Articles | Volume 19, issue 3
https://doi.org/10.5194/nhess-19-697-2019
https://doi.org/10.5194/nhess-19-697-2019
Research article
 | 
02 Apr 2019
Research article |  | 02 Apr 2019

Event-based probabilistic risk assessment of livestock snow disasters in the Qinghai–Tibetan Plateau

Tao Ye, Weihang Liu, Jidong Wu, Yijia Li, Peijun Shi, and Qiang Zhang

Related authors

Spatiotemporal variation of growth-stage specific concurrent climate extremes and their yield impacts for rice in southern China
Ran Sun, Tao Ye, Yiqing Liu, Weihang Liu, and Shuo Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1393,https://doi.org/10.5194/egusphere-2025-1393, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Long-term Ruminant Livestock Distribution Datasets in Grazing Livestock Production Systems in China from 2000 to 2021 (CLRD-GLPS)
Ning Zhan, Tao Ye, Mario Herrero, Jian Peng, Weihang Liu, and Heng Ma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-534,https://doi.org/10.5194/essd-2024-534, 2024
Manuscript not accepted for further review
Short summary
Spatiotemporal variation of growth-stage specific compound climate extremes for rice in South China: Evidence from concurrent and consecutive compound events
Ran Sun, Tao Ye, Yiqing Liu, Weihang Liu, and Shuo Chen
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-8,https://doi.org/10.5194/esd-2024-8, 2024
Manuscript not accepted for further review
Short summary
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023,https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
High-resolution distribution maps of single-season rice in China from 2017 to 2022
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023,https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Adaptive behavior of farmers under consecutive droughts results in more vulnerable farmers: a large-scale agent-based modeling analysis in the Bhima basin, India
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025,https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Content analysis of multi-annual time series of flood-related Twitter (X) data
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025,https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Enhancement of state response capability and famine mitigation: a comparative analysis of two drought events in northern China during the Ming dynasty
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci., 25, 591–607, https://doi.org/10.5194/nhess-25-591-2025,https://doi.org/10.5194/nhess-25-591-2025, 2025
Short summary
Flood exposure of environmental assets
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci., 25, 565–580, https://doi.org/10.5194/nhess-25-565-2025,https://doi.org/10.5194/nhess-25-565-2025, 2025
Short summary
A new method for calculating highway blocking due to high-impact weather conditions
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci., 25, 493–513, https://doi.org/10.5194/nhess-25-493-2025,https://doi.org/10.5194/nhess-25-493-2025, 2025
Short summary

Cited articles

Anderson, D., Davidson, R. A., Himoto, K., and Scawthorn, C.: Statistical Modeling of Fire Occurrence Using Data from the Tōhoku, Japan Earthquake and Tsunami, Risk Anal., 36, 378–395, https://doi.org/10.1111/risa.12455, 2016. 
Bai, Y., Zhang, X., and Xu, P.: The Snow Disaster Risk Assessment of Animal Husbandry in Qinghai Province, J. Qinghai Norm. Univers. (Nat. Sci.), 1, 71–77, https://doi.org/10.16229/j.cnki.issn1001-7542.2011.01.004, 2011. 
Basang, D., Barthel, K., and Olseth, J.: Satellite and Ground Observations of Snow Cover in Tibet during 2001–2015, Remote Sens., 9, 1201, https://doi.org/10.3390/rs9111201, 2017. 
Birkmann, J. and Welle, T.: The WorldRiskIndex 2016: Reveals the Necessity for Regional Cooperation in Vulnerability Reduction, J. Extrem. Events, 03, 1650005, https://doi.org/10.1142/S2345737616500056, 2016. 
Carleton, T. A. and Hsiang, S. M.: Social and economic impacts of climate, Science, 353, 6304, https://doi.org/10.1126/science.aad9837, 2016. 
Download
Short summary
Livestock and their owners in the Qinghai–Tibetan Plateau has long suffered from snow disaster. In order to help the local herder community better prepare for potential loss, we developed a probabilistic disaster-event simulation approach, from which livestock loss induced by a snow disaster with specific intensity and local prevention capacity could be predicted. By using this method, we managed to estimate snow disaster duration, livestock loss rate, and number at different return periods.
Share
Altmetrics
Final-revised paper
Preprint