Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-2859-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-18-2859-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards risk-based flood management in highly productive paddy rice cultivation – concept development and application to the Mekong Delta
Nguyen Van Khanh Triet
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
SIWRR Southern Institute of Water Resources Research, Ho Chi Minh City, Vietnam
Nguyen Viet Dung
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
Bruno Merz
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany
Heiko Apel
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
Related authors
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Alberto Montanari, Bruno Merz, and Günter Blöschl
EGUsphere, https://doi.org/10.5194/egusphere-2023-2420, https://doi.org/10.5194/egusphere-2023-2420, 2023
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually “impossible”, yet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-156, https://doi.org/10.5194/hess-2023-156, 2023
Revised manuscript under review for HESS
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open source. This can help communities better prepare for and mitigate flood damages.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-186, https://doi.org/10.5194/hess-2023-186, 2023
Revised manuscript under review for HESS
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Short summary
We estimate the contribution of extreme precipitation, antecedent soil moisture and snowmelt to changes in small and large floods across Europe.
In northwestern and eastern Europe, changes in small and large floods are driven mainly by one single driver (i.e. extreme precipitation and snowmelt, respectively). In southern Europe both antecedent soil moisture and extreme precipitation significantly contribute to flood changes, and their relative importance depends on flood magnitude.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020, https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Short summary
Quantifying the seasonal contributions of the runoff components, including groundwater, snowmelt, glacier melt, and rainfall, to streamflow is highly necessary for understanding the dynamics of water resources in glacierized basins given the vulnerability of snow- and glacier-dominated environments to the current climate warming. Our study provides the first comparison of two end-member mixing approaches for hydrograph separation in glacierized basins.
Heiko Apel, Mai Khiem, Nguyen Hong Quan, and To Quang Toan
Nat. Hazards Earth Syst. Sci., 20, 1609–1616, https://doi.org/10.5194/nhess-20-1609-2020, https://doi.org/10.5194/nhess-20-1609-2020, 2020
Short summary
Short summary
This study deals with salinity intrusion in the Mekong Delta, a pressing issue in the third-largest river delta on Earth. It presents a simple, efficient, and cross-validated seasonal forecast model for salinity intrusion during the dry season based on logistic regression using ENSO34 or standardized streamflow indexes as predictors. The model performs exceptionally well, enabling a reliable forecast of critical salinity threshold exceedance up to 9 months prior to the dry season.
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020, https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary
Short summary
In the climate/hydrology network, each node represents a geographical location of climatological data, and links between nodes are set up based on their interaction or similar variability. Here, using network theory, we first generate a node-ranking measure and then prioritize the rain gauges to identify influential and expandable stations across Germany. To show the applicability of the proposed approach, we also compared the results with existing traditional and contemporary network measures.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Björn Guse, Bruno Merz, Luzie Wietzke, Sophie Ullrich, Alberto Viglione, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 24, 1633–1648, https://doi.org/10.5194/hess-24-1633-2020, https://doi.org/10.5194/hess-24-1633-2020, 2020
Short summary
Short summary
Floods are influenced by river network processes, among others. Flood characteristics of tributaries may affect flood severity downstream of confluences. The impact of flood wave superposition is investigated with regard to magnitude and temporal matching of flood peaks. Our study in Germany and Austria shows that flood wave superposition is not the major driver of flood severity. However, there is the potential for large floods at some confluences in cases of temporal matching of flood peaks.
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019, https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Short summary
We investigate whether flood probabilities in Europe vary for different large-scale atmospheric circulation conditions. Maximum seasonal river flows from 600 gauges in Europe and five synchronous atmospheric circulation indices are analyzed. We find that a high percentage of stations is influenced by at least one of the climate indices, especially during winter. These results can be useful for preparedness and damage planning by (re-)insurance companies.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Björn Guse, Heiko Apel, Heidi Kreibich, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 18, 3089–3108, https://doi.org/10.5194/nhess-18-3089-2018, https://doi.org/10.5194/nhess-18-3089-2018, 2018
Short summary
Short summary
We present a comprehensive sensitivity analysis considering changes along the complete flood risk chain to understand how changes in different drivers affect flood risk. Results show that changes in dike systems or in vulnerability may outweigh changes in often investigated components, such as climate change. Although the specific results are conditional on the case study and assumptions, they highlight the need for a broader consideration of potential drivers of change in a comprehensive way.
Marlies Holkje Barendrecht, Alberto Viglione, Heidi Kreibich, Sergiy Vorogushyn, Bruno Merz, and Günter Blöschl
Proc. IAHS, 379, 193–198, https://doi.org/10.5194/piahs-379-193-2018, https://doi.org/10.5194/piahs-379-193-2018, 2018
Short summary
Short summary
The aim of this paper is to assess whether a Socio-Hydrological model can be calibrated to data artificially generated from it. This is not trivial because the model is highly nonlinear and it is not clear what amount of data would be needed for calibration. We demonstrate that, using Bayesian inference, the parameters of the model can be estimated quite accurately from relatively few data, which could be available in real case studies.
Heiko Apel, Zharkinay Abdykerimova, Marina Agalhanova, Azamat Baimaganbetov, Nadejda Gavrilenko, Lars Gerlitz, Olga Kalashnikova, Katy Unger-Shayesteh, Sergiy Vorogushyn, and Abror Gafurov
Hydrol. Earth Syst. Sci., 22, 2225–2254, https://doi.org/10.5194/hess-22-2225-2018, https://doi.org/10.5194/hess-22-2225-2018, 2018
Short summary
Short summary
Central Asia crucially depends on water resources supplied by snow melt in the mountains during summer. To support water resources management we propose a generic tool for statistical forecasts of seasonal discharge based on multiple linear regressions. The predictors are observed precipitation and temperature, snow coverage, and discharge. The automatically derived models for 13 different catchments provided very skilful forecasts in April, and acceptable forecasts in January.
