Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-2859-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-18-2859-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards risk-based flood management in highly productive paddy rice cultivation – concept development and application to the Mekong Delta
Nguyen Van Khanh Triet
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
SIWRR Southern Institute of Water Resources Research, Ho Chi Minh City, Vietnam
Nguyen Viet Dung
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
Bruno Merz
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
Institute of Earth and Environmental Science, University of Potsdam, Potsdam, 14476, Germany
Heiko Apel
GFZ German Research Centre for Geosciences, Section 5.4 Hydrology, Potsdam, 14473, Germany
Related authors
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Shahin Khosh Bin Ghomash, Nithila Devi Nallasamy, and Heiko Apel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-314, https://doi.org/10.5194/hess-2024-314, 2024
Preprint under review for HESS
Short summary
Short summary
Urbanization and climate change raise flood risk in cities, emphasizing the need for accurate building representation in flood hydrodynamic models. We examine the effects of different building representation techniques on flood modeling using the 2021 Ahr Valley flood data. We demonstrate that building representation significantly affects flood extent and flow dynamics, highlighting the need to choose the appropriate method based on model resolution for effective flood impact assessments.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-183, https://doi.org/10.5194/nhess-2024-183, 2024
Preprint under review for NHESS
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Shahin Khosh Bin Ghomash, Patricio Yeste, Heiko Apel, and Viet Dung Nguyen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-77, https://doi.org/10.5194/nhess-2024-77, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Hydrodynamic models are vital for predicting floods, like those in Germany's Ahr region in July 2021. We refine an RIM2D model for the Ahr region, analyzing the impact of various factors using Monte Carlo simulations. Accurate parameter assignment is crucial, with channel roughness and resolution playing key roles. Coarser resolutions are suitable for flood extent predictions, aiding early warning systems. Our work provides guidelines for optimizing hydrodynamic models in the Ahr region.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024, https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Short summary
Early warning is essential to minimise the impact of flash floods. We explore the use of highly detailed flood models to simulate the 2021 flood event in the lower Ahr valley (Germany). Using very high-resolution models resolving individual streets and buildings, we produce detailed, quantitative, and actionable information for early flood warning systems. Using state-of-the-art computational technology, these models can guarantee very fast forecasts which allow for sufficient time to respond.
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143, https://doi.org/10.5194/nhess-2024-143, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
We evaluated a multi-site stochastic regional weather generator (nsRWG) for its ability to capture the cross-scale extremity of high precipitation events (HPEs) in Germany. We generated 100 realizations of 72 years of daily synthetic precipitation data. The performance was assessed using WEI and xWEI indices, which measure event extremity across spatio-temporal scales. Results show nsRWG simulates well the extremity patterns of HPEs, though it overestimates short-duration, small-extent events.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-139, https://doi.org/10.5194/nhess-2024-139, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This work introduces RIM2D, a hydrodynamic model for precise and rapid flood predictions, ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-181, https://doi.org/10.5194/hess-2024-181, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Flood peak distributions indicate how likely the occurrence of an extreme flood is at a certain river. If the distribution has a so-called heavy tail, extreme floods are more likely than might be anticipated. We find heavier tails in small compared to large catchments, and that spatially variable rainfall leads to a lower occurrence probability of extreme floods. Spatially variable runoff does not show an effect. The results can improve estimations of occurrence probabilities of extreme floods.
Atabek Umirbekov, Mayra Daniela Peña-Guerrero, Iulii Didovets, Heiko Apel, Abror Gafurov, and Daniel Müller
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-174, https://doi.org/10.5194/hess-2024-174, 2024
Revised manuscript under review for HESS
Short summary
Short summary
In snowmelt-dominated catchments, predicting river streamflow typically relies on accumulated snowpack. Our study shows that including large-scale climate patterns like El Niño can improve these predictions. We analyzed climate oscillations, seasonal rainfall, and streamflow, then used these insights and snowpack data in a machine learning model to forecast river streamflow. This method yielded more accurate predictions, useful for long-term forecasting or when snowpack estimates are uncertain.
