely flood maps. At the same time social media is a source of much real-time data that is still largely untapped in flood disaster management. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
This article is included in the Encyclopedia of Geosciences
Jannis M. Hoch, Arjen V. Haag, Arthur van Dam, Hessel C. Winsemius, Ludovicus P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 21, 117–132, https://doi.org/10.5194/hess-21-117-2017, https://doi.org/10.5194/hess-21-117-2017, 2017
Short summary
Short summary
Modelling inundations is pivotal to assess current and future flood hazard, and to define sound measures and policies. Yet, many models focus on the hydrologic or hydrodynamic aspect of floods only. We combined both by spatially coupling a hydrologic with a hydrodynamic model. This way we are able to balance the weaknesses of each model with the strengths of the other. We found that model coupling can indeed strongly improve discharge simulation, and see big potential in our approach.
This article is included in the Encyclopedia of Geosciences
Paolo Scussolini, Jeroen C. J. H. Aerts, Brenden Jongman, Laurens M. Bouwer, Hessel C. Winsemius, Hans de Moel, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, https://doi.org/10.5194/nhess-16-1049-2016, 2016
Short summary
Short summary
Assessments of flood risk, on global to local scales, are becoming more urgent with ongoing climate change and with rapid socioeconomic developments. Such assessments need information about existing flood protection, still largely unavailable. Here we present the first open-source database of FLood PROtection Standards, FLOPROS, which enables more accurate modelling of flood risk. We also invite specialists to contribute new information to this evolving database.
This article is included in the Encyclopedia of Geosciences
Philip Bubeck, Jeroen C. J. H. Aerts, Hans de Moel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 16, 1005–1010, https://doi.org/10.5194/nhess-16-1005-2016, https://doi.org/10.5194/nhess-16-1005-2016, 2016
Yus Budiyono, Jeroen C. J. H. Aerts, Daniel Tollenaar, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 16, 757–774, https://doi.org/10.5194/nhess-16-757-2016, https://doi.org/10.5194/nhess-16-757-2016, 2016
Short summary
Short summary
The paper describes a model framework for assessing flood risk in Jakarta under current and future scenarios (2030 and 2050) including climate change, sea level rise, land use change, and land subsidence. The results shows individual impact of future changes and serve as a basis to evaluate adaptation strategies in cities. They also show while the impacts of climate change alone on flood risk in Jakarta are highly uncertain, the combined impacts of all drivers reveal a strong increase in risk.
This article is included in the Encyclopedia of Geosciences
D. J. Wagenaar, K. M. de Bruijn, L. M. Bouwer, and H. de Moel
Nat. Hazards Earth Syst. Sci., 16, 1–14, https://doi.org/10.5194/nhess-16-1-2016, https://doi.org/10.5194/nhess-16-1-2016, 2016
Short summary
Short summary
This paper discusses the differences that are found between flood damage estimation models. Based on an explanation of these differences, a method to quantify the uncertainty in flood damage models is proposed. An uncertainty estimate is made for a case study and the potential implications of uncertainty in flood damage estimation for investment decisions is shown.
This article is included in the Encyclopedia of Geosciences
D. Lee, P. Ward, and P. Block
Hydrol. Earth Syst. Sci., 19, 4689–4705, https://doi.org/10.5194/hess-19-4689-2015, https://doi.org/10.5194/hess-19-4689-2015, 2015
Short summary
Short summary
This paper presents a global approach to defining high-flow seasons by identifying temporal patterns of streamflow. Simulations of streamflow from the PCR-GLOBWB model are evaluated to define dominant and minor high-flow seasons globally, and verified with GRDC observations and flood records from Dartmouth Flood Observatory.
This article is included in the Encyclopedia of Geosciences
G. Erkens and E. H. Sutanudjaja
Proc. IAHS, 372, 83–87, https://doi.org/10.5194/piahs-372-83-2015, https://doi.org/10.5194/piahs-372-83-2015, 2015
Short summary
Short summary
Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). With the global land subsidence map relative sea level rise predictions may be improved, contributing to global flood risk calculations.
This article is included in the Encyclopedia of Geosciences
G. Erkens, T. Bucx, R. Dam, G. de Lange, and J. Lambert
Proc. IAHS, 372, 189–198, https://doi.org/10.5194/piahs-372-189-2015, https://doi.org/10.5194/piahs-372-189-2015, 2015
Short summary
Short summary
In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. The total worldwide damage of resulting increased floodrisk and structural damage to structures is estimated at billions of dollars annually. In this study a quick-assessment of subsidence is performed on mega-cities. Results of these case studies are presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.