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Mathias Seibert, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 1611–1629, https://doi.org/10.5194/hess-21-1611-2017, https://doi.org/10.5194/hess-21-1611-2017, 2017
Short summary
Short summary
Seasonal early warning is vital for drought management in arid regions like the Limpopo Basin in southern Africa. This study shows that skilled seasonal forecasts can be achieved with statistical methods built upon driving factors for drought occurrence. These are the hydrological factors for current streamflow and meteorological drivers represented by anomalies in sea surface temperatures of the surrounding oceans, which combine to form unique combinations in the drought forecast models.
Lars Gerlitz, Sergiy Vorogushyn, Heiko Apel, Abror Gafurov, Katy Unger-Shayesteh, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4605–4623, https://doi.org/10.5194/hess-20-4605-2016, https://doi.org/10.5194/hess-20-4605-2016, 2016
Short summary
Short summary
Most statistically based seasonal precipitation forecast models utilize a small set of well-known climate indices as potential predictor variables. However, for many target regions, these indices do not lead to sufficient results and customized predictors are required for an accurate prediction.
This study presents a statistically based routine, which automatically identifies suitable predictors from globally gridded SST and climate variables by means of an extensive data mining procedure.
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016, https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary
Short summary
To understand past flood changes in the Rhine catchment and the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. Here the link between patterns and local climate is tested, and the skill of GCMs in reproducing these patterns is evaluated.
Heidi Kreibich, Kai Schröter, and Bruno Merz
Proc. IAHS, 373, 179–182, https://doi.org/10.5194/piahs-373-179-2016, https://doi.org/10.5194/piahs-373-179-2016, 2016
Heiko Apel, Oriol Martínez Trepat, Nguyen Nghia Hung, Do Thi Chinh, Bruno Merz, and Nguyen Viet Dung
Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, https://doi.org/10.5194/nhess-16-941-2016, 2016
Short summary
Short summary
Many urban areas experience both fluvial and pluvial floods, thus this study aims to analyse fluvial and pluvial flood hazards as well as combined pluvial and fluvial flood hazards. This combined fluvial–pluvial flood hazard analysis is performed in a tropical environment for Can Tho city in the Mekong Delta. The final results are probabilistic hazard maps, showing the maximum inundation caused by floods of different magnitudes along with an uncertainty estimation.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015, https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary
Short summary
Spatially distributed snow-cover data are available only for the recent past from remote sensing. Sometimes we need snow-cover data over a longer period for climate impact analysis for the calibration/validation of hydrological models. In this study we present a methodology to reconstruct snow cover in the past using available long-term in situ data and recently available remote sensing snow-cover data. The results show about 85% accuracy although only a limited number of stations (7) were used.
K. Schröter, M. Kunz, F. Elmer, B. Mühr, and B. Merz
Hydrol. Earth Syst. Sci., 19, 309–327, https://doi.org/10.5194/hess-19-309-2015, https://doi.org/10.5194/hess-19-309-2015, 2015
Short summary
Short summary
Extreme antecedent precipitation, increased initial hydraulic load in the river network and strong but not extraordinary event precipitation were key drivers for the flood in June 2013 in Germany. Our results are based on extreme value statistics and aggregated severity indices which we evaluated for a set of 74 historic large-scale floods. This flood database and the methodological framework enable the rapid assessment of future floods using precipitation and discharge observations.
N. V. Manh, N. V. Dung, N. N. Hung, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, https://doi.org/10.5194/hess-18-3033-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
J. M. Delgado, B. Merz, and H. Apel
Nat. Hazards Earth Syst. Sci., 14, 1579–1589, https://doi.org/10.5194/nhess-14-1579-2014, https://doi.org/10.5194/nhess-14-1579-2014, 2014
S. Uhlemann, A. H. Thieken, and B. Merz
Nat. Hazards Earth Syst. Sci., 14, 189–208, https://doi.org/10.5194/nhess-14-189-2014, https://doi.org/10.5194/nhess-14-189-2014, 2014
S. Vorogushyn and B. Merz
Hydrol. Earth Syst. Sci., 17, 3871–3884, https://doi.org/10.5194/hess-17-3871-2013, https://doi.org/10.5194/hess-17-3871-2013, 2013
A. Domeneghetti, S. Vorogushyn, A. Castellarin, B. Merz, and A. Brath
Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, https://doi.org/10.5194/hess-17-3127-2013, 2013
N. V. Manh, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, https://doi.org/10.5194/hess-17-3039-2013, 2013
D. Duethmann, J. Zimmer, A. Gafurov, A. Güntner, D. Kriegel, B. Merz, and S. Vorogushyn
Hydrol. Earth Syst. Sci., 17, 2415–2434, https://doi.org/10.5194/hess-17-2415-2013, https://doi.org/10.5194/hess-17-2415-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
S. Uhlemann, R. Bertelmann, and B. Merz
Hydrol. Earth Syst. Sci., 17, 895–911, https://doi.org/10.5194/hess-17-895-2013, https://doi.org/10.5194/hess-17-895-2013, 2013
N. V. Dung, B. Merz, A. Bárdossy, and H. Apel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-275-2013, https://doi.org/10.5194/nhessd-1-275-2013, 2013
Revised manuscript not accepted
B. Merz, H. Kreibich, and U. Lall
Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, https://doi.org/10.5194/nhess-13-53-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Scientists as storytellers: the explanatory power of stories told about environmental crises
Back analysis of a building collapse under snow and rain loads in a Mediterranean area
Assessment of building damage and risk under extreme flood scenarios in Shanghai
Towards a global impact-based forecasting model for tropical cyclones
Mangrove ecosystem properties regulate high water levels in a river delta
Analysis of flood warning and evacuation efficiency by comparing damage and life-loss estimates with real consequences related to the São Francisco tailings dam failure in Brazil
