Articles | Volume 18, issue 2
Nat. Hazards Earth Syst. Sci., 18, 445–461, 2018
https://doi.org/10.5194/nhess-18-445-2018
Nat. Hazards Earth Syst. Sci., 18, 445–461, 2018
https://doi.org/10.5194/nhess-18-445-2018

Research article 08 Feb 2018

Research article | 08 Feb 2018

Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England

Simon Brenner et al.

Related authors

Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021,https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
How is Baseflow Index (BFI) impacted by water resource management practices?
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021,https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Quantifying the Regional Water Balance of the Ethiopian Rift Valley Lake Basin Using an Uncertainty Estimation Framework
Tesfalem Abraham, Yan Liu, Sirak Tekleab, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-271,https://doi.org/10.5194/hess-2021-271, 2021
Revised manuscript under review for HESS
Short summary
A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Rosanna Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-321,https://doi.org/10.5194/hess-2021-321, 2021
Preprint under review for HESS
Short summary
Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-179,https://doi.org/10.5194/hess-2021-179, 2021
Preprint under review for HESS
Short summary

Related subject area

Hydrological Hazards
Assessment of direct economic losses of flood disasters based on spatial valuation of land use and quantification of vulnerabilities: a case study on the 2014 flood in Lishui city of China
Haixia Zhang, Weihua Fang, Hua Zhang, and Lu Yu
Nat. Hazards Earth Syst. Sci., 21, 3161–3174, https://doi.org/10.5194/nhess-21-3161-2021,https://doi.org/10.5194/nhess-21-3161-2021, 2021
Short summary
Evaluating integrated water management strategies to inform hydrological drought mitigation
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021,https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary
Global riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?
Sara Lindersson, Luigia Brandimarte, Johanna Mård, and Giuliano Di Baldassarre
Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021,https://doi.org/10.5194/nhess-21-2921-2021, 2021
Short summary
Global flood exposure from different sized rivers
Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith
Nat. Hazards Earth Syst. Sci., 21, 2829–2847, https://doi.org/10.5194/nhess-21-2829-2021,https://doi.org/10.5194/nhess-21-2829-2021, 2021
Short summary
A paradigm of extreme rainfall pluvial floods in complex urban areas: the flood event of 15 July 2020 in Palermo (Italy)
Antonio Francipane, Dario Pumo, Marco Sinagra, Goffredo La Loggia, and Leonardo Valerio Noto
Nat. Hazards Earth Syst. Sci., 21, 2563–2580, https://doi.org/10.5194/nhess-21-2563-2021,https://doi.org/10.5194/nhess-21-2563-2021, 2021
Short summary

Cited articles

Adams, B., Peach, D. W. D., and Bloomfield, J. P. J.: The LOCAR hydrogeological infrastructure for the Frome/Piddle catchment, British Geological Survey Internal Report, IR/03/179, 1–3, Keyworth, Nottingham, 2003.
Adams, B., Bloomfield, J. P., Gallagher, A. J., Jackson, C. R., Rutter, H. K., and Williams, A. T.: An early warning system for groundwater flooding in the Chalk, Q. J. Eng. Geol. Hydroge., 43, 185–193, https://doi.org/10.1144/1470-9236/09-026, 2010.
Allen, D. J., Brewerton, L. J., Coleby, L. M., Gibbs, B. R., Lewis, M. A., MacDonald, A. M., Wagstaff, S. J., and Williams, A. T.: The physical properties of major aquifers in England and Wales, British Geological Survey Technical Report WD/97/34, 312 pp., Environment Agency R&D Publication 8, 1997.
Aquilina, L., Ladouche, B., and Dörfliger, N.: Water storage and transfer in the epikarst of karstic systems during high flow periods, J. Hydrol., 327, 472–485, 2006.
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, 2005.
Download
Short summary
In this study we simulate groundwater levels with a semi-distributed karst model. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. We show that our approach is able to predict groundwater levels across all considered timescales up to the 75th percentile. We then use our approach to assess future changes in groundwater dynamics and show that projected climate changes may lead to generally lower groundwater levels.
Altmetrics
Final-revised paper
Preprint