This article is included in the Encyclopedia of Geosciences
T. H. M. Bucx, C. J. M. van Ruiten, G. Erkens, and G. de Lange
Proc. IAHS, 372, 485–491, https://doi.org/10.5194/piahs-372-485-2015, https://doi.org/10.5194/piahs-372-485-2015, 2015
Short summary
Short summary
In many delta cities land subsidence exceeds absolute sea level rise up to a factor of ten by excessive groundwater extraction related to rapid urbanization and population growth. An Integrated Assessment Framework (IAF) for subsidence is introduced, illustrated by several (delta) case studies. Based on that a list of 10 generic key issues and possible solutions is presented in order to further develop and support a (generic) approach how to deal with subsidence in subsidence-prone areas.
This article is included in the Encyclopedia of Geosciences
T. I. E. Veldkamp, S. Eisner, Y. Wada, J. C. J. H. Aerts, and P. J. Ward
Hydrol. Earth Syst. Sci., 19, 4081–4098, https://doi.org/10.5194/hess-19-4081-2015, https://doi.org/10.5194/hess-19-4081-2015, 2015
Short summary
Short summary
Freshwater shortage is one of the most important risks, partially driven by climate variability. Here we present a first global scale sensitivity assessment of water scarcity events to El Niño-Southern Oscillation, the most dominant climate variability signal. Given the found correlations, covering a large share of the global land area, and seen the developments of water scarcity impacts under changing socioeconomic conditions, we show that there is large potential for ENSO-based risk reduction.
This article is included in the Encyclopedia of Geosciences
F. Wetterhall, H. C. Winsemius, E. Dutra, M. Werner, and E. Pappenberger
Hydrol. Earth Syst. Sci., 19, 2577–2586, https://doi.org/10.5194/hess-19-2577-2015, https://doi.org/10.5194/hess-19-2577-2015, 2015
Short summary
Short summary
Dry spells can have a devastating impact on agricuture in areas where irrigation is not available. Forecasting these dry spells could enhance preparedness in sensitive regions and avoid economic loss due to harvest failure. In this study, ECMWF seasonal forecasts are applied in the Limpopo basin in southeastern Africa to forecast dry spells in the seasonal rains. The results indicate skill in the forecast which is further improved by post-processing of the precipitation forecasts.
This article is included in the Encyclopedia of Geosciences
P. Trambauer, M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook
Hydrol. Earth Syst. Sci., 19, 1695–1711, https://doi.org/10.5194/hess-19-1695-2015, https://doi.org/10.5194/hess-19-1695-2015, 2015
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
R. Lasage, T. I. E. Veldkamp, H. de Moel, T. C. Van, H. L. Phi, P. Vellinga, and J. C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 14, 1441–1457, https://doi.org/10.5194/nhess-14-1441-2014, https://doi.org/10.5194/nhess-14-1441-2014, 2014
B. Jongman, E. E. Koks, T. G. Husby, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 14, 1245–1255, https://doi.org/10.5194/nhess-14-1245-2014, https://doi.org/10.5194/nhess-14-1245-2014, 2014
H. C. Winsemius, E. Dutra, F. A. Engelbrecht, E. Archer Van Garderen, F. Wetterhall, F. Pappenberger, and M. G. F. Werner
Hydrol. Earth Syst. Sci., 18, 1525–1538, https://doi.org/10.5194/hess-18-1525-2014, https://doi.org/10.5194/hess-18-1525-2014, 2014
U. Ehret, H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. van Beek, A. van Griensven, M. C. Westhoff, and H. C. Winsemius
Hydrol. Earth Syst. Sci., 18, 649–671, https://doi.org/10.5194/hess-18-649-2014, https://doi.org/10.5194/hess-18-649-2014, 2014
P. J. Ward, S. Eisner, M. Flörke, M. D. Dettinger, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 47–66, https://doi.org/10.5194/hess-18-47-2014, https://doi.org/10.5194/hess-18-47-2014, 2014
H. C. Winsemius, L. P. H. Van Beek, B. Jongman, P. J. Ward, and A. Bouwman
Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, https://doi.org/10.5194/hess-17-1871-2013, 2013
T. Euser, H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, https://doi.org/10.5194/hess-17-1893-2013, 2013
R. S. Westerhoff, M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop
Hydrol. Earth Syst. Sci., 17, 651–663, https://doi.org/10.5194/hess-17-651-2013, https://doi.org/10.5194/hess-17-651-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Flood risk assessment through large-scale modeling under uncertainty
Migration as a Hidden Risk Factor in Seismic Fatality: A Spatial Modeling Approach to the Chi-Chi Earthquake and Suburban Syndrome
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
Using a convection-permitting climate model to predict wine grape productivity: two case studies in Italy
Current status of water-related planning for climate change adaptation in the Spree River basin, Germany
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Ready, set, go! An anticipatory action system against droughts
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Cost estimation for the monitoring instrumentation of landslide early warning systems
The role of response efficacy and self-efficacy in disaster preparedness actions for vulnerable households
Scientists as storytellers: the explanatory power of stories told about environmental crises
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Between global risk reduction goals, scientific-technical capabilities and local realities: a novel modular approach for multi-risk assessment
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
This article is included in the Encyclopedia of Geosciences
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
This article is included in the Encyclopedia of Geosciences
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
This article is included in the Encyclopedia of Geosciences
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
This article is included in the Encyclopedia of Geosciences
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
This article is included in the Encyclopedia of Geosciences
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
This article is included in the Encyclopedia of Geosciences
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
This article is included in the Encyclopedia of Geosciences
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
This article is included in the Encyclopedia of Geosciences
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
This article is included in the Encyclopedia of Geosciences
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
This article is included in the Encyclopedia of Geosciences
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-114, https://doi.org/10.5194/nhess-2024-114, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investors, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows to identify the critical points where single value estimates may underestimate the risk, and the areas of vulnerability to prioritize risk reduction efforts.