Impacts from Hurricane Sandy on New York City in alternative climate-driven event storylines
Estimation of emergency costs for earthquakes and floods in Central Asia based on modelled losses
Criteria-based visualization design for hazard maps
Regional-scale landslide risk assessment in Central-Asia
Low-regret climate change adaptation in coastal megacities – evaluating large-scale flood protection and small-scale rainwater detention measures for Ho Chi Minh City, Vietnam
Modeling compound flood risk and risk reduction using a globally applicable framework: a pilot in the Sofala province of Mozambique
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
Using machine learning algorithms to identify predictors of social vulnerability in the event of a hazard: Istanbul case study
Large-scale risk assessment on snow avalanche hazard in alpine regions
Probabilistic and machine learning methods for uncertainty quantification in power outage prediction due to extreme events
Review article: current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Public intention to participate in sustainable geohazard mitigation: an empirical study based on an extended theory of planned behavior
An assessment of short–medium-term interventions using CAESAR-Lisflood in a post-earthquake mountainous area
Review article: Design and evaluation of weather index insurance for multi-hazard resilience and food insecurity
Design and application of a multi-hazard risk rapid assessment questionnaire for hill communities in the Indian Himalayan region
Identifying the drivers of private flood precautionary measures in Ho Chi Minh City, Vietnam
Cost estimation for the monitoring instrumentalization of Landslide Early Warning Systems
Performance of the flood warning system in Germany in July 2021 – insights from affected residents
Differences in volcanic risk perception among Goma's population before the Nyiragongo eruption of May 2021, Virunga volcanic province (DR Congo)
Empirical tsunami fragility modelling for hierarchical damage levels
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
The Role of Response Efficacy and Self-efficacy in Disaster Preparedness Actions for Vulnerable Households
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa
Identifying Vulnerable Population in the Urban Society: a Case Study of Wuhan, China
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Tsunami risk perception in central and southern Italy
Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Process-based flood damage modelling relying on expert knowledge: a methodological contribution applied to the agricultural sector
Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: a case study of typhoon–rainstorm hazards in Shenzhen, China
Integrated seismic risk assessment in Nepal
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Spatial accessibility of emergency medical services under inclement weather: A case study in Beijing, China
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Jenni Barclay, Richie Robertson, and M. Teresa Armijos
Nat. Hazards Earth Syst. Sci., 23, 3603–3615, https://doi.org/10.5194/nhess-23-3603-2023, https://doi.org/10.5194/nhess-23-3603-2023, 2023
Short summary
Short summary
Stories create avenues for sharing the meanings and social implications of scientific knowledge. We explore their value when told between scientists during a volcanic eruption. They are important vehicles for understanding how risk is generated during volcanic eruptions and create new knowledge about these interactions. Stories explore how risk is negotiated when scientific information is ambiguous or uncertain, identify cause and effect, and rationalize the emotional intensity of a crisis.
Isabelle Ousset, Guillaume Evin, Damien Raynaud, and Thierry Faug
Nat. Hazards Earth Syst. Sci., 23, 3509–3523, https://doi.org/10.5194/nhess-23-3509-2023, https://doi.org/10.5194/nhess-23-3509-2023, 2023
Short summary
Short summary
This paper deals with an exceptional snow and rain event in a Mediterranean region of France which is usually not prone to heavy snowfall and its consequences on a particular building that collapsed completely. Independent analyses of the meteorological episode are carried out, and the response of the building to different snow and rain loads is confronted to identify the main critical factors that led to the collapse.
Jiachang Tu, Jiahong Wen, Liang Emlyn Yang, Andrea Reimuth, Stephen S. Young, Min Zhang, Luyang Wang, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 23, 3247–3260, https://doi.org/10.5194/nhess-23-3247-2023, https://doi.org/10.5194/nhess-23-3247-2023, 2023
Short summary
Short summary
This paper evaluates the flood risk and the resulting patterns in buildings following low-probability, high-impact flood scenarios by a risk analysis chain in Shanghai. The results provide a benchmark and also a clear future for buildings with respect to flood risks in Shanghai. This study links directly to disaster risk management, e.g., the Shanghai Master Plan. We also discussed different potential adaptation options for flood risk management.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2205, https://doi.org/10.5194/egusphere-2023-2205, 2023
Short summary
Short summary
In this work, we improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid and using only features which are globally available. We show that our two-stage model conserves the performance of the original, and even has the potential of introducing savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Ignace Pelckmans, Jean-Philippe Belliard, Luis E. Dominguez-Granda, Cornelis Slobbe, Stijn Temmerman, and Olivier Gourgue
Nat. Hazards Earth Syst. Sci., 23, 3169–3183, https://doi.org/10.5194/nhess-23-3169-2023, https://doi.org/10.5194/nhess-23-3169-2023, 2023
Short summary
Short summary
Mangroves are increasingly recognized as a coastal protection against extreme sea levels. Their effectiveness in doing so, however, is still poorly understood, as mangroves are typically located in tropical countries where data on mangrove vegetation and topography properties are often scarce. Through a modelling study, we identified the degree of channelization and the mangrove forest floor topography as the key properties for regulating high water levels in a tropical delta.