Hung Nghia Nguyen, Quan Quan Le, Dung Viet Nguyen, Tan Hong Cao, Toan Quang To, Hai Do Dac, Melissa Wood, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-107, https://doi.org/10.5194/nhess-2024-107, 2024
Preprint under review for NHESS
Short summary
Short summary
The paper focuses on inundation process in a highest climate vulnerability area of the Mekong Delta, main drivers and future impacts, this is importance alert to decision makers and stakeholder for investment of infrastructure, adaptation approaches and mitigating impacts.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-97, https://doi.org/10.5194/nhess-2024-97, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
The July 2021 flood in Central Europe was one of the deadliest floods in Europe in the past decades and the most expensive flood in Germany. In this paper we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory was only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps better prepare for future extreme floods.
Seth Bryant, Heidi Kreibich, and Bruno Merz
Proc. IAHS, 386, 181–187, https://doi.org/10.5194/piahs-386-181-2024, https://doi.org/10.5194/piahs-386-181-2024, 2024
Short summary
Short summary
Our study found that simplifying data in flood risk models can introduce errors. We tested 344 damage functions and found errors up to 40 % of the total asset value. This means large-scale flood risk assessments may have significant errors due to the modelling approach. Our research highlights the need for more attention to data aggregation in flood risk models.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022, https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Short summary
The paper presents a fast 2D hydraulic simulation model for flood propagation that enables operational forecasts of spatially distributed inundation depths, flood extent, flow velocities, and other flood impacts. The detailed spatial forecast of floods and flood impacts is a large step forward from the currently operational forecasts of discharges at selected gauges, thus enabling a more targeted flood management and early warning.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Abhirup Banerjee, Bedartha Goswami, Yoshito Hirata, Deniz Eroglu, Bruno Merz, Jürgen Kurths, and Norbert Marwan
Nonlin. Processes Geophys., 28, 213–229, https://doi.org/10.5194/npg-28-213-2021, https://doi.org/10.5194/npg-28-213-2021, 2021
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Short summary
We estimate the contribution of extreme precipitation, antecedent soil moisture and snowmelt to changes in small and large floods across Europe.
In northwestern and eastern Europe, changes in small and large floods are driven mainly by one single driver (i.e. extreme precipitation and snowmelt, respectively). In southern Europe both antecedent soil moisture and extreme precipitation significantly contribute to flood changes, and their relative importance depends on flood magnitude.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Zhihua He, Katy Unger-Shayesteh, Sergiy Vorogushyn, Stephan M. Weise, Doris Duethmann, Olga Kalashnikova, Abror Gafurov, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 3289–3309, https://doi.org/10.5194/hess-24-3289-2020, https://doi.org/10.5194/hess-24-3289-2020, 2020
Short summary
Short summary
Quantifying the seasonal contributions of the runoff components, including groundwater, snowmelt, glacier melt, and rainfall, to streamflow is highly necessary for understanding the dynamics of water resources in glacierized basins given the vulnerability of snow- and glacier-dominated environments to the current climate warming. Our study provides the first comparison of two end-member mixing approaches for hydrograph separation in glacierized basins.
Heiko Apel, Mai Khiem, Nguyen Hong Quan, and To Quang Toan
Nat. Hazards Earth Syst. Sci., 20, 1609–1616, https://doi.org/10.5194/nhess-20-1609-2020, https://doi.org/10.5194/nhess-20-1609-2020, 2020
Short summary
Short summary
This study deals with salinity intrusion in the Mekong Delta, a pressing issue in the third-largest river delta on Earth. It presents a simple, efficient, and cross-validated seasonal forecast model for salinity intrusion during the dry season based on logistic regression using ENSO34 or standardized streamflow indexes as predictors. The model performs exceptionally well, enabling a reliable forecast of critical salinity threshold exceedance up to 9 months prior to the dry season.