This article is included in the Encyclopedia of Geosciences
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1493, https://doi.org/10.5194/egusphere-2024-1493, 2024
Short summary
Short summary
This study reveals migration patterns as a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing in the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
This article is included in the Encyclopedia of Geosciences
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
This article is included in the Encyclopedia of Geosciences
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
This article is included in the Encyclopedia of Geosciences
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
This article is included in the Encyclopedia of Geosciences
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
This article is included in the Encyclopedia of Geosciences
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
This article is included in the Encyclopedia of Geosciences
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-82, https://doi.org/10.5194/nhess-2024-82, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history, means the data required for vulnerability evaluation by the insurance industry is scarce. A systematic literature review is conducted in this study, to determine the suitability of current, published literature for this purpose. Knowledge gaps are charted, and a representative asset-hazard taxonomy is proposed, to guide future, quantitative research.
This article is included in the Encyclopedia of Geosciences
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
This article is included in the Encyclopedia of Geosciences
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
This article is included in the Encyclopedia of Geosciences
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
This article is included in the Encyclopedia of Geosciences
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
This article is included in the Encyclopedia of Geosciences
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
This article is included in the Encyclopedia of Geosciences
Laura Teresa Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-941, https://doi.org/10.5194/egusphere-2024-941, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based both on temperature and precipitation. These indices are correlated to grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change affects wine production in the future.
This article is included in the Encyclopedia of Geosciences
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-59, https://doi.org/10.5194/nhess-2024-59, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in water management, spatial and landscape planning in the Spree River basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this planning gap, more frequent updates of plans, a stronger focus on multifunctional measures and the adaptation of best practice examples for systematic integration of climate change impacts and adaptation are needed.
This article is included in the Encyclopedia of Geosciences
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
This article is included in the Encyclopedia of Geosciences
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
This article is included in the Encyclopedia of Geosciences
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Bonifácio
EGUsphere, https://doi.org/10.5194/egusphere-2024-538, https://doi.org/10.5194/egusphere-2024-538, 2024
Short summary
Short summary
The "Ready, Set & Go!" system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
This article is included in the Encyclopedia of Geosciences
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
This article is included in the Encyclopedia of Geosciences
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
This article is included in the Encyclopedia of Geosciences
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
This article is included in the Encyclopedia of Geosciences
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
This article is included in the Encyclopedia of Geosciences
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
This article is included in the Encyclopedia of Geosciences
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
This article is included in the Encyclopedia of Geosciences
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
This article is included in the Encyclopedia of Geosciences
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
This article is included in the Encyclopedia of Geosciences
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
This article is included in the Encyclopedia of Geosciences
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, Wouter Botzen, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-17, https://doi.org/10.5194/egusphere-2024-17, 2024
Short summary
Short summary
SLR will lead to more frequent flooding, and salt intrusion in coastal areas will be a major concern for farming households that are highly dependent on the soil quality for their livelihoods. In this study, we simulated the risk of SLR and flooding to coastal farmers by assessing salt intrusion risk and flood damage to buildings.
This article is included in the Encyclopedia of Geosciences
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
This article is included in the Encyclopedia of Geosciences
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
This article is included in the Encyclopedia of Geosciences
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
This article is included in the Encyclopedia of Geosciences
Maria-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-225, https://doi.org/10.5194/nhess-2023-225, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The Central Volcanic Zone of the Andes is shared by four countries and groups 59 volcanoes. We identified the ones with the most intense and frequent eruptions (e.g., El Misti and Ubinas), the cities with the highest density of elements at risk (e.g., Arequipa and Mequegua), and the volcanoes with the highest potential impact (e.g., Cerro Blanco and Yucamane). Our study contributes into the prioritization of risk reduction resources, which is crucial for surrounding communities.