André Felipe Rocha Silva and Julian Cardoso Eleutério
Nat. Hazards Earth Syst. Sci., 23, 3095–3110, https://doi.org/10.5194/nhess-23-3095-2023, https://doi.org/10.5194/nhess-23-3095-2023, 2023
Short summary
Short summary
This work evaluates the application of flood consequence models through their application in a real case related to a tailings dam failure. Furthermore, we simulated the implementation of less efficient alert systems on life-loss alleviation. The results revealed that the models represented the event well and were able to estimate the relevance of implementing efficient alert systems. They highlight that their use may be an important tool for new regulations for dam safety legislation.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
EGUsphere, https://doi.org/10.5194/egusphere-2023-2032, https://doi.org/10.5194/egusphere-2023-2032, 2023
Short summary
Short summary
We explore how Hurricane Sandy (2012) could affect New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into modelling framework, offering insights for high-impact event assessments.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-135, https://doi.org/10.5194/nhess-2023-135, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in Central Asia, being the first time that these estimates are made available for the study area, and are intended to be useful for regional and local stakeholders and decision makers.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-106, https://doi.org/10.5194/nhess-2023-106, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows to identify where high losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for Central-Asia and it surely represents an advance step in the field of risk analysis for very large areas. Our findings show a total risk of about 3.9 billion USD and a mean risk of 0.6 million USD per square kilometer.
Leon Scheiber, Christoph Gabriel David, Mazen Hoballah Jalloul, Jan Visscher, Hong Quan Nguyen, Roxana Leitold, Javier Revilla Diez, and Torsten Schlurmann
Nat. Hazards Earth Syst. Sci., 23, 2333–2347, https://doi.org/10.5194/nhess-23-2333-2023, https://doi.org/10.5194/nhess-23-2333-2023, 2023
Short summary
Short summary
Like many other megacities in low-elevation coastal zones, Ho Chi Minh City in southern Vietnam suffers from the convoluting impact of changing environmental stressors and rapid urbanization. This study assesses quantitative hydro-numerical results against the background of the low-regret paradigm for (1) a large-scale flood protection scheme as currently constructed and (2) the widespread implementation of small-scale rainwater detention as envisioned in the Chinese Sponge City Program.
Dirk Eilander, Anaïs Couasnon, Frederiek C. Sperna Weiland, Willem Ligtvoet, Arno Bouwman, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 2251–2272, https://doi.org/10.5194/nhess-23-2251-2023, https://doi.org/10.5194/nhess-23-2251-2023, 2023
Short summary
Short summary
This study presents a framework for assessing compound flood risk using hydrodynamic, impact, and statistical modeling. A pilot in Mozambique shows the importance of accounting for compound events in risk assessments. We also show how the framework can be used to assess the effectiveness of different risk reduction measures. As the framework is based on global datasets and is largely automated, it can easily be applied in other areas for first-order assessments of compound flood risk.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 23, 2203–2228, https://doi.org/10.5194/nhess-23-2203-2023, https://doi.org/10.5194/nhess-23-2203-2023, 2023
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Oya Kalaycıoğlu, Serhat Emre Akhanlı, Emin Yahya Menteşe, Mehmet Kalaycıoğlu, and Sibel Kalaycıoğlu
Nat. Hazards Earth Syst. Sci., 23, 2133–2156, https://doi.org/10.5194/nhess-23-2133-2023, https://doi.org/10.5194/nhess-23-2133-2023, 2023
Short summary
Short summary
The associations between household characteristics and hazard-related social vulnerability in Istanbul, Türkiye, were assessed using machine learning techniques. The results indicated that less educated households with no social security and job insecurity that live in squatter houses are at a higher risk of social vulnerability. We present the findings in an open-access R Shiny web application, which can serve as a guidance for identifying the target groups in the interest of risk mitigation.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Prateek Arora and Luis Ceferino
Nat. Hazards Earth Syst. Sci., 23, 1665–1683, https://doi.org/10.5194/nhess-23-1665-2023, https://doi.org/10.5194/nhess-23-1665-2023, 2023
Short summary
Short summary
Power outage models can help utilities manage risks for outages from hurricanes. Our article reviews the existing outage models during hurricanes and highlights their strengths and limitations. Existing models can give erroneous estimates with outage predictions larger than the number of customers, can struggle with predictions for catastrophic hurricanes, and do not adequately represent infrastructure failure's uncertainties. We suggest models for the future that can overcome these challenges.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
EGUsphere, https://doi.org/10.5194/egusphere-2023-504, https://doi.org/10.5194/egusphere-2023-504, 2023
Short summary
Short summary
This paper critically reviews disaster recovery literature to provide a basis to develop multi-hazard recovery planning tools for decision-making. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, low consideration of disaster recovery as a non-linear process in which communities need change over time.
Huige Xing, Ting Que, Yuxin Wu, Shiyu Hu, Haibo Li, Hongyang Li, Martin Skitmore, and Nima Talebian
Nat. Hazards Earth Syst. Sci., 23, 1529–1547, https://doi.org/10.5194/nhess-23-1529-2023, https://doi.org/10.5194/nhess-23-1529-2023, 2023
Short summary
Short summary
Disaster risk reduction requires public power. The aim of this study is to investigate the factors influencing the public's intention to participate in disaster risk reduction. An empirical study was conducted using structural equation modeling data analysis methods. The findings show that public attitudes, perceptions of those around them, ability to participate, and sense of participation are important factors.