Ankit Agarwal, Norbert Marwan, Rathinasamy Maheswaran, Ugur Ozturk, Jürgen Kurths, and Bruno Merz
Hydrol. Earth Syst. Sci., 24, 2235–2251, https://doi.org/10.5194/hess-24-2235-2020, https://doi.org/10.5194/hess-24-2235-2020, 2020
Short summary
Short summary
In the climate/hydrology network, each node represents a geographical location of climatological data, and links between nodes are set up based on their interaction or similar variability. Here, using network theory, we first generate a node-ranking measure and then prioritize the rain gauges to identify influential and expandable stations across Germany. To show the applicability of the proposed approach, we also compared the results with existing traditional and contemporary network measures.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Björn Guse, Bruno Merz, Luzie Wietzke, Sophie Ullrich, Alberto Viglione, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 24, 1633–1648, https://doi.org/10.5194/hess-24-1633-2020, https://doi.org/10.5194/hess-24-1633-2020, 2020
Short summary
Short summary
Floods are influenced by river network processes, among others. Flood characteristics of tributaries may affect flood severity downstream of confluences. The impact of flood wave superposition is investigated with regard to magnitude and temporal matching of flood peaks. Our study in Germany and Austria shows that flood wave superposition is not the major driver of flood severity. However, there is the potential for large floods at some confluences in cases of temporal matching of flood peaks.
Jürgen Kurths, Ankit Agarwal, Roopam Shukla, Norbert Marwan, Maheswaran Rathinasamy, Levke Caesar, Raghavan Krishnan, and Bruno Merz
Nonlin. Processes Geophys., 26, 251–266, https://doi.org/10.5194/npg-26-251-2019, https://doi.org/10.5194/npg-26-251-2019, 2019
Short summary
Short summary
We examined the spatial diversity of Indian rainfall teleconnection at different timescales, first by identifying homogeneous communities and later by computing non-linear linkages between the identified communities (spatial regions) and dominant climatic patterns, represented by climatic indices such as El Nino–Southern Oscillation, Indian Ocean Dipole, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation.
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019, https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Short summary
We investigate whether flood probabilities in Europe vary for different large-scale atmospheric circulation conditions. Maximum seasonal river flows from 600 gauges in Europe and five synchronous atmospheric circulation indices are analyzed. We find that a high percentage of stations is influenced by at least one of the climate indices, especially during winter. These results can be useful for preparedness and damage planning by (re-)insurance companies.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Björn Guse, Heiko Apel, Heidi Kreibich, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 18, 3089–3108, https://doi.org/10.5194/nhess-18-3089-2018, https://doi.org/10.5194/nhess-18-3089-2018, 2018
Short summary
Short summary
We present a comprehensive sensitivity analysis considering changes along the complete flood risk chain to understand how changes in different drivers affect flood risk. Results show that changes in dike systems or in vulnerability may outweigh changes in often investigated components, such as climate change. Although the specific results are conditional on the case study and assumptions, they highlight the need for a broader consideration of potential drivers of change in a comprehensive way.
Marlies Holkje Barendrecht, Alberto Viglione, Heidi Kreibich, Sergiy Vorogushyn, Bruno Merz, and Günter Blöschl
Proc. IAHS, 379, 193–198, https://doi.org/10.5194/piahs-379-193-2018, https://doi.org/10.5194/piahs-379-193-2018, 2018
Short summary
Short summary
The aim of this paper is to assess whether a Socio-Hydrological model can be calibrated to data artificially generated from it. This is not trivial because the model is highly nonlinear and it is not clear what amount of data would be needed for calibration. We demonstrate that, using Bayesian inference, the parameters of the model can be estimated quite accurately from relatively few data, which could be available in real case studies.
Heiko Apel, Zharkinay Abdykerimova, Marina Agalhanova, Azamat Baimaganbetov, Nadejda Gavrilenko, Lars Gerlitz, Olga Kalashnikova, Katy Unger-Shayesteh, Sergiy Vorogushyn, and Abror Gafurov
Hydrol. Earth Syst. Sci., 22, 2225–2254, https://doi.org/10.5194/hess-22-2225-2018, https://doi.org/10.5194/hess-22-2225-2018, 2018
Short summary
Short summary
Central Asia crucially depends on water resources supplied by snow melt in the mountains during summer. To support water resources management we propose a generic tool for statistical forecasts of seasonal discharge based on multiple linear regressions. The predictors are observed precipitation and temperature, snow coverage, and discharge. The automatically derived models for 13 different catchments provided very skilful forecasts in April, and acceptable forecasts in January.