This article is included in the Encyclopedia of Geosciences
Marta Sapena, Moritz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 23, 3913–3930, https://doi.org/10.5194/nhess-23-3913-2023, https://doi.org/10.5194/nhess-23-3913-2023, 2023
Short summary
Short summary
A new approach for the deployment of landslide early warning systems (LEWSs) is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify exposed locations. We estimate the cost of monitoring sensors and demonstrate that LEWSs could be installed with a budget ranging from EUR 5 to EUR 41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outline the challenges and opportunities for successful LEWS implementation.
This article is included in the Encyclopedia of Geosciences
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
Nat. Hazards Earth Syst. Sci., 23, 3789–3803, https://doi.org/10.5194/nhess-23-3789-2023, https://doi.org/10.5194/nhess-23-3789-2023, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response efficacy and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study, policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
This article is included in the Encyclopedia of Geosciences
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
This article is included in the Encyclopedia of Geosciences
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
This article is included in the Encyclopedia of Geosciences
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-142, https://doi.org/10.5194/nhess-2023-142, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
In this paper, we provide a brief introduction on the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-hazard risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructures to increase their capabilities.
This article is included in the Encyclopedia of Geosciences
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
This article is included in the Encyclopedia of Geosciences
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
This article is included in the Encyclopedia of Geosciences
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aerts, J. C. J. H., Botzen, W., and De Moel, H.: Cost estimates of flood protection
and resilience measures, Ann. N. Y. Acad. Sci., 1294, 39–48, 2013.
Aerts, J. C. J. H., Botzen, W. J. W., Emanuel, K., Lin, N., de Moel, H., and
Michel-Kerjan, E. O.: Evaluating flood resilience strategies for coastal
megacities, Science, 344, 473–5, https://doi.org/10.1126/science.1248222, 2014.
Bos, A. J.: Optimal safety level for the New Orleans East polder; A
preliminary risk analysis, VU Amsterdam, Amsterdam, the Netherlands, 2008.
Bouwman, A. F., Kram, T., and Klein Goldewijk, K.: Integrated modelling of
global environmental change: an overview of Image 2.4, available at:
https://www.pbl.nl/ (last access: 14 April 2020), 2006.
Bright, E. A., Coleman, P. R., Rose, A. N., and Urban, M. L.: LandScan 2010 High
Resolution Global Population Data Set [dataset], available at:
http://web.ornl.gov/sci/landscan/ (last access: 14 April 2020), 2011.
Brown, S., Nicholls, R. J., Goodwin, P., Haigh, I. D., Lincke, D., Vafeidis,
A. T., and Hinkel, J.: Quantifying Land and People Exposed to Sea-Level Rise
with No Mitigation and 1.5 ∘C and 2.0 ∘C Rise in Global
Temperatures to Year 2300, Earth's Future, 6, 583–600,
https://doi.org/10.1002/2017EF000738, 2018.
Calero, J., Hendriksen, G., Dijkstra, J., and van der Lelij, A.: FAST MI-SAFE
platform: Foreshore assessment using space technology, Deltares, Delft, the Netherlands,
2017.
Carrère, L. and Lyard, F.: Modeling the barotropic response of the
global ocean to atmospheric wind and pressure forcing – comparisons with
observations, Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473, 2003.
Cheong, S.-M., Silliman, B., Wong, P. P., van Wesenbeeck, B., Kim, C.-K., and
Guannel, G.: Coastal adaptation with ecological engineering, Nat. Clim.
Chang., 3, 787–791, https://doi.org/10.1038/nclimate1854, 2013.
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S.,
Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P.,
Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R.,
Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T., and
Plattner, G.-K.: Consequences of twenty-first-century policy for
multi-millennial climate and sea-level change, Nat. Clim. Chang., 6,
360–369, https://doi.org/10.1038/nclimate2923, 2016.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N.,
Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F. P.: A global-scale
two-layer transient groundwater model: Development and application to
groundwater depletion, Adv. Water Resour., 102, 53–67,
https://doi.org/10.1016/J.ADVWATRES.2017.01.011, 2017.
Delft3D-WES: Delft3D-WES User Manual, 46, available at:
https://content.oss.deltares.nl/delft3d/manuals/Delft3D-WES_User_Manual.pdf (last access: 14 April 2020), 2019.
Diaz, D. B.: Estimating global damages from sea level rise with the Coastal
Impact and Adaptation Model (CIAM), Climatic Change, 137, 143–156,
https://doi.org/10.1007/s10584-016-1675-4, 2016.
Dixon, T. H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R.,
Sella, G., Kim, S.-W., Wdowinski, S., and Whitman, D.: Subsidence and
flooding in New Orleans, Nature, 441, 587–588, https://doi.org/10.1038/441587a,
2006.
Economidou, M., Atanasiu, B., Despret, C., Maio, J., Nolte, I., and Rapf, O.: Europe's buildings under the microscope. A country-by-country review of the energy performance of buildings, Buildings Performance Institute Europe (BPIE), Brussels, Belgium, 35–36, 2011.