Di Wang, Ming Wang, Kai Liu, and Jun Xie
Nat. Hazards Earth Syst. Sci., 23, 1409–1423, https://doi.org/10.5194/nhess-23-1409-2023, https://doi.org/10.5194/nhess-23-1409-2023, 2023
Short summary
Short summary
The short–medium-term intervention effect on the post-earthquake area was analysed by simulations in different scenarios. The sediment transport patterns varied in different sub-regions, and the relative effectiveness in different scenarios changed over time with a general downward trend, where the steady stage implicated the scenario with more facilities performing better in controlling sediment output. Therefore, the simulation methods could support optimal rehabilitation strategies.
Marcos Roberto Benso, Gabriela Chiquito Gesualdo, Roberto Fray Silva, Greicelene Jesus Silva, Luis Miguel Castillo Rápalo, Fabricio Alonso Richmond Navarro, Patricia Angélica Alves Marques, José Antônio Marengo, and Eduardo Mario Mendiondo
Nat. Hazards Earth Syst. Sci., 23, 1335–1354, https://doi.org/10.5194/nhess-23-1335-2023, https://doi.org/10.5194/nhess-23-1335-2023, 2023
Short summary
Short summary
This article is about how farmers can better protect themselves from disasters like droughts, extreme temperatures, and floods. The authors suggest that one way to do this is by offering insurance contracts that cover these different types of disasters. By having this insurance, farmers can receive financial support and recover more quickly. The article elicits different ideas about how to design this type of insurance and suggests ways to make it better.
Shivani Chouhan and Mahua Mukherjee
Nat. Hazards Earth Syst. Sci., 23, 1267–1286, https://doi.org/10.5194/nhess-23-1267-2023, https://doi.org/10.5194/nhess-23-1267-2023, 2023
Short summary
Short summary
The Himalayas are prone to multi-hazards. To minimise loss, proper planning and execution are necessary. Data collection is the basis of any risk assessment process. This enhanced survey form is easy to understand and pictorial and identifies high-risk components of any building (structural and non-structural) surrounded by multi-hazards. Its results can help to utilise the budget in a prioritised way. A SWOT (strengths, weaknesses, threats and opportunities) analysis has been performed.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023, https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood-prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourage the households to adopt measures without having to experience multiple flood events.
Marta Sapena, Mortiz Gamperl, Marlene Kühnl, Carolina Garcia-Londoño, John Singer, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-41, https://doi.org/10.5194/nhess-2023-41, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
A new approach for the deployment of Early Warning Systems (EWSs) in landslide-prone areas is proposed. We combine data-driven landslide susceptibility mapping and population maps to identify high-risk locations. We estimate the cost of monitoring sensors and demonstrate that EWSs could be installed with a budget ranging from €5 to €41 per person in Medellín, Colombia. We provide recommendations for stakeholders and outlines the challenges and opportunities for successful EWS implementation.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023, https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP), calling their warning system into question. An online survey revealed that 35 % of respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving Germany's warning system.
Blaise Mafuko Nyandwi, Matthieu Kervyn, François Muhashy Habiyaremye, François Kervyn, and Caroline Michellier
Nat. Hazards Earth Syst. Sci., 23, 933–953, https://doi.org/10.5194/nhess-23-933-2023, https://doi.org/10.5194/nhess-23-933-2023, 2023
Short summary
Short summary
Risk perception involves the processes of collecting, selecting and interpreting signals about the uncertain impacts of hazards. It may contribute to improving risk communication and motivating the protective behaviour of the population living near volcanoes. Our work describes the spatial variation and factors influencing volcanic risk perception of 2204 adults of Goma exposed to Nyiragongo. It contributes to providing a case study for risk perception understanding in the Global South.
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
Nat. Hazards Earth Syst. Sci., 23, 909–931, https://doi.org/10.5194/nhess-23-909-2023, https://doi.org/10.5194/nhess-23-909-2023, 2023
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation and fragility model selection.
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023, https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary
Short summary
Flood risk is expected to increase in many regions worldwide due to rapid urbanization and climate change. The benefits of risk-mitigation measures remain inadequately quantified for potential future events in some multi-hazard-prone areas such as Kathmandu Valley (KV), Nepal, which this paper addresses. The analysis involves modeling two flood occurrence scenarios and using four residential exposure inventories representing current urban system or near-future development trajectories for KV.
Dong Qiu, Binglin Lv, Yuepeng Cui, and Zexiong Zhan
EGUsphere, https://doi.org/10.5194/egusphere-2022-1349, https://doi.org/10.5194/egusphere-2022-1349, 2023
Short summary
Short summary
This paper divides preparedness behavior into minimal and adequate preparedness. In addition to studying the main factors that promote families' disaster preparedness, we also study the moderating effects of response and self-efficacy on preparedness actions by vulnerable families. Based on the findings of this study policymakers can target interventions and programs that can be designed to remedy the current lack of disaster preparedness education for vulnerable families.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-8, https://doi.org/10.5194/nhess-2023-8, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The manuscript deals with the necessity to understand to what extent the analysis of stakeholders' opinions in survey results is affected by the choices that researchers make. We look at four technologies that are objects to increased interest in the field of disaster risk management and find that different methodologies indeed produce different preferences over these. This work should pose as a warning to further research that seek to evaluate tools and technologies using survey results.