Nguyen Le Duy, Ingo Heidbüchel, Hanno Meyer, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 22, 1239–1262, https://doi.org/10.5194/hess-22-1239-2018, https://doi.org/10.5194/hess-22-1239-2018, 2018
Short summary
Short summary
This study analyzes the influence of local and regional meteorological factors on the isotopic composition of precipitation. The impact of the different factors on the isotopic condition was quantified by multiple linear regression of all factor combinations combined with relative importance analysis. The proposed approach might open a pathway for the improved reconstruction of paleoclimates based on isotopic records.
Ankit Agarwal, Norbert Marwan, Maheswaran Rathinasamy, Bruno Merz, and Jürgen Kurths
Nonlin. Processes Geophys., 24, 599–611, https://doi.org/10.5194/npg-24-599-2017, https://doi.org/10.5194/npg-24-599-2017, 2017
Short summary
Short summary
Extreme events such as floods and droughts result from synchronization of different natural processes working at multiple timescales. Investigation on an observation timescale will not reveal the inherent underlying dynamics triggering these events. This paper develops a new method based on wavelets and event synchronization to unravel the hidden dynamics responsible for such sudden events. This method is tested with synthetic and real-world cases and the results are promising.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Mathias Seibert, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 1611–1629, https://doi.org/10.5194/hess-21-1611-2017, https://doi.org/10.5194/hess-21-1611-2017, 2017
Short summary
Short summary
Seasonal early warning is vital for drought management in arid regions like the Limpopo Basin in southern Africa. This study shows that skilled seasonal forecasts can be achieved with statistical methods built upon driving factors for drought occurrence. These are the hydrological factors for current streamflow and meteorological drivers represented by anomalies in sea surface temperatures of the surrounding oceans, which combine to form unique combinations in the drought forecast models.
Lars Gerlitz, Sergiy Vorogushyn, Heiko Apel, Abror Gafurov, Katy Unger-Shayesteh, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4605–4623, https://doi.org/10.5194/hess-20-4605-2016, https://doi.org/10.5194/hess-20-4605-2016, 2016
Short summary
Short summary
Most statistically based seasonal precipitation forecast models utilize a small set of well-known climate indices as potential predictor variables. However, for many target regions, these indices do not lead to sufficient results and customized predictors are required for an accurate prediction.
This study presents a statistically based routine, which automatically identifies suitable predictors from globally gridded SST and climate variables by means of an extensive data mining procedure.
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016, https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary
Short summary
To understand past flood changes in the Rhine catchment and the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. Here the link between patterns and local climate is tested, and the skill of GCMs in reproducing these patterns is evaluated.
Heidi Kreibich, Kai Schröter, and Bruno Merz
Proc. IAHS, 373, 179–182, https://doi.org/10.5194/piahs-373-179-2016, https://doi.org/10.5194/piahs-373-179-2016, 2016
Heiko Apel, Oriol Martínez Trepat, Nguyen Nghia Hung, Do Thi Chinh, Bruno Merz, and Nguyen Viet Dung
Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, https://doi.org/10.5194/nhess-16-941-2016, 2016
Short summary
Short summary
Many urban areas experience both fluvial and pluvial floods, thus this study aims to analyse fluvial and pluvial flood hazards as well as combined pluvial and fluvial flood hazards. This combined fluvial–pluvial flood hazard analysis is performed in a tropical environment for Can Tho city in the Mekong Delta. The final results are probabilistic hazard maps, showing the maximum inundation caused by floods of different magnitudes along with an uncertainty estimation.
J. Hall, B. Arheimer, G. T. Aronica, A. Bilibashi, M. Boháč, O. Bonacci, M. Borga, P. Burlando, A. Castellarin, G. B. Chirico, P. Claps, K. Fiala, L. Gaál, L. Gorbachova, A. Gül, J. Hannaford, A. Kiss, T. Kjeldsen, S. Kohnová, J. J. Koskela, N. Macdonald, M. Mavrova-Guirguinova, O. Ledvinka, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, M. Osuch, J. Parajka, R. A. P. Perdigão, I. Radevski, B. Renard, M. Rogger, J. L. Salinas, E. Sauquet, M. Šraj, J. Szolgay, A. Viglione, E. Volpi, D. Wilson, K. Zaimi, and G. Blöschl
Proc. IAHS, 370, 89–95, https://doi.org/10.5194/piahs-370-89-2015, https://doi.org/10.5194/piahs-370-89-2015, 2015
A. Gafurov, S. Vorogushyn, D. Farinotti, D. Duethmann, A. Merkushkin, and B. Merz
The Cryosphere, 9, 451–463, https://doi.org/10.5194/tc-9-451-2015, https://doi.org/10.5194/tc-9-451-2015, 2015
Short summary
Short summary
Spatially distributed snow-cover data are available only for the recent past from remote sensing. Sometimes we need snow-cover data over a longer period for climate impact analysis for the calibration/validation of hydrological models. In this study we present a methodology to reconstruct snow cover in the past using available long-term in situ data and recently available remote sensing snow-cover data. The results show about 85% accuracy although only a limited number of stations (7) were used.