EEA: Corine Land Cover 2012 seamless 100 m raster database (Version 18.5),
available at:
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/ (last access: 14 April 2020), 2016.
Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G., and
Meybeck, M.: Effective sea-level rise and deltas: Causes of change and human
dimension implications, Global Planet. Change, 50, 63–82,
https://doi.org/10.1016/J.GLOPLACHA.2005.07.004, 2006.
Erkens, G. and Sutanudjaja, E. H.: Towards a global land subsidence map, Proc. IAHS, 372, 83–87, https://doi.org/10.5194/piahs-372-83-2015, 2015.
Erkens, G., Bucx, T., Dam, R., de Lange, G., and Lambert, J.: Sinking coastal cities, Proc. IAHS, 372, 189–198, https://doi.org/10.5194/piahs-372-189-2015, 2015.
GADM: GADM database of Global Administrative Areas, available at: https://gadm.org/data.html (last access: 14 April 2020), 2012.
Galloway, D. L., Erkens, G., Kuniansky, E. L., and Rowland, J. C.: Preface:
Land subsidence processes, Hydrogeol. J., 24, 547–550,
https://doi.org/10.1007/s10040-016-1386-y, 2016.
Güneralp, B., Güneralp, İ., and Liu, Y.: Changing global patterns
of urban exposure to flood and drought hazards, Global Environ. Chang., 31,
217–225, https://doi.org/10.1016/J.GLOENVCHA.2015.01.002, 2015.
Haer, T., Botzen, W. J. W., van Roomen, V., Connor, H., Zavala-Hidalgo, J.,
Eilander, D. M., and Ward, P. J.: Coastal and river flood risk analyses for
guiding economically optimal flood adaptation policies: a country-scale
study for Mexico, Philos. T. Roy. Soc. A, 376,
20170329, https://doi.org/10.1098/rsta.2017.0329, 2018.
Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future
flood losses in major coastal cities, Nat. Clim. Chang., 3, 802–806,
https://doi.org/10.1038/nclimate1979, 2013.
Hecht, R., Meinel, G., and Buchroithner, M.: Automatic identification of
building types based on topographic databases – a comparison of different
data sources, Int. J. Cartogr., 1, 18–31,
https://doi.org/10.1080/23729333.2015.1055644, 2015.
Hinkel, J., Nicholls, R. J., Vafeidis, A. T., Tol, R. S. J., and Avagianou,
T.: Assessing risk of and adaptation to sea-level rise in the European
Union: an application of DIVA, Mitig. Adapt. Strat. Gl., 15,
703–719, https://doi.org/10.1007/s11027-010-9237-y, 2010.
Hinkel, J., Nicholls, R. J., Tol, R. S. J., Wang, Z. B., Hamilton, J. M.,
Boot, G., Vafeidis, A. T., McFadden, L., Ganopolski, A., and Klein, R. J. T.:
A global analysis of erosion of sandy beaches and sea-level rise: An
application of DIVA, Global Planet. Change, 111, 150–158,
https://doi.org/10.1016/J.GLOPLACHA.2013.09.002, 2013.
Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol,
R. S. J., Marzeion, B., Fettweis, X., Ionescu, C., and Levermann, A.: Coastal
flood damage and adaptation costs under 21st century sea-level rise, P.
Natl. Acad. Sci. USA, 111, 3292–3297, https://doi.org/10.1073/pnas.1222469111,
2014.
Huang, B., Zhao, B., and Song, Y.: Urban land-use mapping using a deep
convolutional neural network with high spatial resolution multispectral
remote sensing imagery, Remote Sens. Environ., 214, 73–86,
https://doi.org/10.1016/J.RSE.2018.04.050, 2018.
Huizinga, J., de Moel, H., and Szewczyk, W.: Global flood depth-damage
functions: Methodology and the database with guidelines, JRC Work. Pap.,
JRC105688, Joint Research Centre, Seville, Spain, 2017.
Jackson, L. P. and Jevrejeva, S.: A probabilistic approach to 21st century
regional sea-level projections using RCP and High-end scenarios, Global
Planet. Change, 146, 179–189, https://doi.org/10.1016/j.gloplacha.2016.10.006, 2016.
Jevrejeva, S., Grinsted, A., and Moore, J. C.: Upper limit for sea level
projections by 2100, Environ. Res. Lett., 9, 104008,
https://doi.org/10.1088/1748-9326/9/10/104008, 2014.
Jongman, B.: Effective adaptation to rising flood risk, Nat. Commun., 9,
1986, https://doi.org/10.1038/s41467-018-04396-1, 2018.