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
Nat. Hazards Earth Syst. Sci., 23, 481–505, https://doi.org/10.5194/nhess-23-481-2023, https://doi.org/10.5194/nhess-23-481-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, there is reported uptake of at least one nature-based solution (NBS) in 71 % of urban areas in the region for mitigating hydro-meteorological risks. These NBSs are implemented where risks exist but not where they are most severe. With these NBSs providing multiple ecosystem services and four out of every five NBSs creating livelihood opportunities, NBSs can help address major development challenges in the region, such as water and food insecurity and unemployment.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-277, https://doi.org/10.5194/nhess-2022-277, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and the use of cluster analysis, this research has assessed the level of social vulnerability of 599 residents in 11 communities in the Hongshan District of Wuhan. Quantitative assessments offer comparisons specifically between distinct units and, the results indicate that different types of communities have great differences in social vulnerability.
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023, https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Short summary
This paper proves the need to conduct an in-depth review of the existing loss modelling framework and makes it clear that only a transdisciplinary effort will be up to the challenge of building global loss models. These two factors are essential to capture the interactions and increasing complexity of the three risk drivers (exposure, hazard, and vulnerability), thus enabling insurers to anticipate and be equipped to face the far-ranging impacts of climate change and other natural events.
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023, https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Short summary
This study aims to provide a practical and relatively fast solution for early-stage planning of marine infrastructure that must cross a faulted zone. Instead of investing huge efforts in finding whether each specific fault meets a pre-defined criterion of activeness, we map the subsurface and determine the levels of fault hazard based on the amount of displacement and the fault's plane size. This allows for choosing the least problematic infrastructure routes at an early planning stage.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Lorenzo Cugliari, Massimo Crescimbene, Federica La Longa, Andrea Cerase, Alessandro Amato, and Loredana Cerbara
Nat. Hazards Earth Syst. Sci., 22, 4119–4138, https://doi.org/10.5194/nhess-22-4119-2022, https://doi.org/10.5194/nhess-22-4119-2022, 2022
Short summary
Short summary
The Tsunami Alert Centre of the National Institute of Geophysics and Volcanology (CAT-INGV) has been promoting the study of tsunami risk perception in Italy since 2018. A total of 7342 questionnaires were collected in three survey phases (2018, 2020, 2021). In this work we present the main results of the three survey phases, with a comparison among the eight surveyed regions and between the coastal regions and some coastal metropolitan cities involved in the survey.
Elco E. Koks, Kees C. H. van Ginkel, Margreet J. E. van Marle, and Anne Lemnitzer
Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, https://doi.org/10.5194/nhess-22-3831-2022, 2022
Short summary
Short summary
This study provides an overview of the impacts to critical infrastructure and how recovery has progressed after the July 2021 flood event in Germany, Belgium and the Netherlands. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. This study helps to better understand how infrastructure can be affected by flooding and can be used for validation purposes for future studies.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Wenwu Gong, Jie Jiang, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 3271–3283, https://doi.org/10.5194/nhess-22-3271-2022, https://doi.org/10.5194/nhess-22-3271-2022, 2022
Short summary
Short summary
We propose a model named variable fuzzy set and information diffusion (VFS–IEM–IDM) to assess the dynamic risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards. To examine the efficacy of the proposed VFS–IEM–IDM model, a case study of typhoon–rainstorm risks in Shenzhen, China, is presented.
Sanish Bhochhibhoya and Roisha Maharjan
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, https://doi.org/10.5194/nhess-22-3211-2022, https://doi.org/10.5194/nhess-22-3211-2022, 2022
Short summary
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-218, https://doi.org/10.5194/nhess-2022-218, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of the emergency medical services and identifying the vulnerable areas that could not get timely emergency medical services under inclement weather. And we found that inclement weather could reduce the accessibility of emergency medical services by up to 40 %. Besides, towns with lower baseline EMS accessibility is more vulnerable to inclement weather.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022, https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Short summary
Mass livestock mortality during severe winters (dzud in Mongolian) is a compound event. Summer droughts are a precondition for dzud. We estimate the return levels of relevant variables: summer drought conditions and minimum winter temperature. The result shows that the return levels of drought conditions vary over time. Winter severity, however, is constant. We link climatic factors to socioeconomic impacts and draw attention to the need for index insurance.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Cited articles
Abbott, M. B. and Ionescu, F.: On the numerical computation of nearly
horizontal flows, J. Hydraul. Res., 5, 97–117, 1967.
Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B.,
and Dung, N. V.: Combined fluvial and pluvial urban flood hazard analysis:
concept development and application to Can Tho city, Mekong Delta,
Vietnam, Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, 2016.
Aronica, G., Bates, P., and Horritt, M.: Assessing the uncertainty in
distributed model predictions using observed binary pattern information
within GLUE, Hydrol. Process., 16, 2001–2016, 2002.
Bouvet, A. and Le Toan, T.: Use of ENVISAT/ASAR wide-swath data for timely
rice fields mapping in the Mekong River Delta, Remote Sens.
Environ., 115, 1090–1101, https://doi.org/10.1016/j.rse.2010.12.014, 2011.
Bouvet, A., Le Toan, T., and Nguyen, L. D.: Monitoring of the Rice Cropping
System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data, IEEE
T. Geosci. Remote, 47, 10,
https://doi.org/10.1109/TGRS.2008.2007963, 2009.
Brandt, S. A.: Modeling and visualizing uncertainties of flood boundary
delineation: algorithm for slope and DEM resolution dependencies of 1D
hydraulic models, Stoch. Env. Res. Risk A., 30,
1677–1690, https://doi.org/10.1007/s00477-016-1212-z, 2016.
Chinh, D., Dung, N., Gain, A., and Kreibich, H.: Flood Loss Models and Risk
Analysis for Private Households in Can Tho City, Vietnam, Water, 9, 313,
2017.