Jongman, B., Ward, P. J., and Aerts, J. C. J. H.: Global exposure to river
and coastal flooding: Long term trends and changes, Global Environ. Chang.,
22, 823–835, https://doi.org/10.1016/J.GLOENVCHA.2012.07.004, 2012.
Jonkman, S. N., Hillen, M. M., Nicholls, R. J., Kanning, W., and van Ledden,
M.: Costs of Adapting Coastal Defences to Sea-Level Rise – New Estimates
and Their Implications, J. Coast. Res., 290, 1212–1226,
https://doi.org/10.2112/JCOASTRES-D-12-00230.1, 2013.
Klein Goldewijk, K., Beusen, A., and Janssen, P.: Long-term dynamic modeling
of global population and built-up area in a spatially explicit way: HYDE 3.1, Holocene, 20, 565–573, https://doi.org/10.1177/0959683609356587, 2010.
Kooi, H., Bakr, M., de Lange G., den Haan E., and Erkens, G.: A user guide to
SUB-CR: A modflow land subsidence and aquifer system compaction package that
includes creep, Deltares, available at: http://publications.deltares.nl/11202275_008.pdf (last access: 14 April 2020), 2018.
Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M.,
Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D.,
Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G.,
Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., Biewald, A., Bonsch,
M., Giannousakis, A., Kreidenweis, U., Müller, C., Rolinski, S.,
Schultes, A., Schwanitz, J., Stevanovic, M., Calvin, K., Emmerling, J.,
Fujimori, S., and Edenhofer, O.: Fossil-fueled development (SSP5): An energy
and resource intensive scenario for the 21st century, Global Environ. Chang.,
42, 297–315, https://doi.org/10.1016/J.GLOENVCHA.2016.05.015, 2017.
Lenk, S., Rybski, D., Heidrich, O., Dawson, R. J., and Kropp, J. P.: Costs of sea dikes – regressions and uncertainty estimates, Nat. Hazards Earth Syst. Sci., 17, 765–779, https://doi.org/10.5194/nhess-17-765-2017, 2017.
Lincke, D. and Hinkel, J.: Economically robust protection against 21st
century sea-level rise, Global Environ. Chang., 51, 67–73,
https://doi.org/10.1016/J.GLOENVCHA.2018.05.003, 2018.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal
zones, Environ. Urban., 19, 17–37, https://doi.org/10.1177/0956247807076960, 2007.
McLeman, R. and Smit, B.: Migration as an Adaptation to Climate Change,
Climatic Change, 76, 31–53, https://doi.org/10.1007/s10584-005-9000-7, 2006.
Merkens, J.-L., Lincke, D., Hinkel, J., Brown, S., and Vafeidis, A. T.:
Regionalisation of population growth projections in coastal exposure
analysis, Climatic Change, 151, 413–426, https://doi.org/10.1007/s10584-018-2334-8,
2018.
Meyer, V., Haase, D., and Scheuer, S.: Flood Risk Assessment in European
River Basins – Concept, Methods, and Challenges Exemplified at the Mulde
River, Integr. Environ. Asses., 5, 17,
https://doi.org/10.1897/IEAM_2008-031.1, 2009.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.:
A global reanalysis of storm surges and extreme sea levels, Nat. Commun.,
7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
Muis, S., Verlaan, M., Nicholls, R. J., Brown, S., Hinkel, J., Lincke, D.,
Vafeidis, A. T., Scussolini, P., Winsemius, H. C., and Ward, P. J.: A
comparison of two global datasets of extreme sea levels and resulting flood
exposure, Earth's Future, 5, 379–392, https://doi.org/10.1002/2016EF000430, 2017.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future
Coastal Population Growth and Exposure to Sea-Level Rise and Coastal
Flooding – A Global Assessment, PLoS One, 10,
e0118571, https://doi.org/10.1371/journal.pone.0118571, 2015.
Nicholls, R. J., Hanson, S., Herweijer, C., and Patmore, N.: Ranking port cities
with high exposure and vulnerability to climate extremes, available
at: https://www.oecd-ilibrary.org/content/workingpaper/011766488208
(last access: 15 February 2019), 2008a.
Nicholls, R. J., Tol, R. S. J., and Vafeidis, A. T.: Global estimates of the
impact of a collapse of the West Antarctic ice sheet: an application of
FUND, Climatic Change, 91, 171–191, https://doi.org/10.1007/s10584-008-9424-y,
2008b.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for
climate change research: The concept of shared socioeconomic pathways, Climatic
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Global
Environ. Chang., 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K.,
Biesbroek, R., Buchanan, M. K., Abe-Ouchi, A., Gupta, K., Pereira, J.,
Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A., Abd-Elgawad, A., Cai,
R., Cifuentes-Jara, M., DeConto, R., Pörtner, H., Roberts, D.,
Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K.,
Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer,
N.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and
Communities, in: IPCC Special Report on the Ocean and Cryosphere in a
Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V.,
Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., and Poh Poh Wong, A., IPCC, Geneva, Switzerland, 2019.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature,
540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Pesaresi, M., Ehrlich, D., Florczyk, A. J., Freire, S., Julea, A., Kemper,
T., and Syrris, V.: The global human settlement layer from landsat imagery,
in: International Geoscience and Remote Sensing Symposium (IGARSS), 10–15 July 2016, Beijing China, Institute of Electrical and Electronics
Engineers Inc., vol.
2016-November, 7276–7279, 2016.
Pickering, M. D., Wells, N. C., Horsburgh, K. J., and Green, J. A. M.: The
impact of future sea-level rise on the European Shelf tides, Cont. Shelf
Res., 35, 1–15, https://doi.org/10.1016/J.CSR.2011.11.011, 2012.
Pullen, T., Allsop, N. W. H., Bruce, T., Kortenhaus, A., Schüttrumpf, H.,
and Van der Meer, J. W.: EurOtop, European Overtopping Manual – Wave
overtopping of sea defences and related structures: Assessment manual, also
Publ. as Spec. Vol. Die Küste, available at:
https://repository.tudelft.nl/islandora/object/uuid:b1ba09c3-39ba-4705-8ae3-f3892b0f2410/
(last access: 5 December 2018), 2007.
Pycroft, J., Abrell, J., and Ciscar, J.-C.: The Global Impacts of Extreme
Sea-Level Rise: A Comprehensive Economic Assessment, Environ. Resour. Econ.,
64, 225–253, https://doi.org/10.1007/s10640-014-9866-9, 2016.
Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R., and Liu, P.: Less
than 2 ∘C warming by 2100 unlikely, Nat. Clim. Chang., 7,
637–641, https://doi.org/10.1038/nclimate3352, 2017.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao,
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Global Environ.
Change, 42, 153–168, https://doi.org/10.1016/J.GLOENVCHA.2016.05.009, 2017.
Scussolini, P., Aerts, J. C. J. H., Jongman, B., Bouwer, L. M., Winsemius, H. C., de Moel, H., and Ward, P. J.: FLOPROS: an evolving global database of flood protection standards, Nat. Hazards Earth Syst. Sci., 16, 1049–1061, https://doi.org/10.5194/nhess-16-1049-2016, 2016.
Shepard, C. C., Crain, C. M., and Beck, M. W.: The Protective Role of Coastal
Marshes: A Systematic Review and Meta-analysis, PLoS
One, 6, e27374, https://doi.org/10.1371/journal.pone.0027374, 2011.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Tebaldi, C., Strauss, B. H., and Zervas, C. E.: Modelling sea level rise
impacts on storm surges along US coasts, Environ. Res. Lett., 7, 014032,
https://doi.org/10.1088/1748-9326/7/1/014032, 2012.
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and
De Vriend, H. J.: Ecosystem-based coastal defence in the face of global
change, Nature, 504, 79–83, https://doi.org/10.1038/nature12859, 2013.
Tiggeloven, T.: Benefit-cost analysis of adaptation objectives to coastal flooding at the global scale (Version 1) [Data set], Zenodo, https://doi.org/10.5281/zenodo.3475120, 2019.
Tol, R. S. J.: Estimates of the Damage Costs of Climate Change. Part 1:
Benchmark Estimates, Environ. Resour. Econ., 21, 47–73,
https://doi.org/10.1023/A:1014500930521, 2002.
Tribett, W. R., Salawitch, R. J., Hope, A. P., Canty, T. P., and Bennett, B.
F.: Paris INDCs, Springer, Cham, Switzerland, 115–146, 2017.
United Nations Framework Convention on Climate Change: COP21 Paris
agreement, Le Bourget, France, 2015.
United Nations Office for Disaster Risk Reduction: Sendai framework for
disaster risk reduction 2015–2030, UNISDR, Geneva, Switzerland, available at: http://www.unisdr.org/we/inform/publications/43291 (last access: 14 April 2020), 2015.
United Nations Office for Disaster Risk Reduction: Report of the open-ended
intergovernmental expert working group on indicators and terminology
relating to disaster risk reduction, United Nations General Assembly, New York, NY, USA, 41 pp., 2016.
Vafeidis, A. T., Schuerch, M., Wolff, C., Spencer, T., Merkens, J. L., Hinkel, J., Lincke, D., Brown, S., and Nicholls, R. J.: Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 973–984, https://doi.org/10.5194/nhess-19-973-2019, 2019.