Chinh, D. T., Bubeck, P., Dung, N. V., and Kreibich, H.: The 2011 flood event
in the Mekong Delta: preparedness, response, damage and recovery of private
households and small businesses, Disasters, 40, 753–778, https://doi.org/10.1111/disa.12171, 2016.
Dang, T. D., Cochrane, T. A., Arias, M. E., and Tri, V. P. D.: Future
hydrological alterations in the Mekong Delta under the impact of water
resources development, land subsidence and sea level rise, J.
Hydrol.-Regional Studies, 15, 119–133, https://doi.org/10.1016/j.ejrh.2017.12.002, 2018.
Delgado, J. M., Apel, H., and Merz, B.: Flood trends and variability in
the Mekong river, Hydrol. Earth Syst. Sci., 14, 407–418, https://doi.org/10.5194/hess-14-407-2010, 2010.
Deltares: Mekong Delta Plan, Long-term vision and strategy for a safe,
prosperous and sustainable delta, available at:
https://www.deltares.nl/app/uploads/2014/01/Mekong-delta-plan-Long-term-vision-and-strategy.pdf (last access: 20 July 2018), 126, 2013.
Dinh, Q., Balica, S., Popescu, I., and Jonoski, A.: Climate change impact on
flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the
Mekong Delta, International Journal of River Basin Management, 10, 103–120,
2012.
Dung, N. V., Merz, B., Bárdossy, A., Thang, T. D., and Apel, H.: Multi-objective
automatic calibration of hydrodynamic models utilizing inundation maps and gauge
data, Hydrol. Earth Syst. Sci., 15, 1339–1354, https://doi.org/10.5194/hess-15-1339-2011, 2011.
Dung, N. V., Merz, B., Bárdossy, A., and Apel, H.: Handling uncertainty
in bivariate quantile estimation – An application to flood hazard analysis in
the Mekong Delta, J. Hydrol., 527, 704–717, 2015.
Dutta, D., Herath, S., and Musiake, K.: A mathematical model for flood loss
estimation, J. Hydrol., 277, 24–49, 2003.
Förster, S., Kuhlmann, B., Lindenschmidt, K.-E., and Bronstert, A.:
Assessing flood risk for a rural detention area, Nat. Hazards Earth Syst. Sci., 8, 311–322, https://doi.org/10.5194/nhess-8-311-2008, 2008.
GSO: Statistical handbook of Vietnam 2015, General statistics office of Viet
Nam, 2015.
Hak, D., Nadaoka, K., Patrick Bernado, L., Le Phu, V., Hong Quan, N., Quang
Toan, T., Hieu Trung, N., Van Ni, D., and Pham Dang Tri, V.: Spatio-temporal
variations of sea level around the Mekong Delta: their causes and
consequences on the coastal environment, Hydrological Research Letters, 10,
60–66, 2016.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate
change, Nat. Clim. Change, 3, 816, https://doi.org/10.1038/nclimate1911,
2013.
Howie, C.: High dykes in the Mekong Delta in Vietnam bring social gains and
environmental pains, Aquaculture News, 32, 15–17, 2005.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Hung, N. N., Delgado, J. M., Tri, V. K., Hung, L. M., Merz, B.,
Bárdossy, A., and Apel, H.: Floodplain hydrology of the Mekong Delta,
Vietnam, Hydrol. Process., 26, 674–686, https://doi.org/10.1002/hyp.8183, 2012.
Käkönen, M.: Mekong Delta at the crossroads: more control or
adaptation?, AMBIO, 37, 205–212, 2008.
Klaus, S., Kreibich, H., Merz, B., Kuhlmann, B., and Schröter, K.:
Large-scale, seasonal flood risk analysis for agricultural crops in Germany,
Environ. Earth Sci., 75, 1289, https://doi.org/10.1007/s12665-016-6096-1, 2016.
Kotera, A., Nagano, T., Hanittinan, P., and Koontanakulvong, S.: Assessing
the degree of flood damage to rice crops in the Chao Phraya delta, Thailand,
using MODIS satellite imaging, Paddy Water Environ., 14, 271–280, 2016.
Laura, E. E., Steven, M. G., and Howard, A. Z.: Groundwater extraction, land subsidence,
and sea-level rise in the Mekong Delta, Vietnam, Environmental Research Letters, 9, 084010, 2014.
Le, T. N., Bregt, A. K., van Halsema, G. E., Hellegers, P. J. G. J., and
Nguyen, L.-D.: Interplay between land-use dynamics and changes in
hydrological regime in the Vietnamese Mekong Delta, Land Use Policy, 73,
269–280, https://doi.org/10.1016/j.landusepol.2018.01.030,
2018.
Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C., and Haruyama, S.:
The combined impact on the flooding in Vietnam's Mekong River delta of local
man-made structures, sea level rise, and dams upstream in the river
catchment, Estuar. Coast. Shelf Sci., 71, 110–116, https://doi.org/10.1016/j.ecss.2006.08.021, 2007.
Leinenkugel, P., Kuenzer, C., Oppelt, N., and Dech, S.: Characterisation of
land surface phenology and land cover based on moderate resolution satellite
data in cloud prone areas – A novel product for the Mekong Basin, Remote
Sens. Environ., 136, 180–198, https://doi.org/10.1016/j.rse.2013.05.004, 2013.
Manh, N. V., Merz, B., and Apel, H.: Sedimentation monitoring including uncertainty
analysis in complex floodplains: a case study in the Mekong
Delta, Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, 2013.