Van Huijstee, J., Van Bemmel, B., Bouwman, A., and Van Rijn, F.: Towards and
Urban Preview: Modelling future urban growth with 2UP, Background Report,
PBL, Den Haag, the Netherlands, 2018.
van Vuuren, D. P., Kriegler, E., O'Neill, B. C., Ebi, K. L., Riahi, K.,
Carter, T. R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., and
Winkler, H.: A new scenario framework for Climate Change Research: scenario
matrix architecture, Climatic Change, 122, 373–386,
https://doi.org/10.1007/s10584-013-0906-1, 2014.
van Zelst, V. T. M., Dijkstra, J. T., van Wesenbeeck, B. K., Eilander, D.,
Morris, E. P., Winsemius, H. C., Ward, P. J., and de Vries, M. B.: Cutting
the costs of coastal protection: how vegetation reduces global flood hazard,
Nat. Commun., in review, 2020.
Vousdoukas, M. I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., and Feyen, L.: Developments in large-scale coastal flood hazard mapping, Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, 2016.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen,
L.: Extreme sea levels on the rise along Europe's coasts, Earth's Future,
5(3), 304–323, https://doi.org/10.1002/2016EF000505, 2017.
Ward, P. J., Strzepek, K. M., Pauw, W. P., Brander, L. M., Hughes, G. A., and
Aerts, J. C. J. H.: Partial costs of global climate change adaptation for
the supply of raw industrial and municipal water: a methodology and
application, Environ. Res. Lett., 5, 044011,
https://doi.org/10.1088/1748-9326/5/4/044011, 2010.
Ward, P. J., Jongman, B., Weiland, F. S., Bouwman, A., Van Beek, R.,
Bierkens, M. F. P., Ligtvoet, W., and Winsemius, H. C.: Assessing flood risk
at the global scale: Model setup, results, and sensitivity, Environ. Res.
Lett., 8, 044019, https://doi.org/10.1088/1748-9326/8/4/044019, 2013.
Ward, P. J., Jongman, B., Aerts, J. C. J. H., Bates, P. D., Botzen, W. J.
W., DIaz Loaiza, A., Hallegatte, S., Kind, J. M., Kwadijk, J., Scussolini,
P., and Winsemius, H. C.: A global framework for future costs and benefits of
river-flood protection in urban areas, Nat. Clim. Chang., 7, 642–646,
https://doi.org/10.1038/nclimate3350, 2017.
Ward, P. J., Winsemius, H. C., Kuzma, S., Luo, T., Bierkens, M. F. P.,
Bouwman, A., de Moel, H., Diaz Loaizaa, A., Eilander, D., Englhardt, J.,
Erkens, G., Gebremedhind, E., Iceland, C., Kooi, H., Ligtvoet, W., Muis, S.,
Scussolini, P., Sutanudjaja, E. H., van Beek, R., van Bemmel, B., van
Huijstee, J., van Rijn, F., van Wesenbeeck, B., Vatvani, D., Verlaan, M., and
Tiggeloven, T.: Aqueduct Floods Methodology, Technical Note, World Resources Institute, Washington,
D.C., USA, 2019.
Winsemius, H. C., Aerts, J. C. J. H., Van Beek, L. P. H., Bierkens, M. F.
P., Bouwman, A., Jongman, B., Kwadijk, J. C. J., Ligtvoet, W., Lucas, P. L.,
Van Vuuren, D. P., and Ward, P. J.: Global drivers of future river flood
risk, Nat. Clim. Chang., 6, 381–385, https://doi.org/10.1038/nclimate2893, 2016.
Wolff, C., Vafeidis, A. T., Lincke, D., Marasmi, C. and Hinkel, J.: Effects
of Scale and Input Data on Assessing the Future Impacts of Coastal Flooding:
An Application of DIVA for the Emilia-Romagna Coast, Front. Mar. Sci., 3,
41, https://doi.org/10.3389/fmars.2016.00041, 2016.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F.,
Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy map
of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Yin, J., Yu, D., Yin, Z., Wang, J., and Xu, S.: Modelling the combined
impacts of sea-level rise and land subsidence on storm tides induced
flooding of the Huangpu River in Shanghai, China, Climatic Change, 119,
919–932, https://doi.org/10.1007/s10584-013-0749-9, 2013.
Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J., and Smith, T. J.:
The role of mangroves in attenuating storm surges, Estuar. Coast. Shelf
Sci., 102–103, 11–23, https://doi.org/10.1016/J.ECSS.2012.02.021, 2012.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4047 KB) - Full-text XML
Short summary
We present a framework to evaluate the benefits and costs of coastal adaptation through dikes to reduce future flood risk. If no adaptation takes place, we find that global coastal flood risk increases 150-fold by 2080, with sea-level rise contributing the most. Moreover, 15 countries account for 90 % of this increase; that adaptation shows high potential to cost-effectively reduce flood risk. The results will be integrated into the Aqueduct Global Flood Analyzer web tool.
We present a framework to evaluate the benefits and costs of coastal adaptation through dikes to...
Altmetrics
Final-revised paper
Preprint