Manh, N. V., Dung, N. V., Hung, N. N., Merz, B., and Apel, H.: Large-scale suspended
sediment transport and sediment deposition in the Mekong
Delta, Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, 2014.
Merz, B., Elmer, F., and Thieken, A. H.: Significance of “high probability/low damage” versus “low probability/high damage”
flood events, Nat. Hazards Earth Syst. Sci., 9, 1033–1046, https://doi.org/10.5194/nhess-9-1033-2009, 2009.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic
flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H.,
and Stouthamer, E.: Impacts of 25 years of groundwater extraction on subsidence
in the Mekong delta, Vietnam, Environ. Res. Lett., 12, 064006, https://doi.org/10.1088/1748-9326/aa7146, 2017.
MRC: Flood Damages, Benefits and Flood Risk in Focal Areas, Mekong River
Commission, 184 pp., 2009.
MRC: Flood situation report 2011, MRC Technical Paper No. 36, Mekong River
Commission, Phnom Phenh, 57 pp., 2011.
MRC: The Impact and Management of Floods and Droughts in the Lower Mekong
Basin and The Implications of Possible Climate Change, Mekong River
Commission, 129 pp., 2012.
Nguyen, D. B., Clauss, K., Cao, S. M., Naeimi, V., Kuenzer, C., and Wagner, W.:
Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data, Remote Sensing, 7, 15868–15893, https://doi.org/10.3390/rs71215808, 2015.
Penning-Rowsell, E. C., Wilson, T., and Centre, F. H. R.: The benefits of
flood and coastal defence: techniques and data for 2003, Middlesex
University, London, UK, 2003.
Sampson, C. C., Smith, A. M., Bates, P. B., Neal, J. C., Alfieri, L., and
Freer, J. E.: A high-resolution global flood hazard model, Water Resour.
Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015.
Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., and
Merz, B.: How useful are complex flood damage models?, Water Resour.
Res., 50, 3378–3395, 2014.
Smajgl, A., Toan, T. Q., Nhan, D. K., Ward, J., Trung, N. H., Tri, L. Q.,
Tri, V. P. D., and Vu, P. T.: Responding to rising sea levels in the Mekong
Delta, Nat. Clim. Change, 5, 167–174, https://doi.org/10.1038/nclimate2469, 2015.
The Government of Viet Nam: Decision No. 99/TTg on water resources,
infrastructure and rural development plan for the Vietnamese Mekong Delta
during the period 1996–2000, 1996 (in Vietnamese).
The Government of Viet Nam: Decision No. 315/TTg on pilot programme for
agriculture insurance in Vietnam, 2011 (in Vietnamese).
Tinh, D. N.: 2011 flood lesson leraned in Vietnam, Presentation at 2012
South-East-Asia Flood Risk Reduction Forum, Vietnam, 19, 2012.
Toan, T. Q.: Climate Change and Sea Level Rise in the Mekong Delta: Flood,
Tidal Inundation, Salinity Intrusion, and Irrigation Adaptation Methods, in:
Coastal Disasters and Climate Change in Vietnam, edited by: Esteban, N. D.
T., Hiroshi Takagi Miguel, Elsevier, Oxford, 199–218, 2014.
Tran, D. D., van Halsema, G., Hellegers, P. J. G. J., Ludwig, F., and Wyatt,
A.: Questioning triple rice intensification on the Vietnamese mekong delta
floodplains: An environmental and economic analysis of current land-use
trends and alternatives, J. Environ. Manage., 217, 429–441,
https://doi.org/10.1016/j.jenvman.2018.03.116, 2018.
Tri, V.: Hydrology and Hydraulic Infrastructure Systems in the Mekong Delta,
Vietnam, in: The Mekong Delta System, edited by: Renaud, F. G. and Kuenzer,
C., Springer Environmental Science and Engineering, Springer Netherlands,
49–81, 2012.
Triet, N. V. K., Dung, N. V., Fujii, H., Kummu, M., Merz, B., and Apel, H.:
Has dyke development in the Vietnamese Mekong Delta shifted flood hazard
downstream?, Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, 2017.
Van, P. D. T., Popescu, I., van Griensven, A., Solomatine, D. P., Trung, N. H., and Green, A.:
A study of the climate change impacts on fluvial flood propagation in the
Vietnamese Mekong Delta, Hydrol. Earth Syst. Sci., 16, 4637–4649, https://doi.org/10.5194/hess-16-4637-2012, 2012.
Van, T. C.: Identification of sea level rise impacts on the Mekong Delta and
orientation of adaptation activities, 2009.
Ward, P. J., de Moel, H., and Aerts, J. C. J. H.: How are flood risk estimates
affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-11-3181-2011, 2011.
Xo, L. Q., Hien, N. X., Thanh, N. D., Ngoc, B., Khoi, N. H., Lam, D. T.,
Khoi, T. M., Tien, H. T., and Uyen, N. T.: Mekong Delta flood management
plan to 2020 and 2030, Southern Institute of Water Resources
Planning, Hochiminh City, Vietnam, 2015 (in Vietnamese).
Short summary
In this study we provide an estimation of flood damages and risks to rice cultivation in the Mekong Delta. The derived modelling concept explicitly takes plant phenomenology and timing of floods in a probabilistic modelling framework into account. This results in spatially explicit flood risk maps to rice cultivation, quantified as expected annual damage. Furthermore, the changes in flood risk of two land-use scenarios were estimated and discussed.
In this study we provide an estimation of flood damages and risks to rice cultivation in the...
Special issue
Altmetrics
Final-revised paper
Preprint