K. Schröter, M. Kunz, F. Elmer, B. Mühr, and B. Merz
Hydrol. Earth Syst. Sci., 19, 309–327, https://doi.org/10.5194/hess-19-309-2015, https://doi.org/10.5194/hess-19-309-2015, 2015
Short summary
Short summary
Extreme antecedent precipitation, increased initial hydraulic load in the river network and strong but not extraordinary event precipitation were key drivers for the flood in June 2013 in Germany. Our results are based on extreme value statistics and aggregated severity indices which we evaluated for a set of 74 historic large-scale floods. This flood database and the methodological framework enable the rapid assessment of future floods using precipitation and discharge observations.
N. V. Manh, N. V. Dung, N. N. Hung, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, https://doi.org/10.5194/hess-18-3033-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
J. M. Delgado, B. Merz, and H. Apel
Nat. Hazards Earth Syst. Sci., 14, 1579–1589, https://doi.org/10.5194/nhess-14-1579-2014, https://doi.org/10.5194/nhess-14-1579-2014, 2014
S. Uhlemann, A. H. Thieken, and B. Merz
Nat. Hazards Earth Syst. Sci., 14, 189–208, https://doi.org/10.5194/nhess-14-189-2014, https://doi.org/10.5194/nhess-14-189-2014, 2014
S. Vorogushyn and B. Merz
Hydrol. Earth Syst. Sci., 17, 3871–3884, https://doi.org/10.5194/hess-17-3871-2013, https://doi.org/10.5194/hess-17-3871-2013, 2013
A. Domeneghetti, S. Vorogushyn, A. Castellarin, B. Merz, and A. Brath
Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, https://doi.org/10.5194/hess-17-3127-2013, 2013
N. V. Manh, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, https://doi.org/10.5194/hess-17-3039-2013, 2013
D. Duethmann, J. Zimmer, A. Gafurov, A. Güntner, D. Kriegel, B. Merz, and S. Vorogushyn
Hydrol. Earth Syst. Sci., 17, 2415–2434, https://doi.org/10.5194/hess-17-2415-2013, https://doi.org/10.5194/hess-17-2415-2013, 2013
M. Nied, Y. Hundecha, and B. Merz
Hydrol. Earth Syst. Sci., 17, 1401–1414, https://doi.org/10.5194/hess-17-1401-2013, https://doi.org/10.5194/hess-17-1401-2013, 2013
S. Uhlemann, R. Bertelmann, and B. Merz
Hydrol. Earth Syst. Sci., 17, 895–911, https://doi.org/10.5194/hess-17-895-2013, https://doi.org/10.5194/hess-17-895-2013, 2013
N. V. Dung, B. Merz, A. Bárdossy, and H. Apel
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-1-275-2013, https://doi.org/10.5194/nhessd-1-275-2013, 2013
Revised manuscript not accepted
B. Merz, H. Kreibich, and U. Lall
Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, https://doi.org/10.5194/nhess-13-53-2013, 2013
B. Jongman, H. Kreibich, H. Apel, J. I. Barredo, P. D. Bates, L. Feyen, A. Gericke, J. Neal, J. C. J. H. Aerts, and P. J. Ward
Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, https://doi.org/10.5194/nhess-12-3733-2012, 2012
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Review article: Insuring the green economy against natural hazards – charting research frontiers in vulnerability assessment
Ready, Set & Go! An anticipatory action system against droughts
Between global risk reduction goals, scientific–technical capabilities and local realities: a modular approach for user-centric multi-risk assessment
Flood risk assessment through large-scale modeling under uncertainty
Migration as a hidden risk factor in seismic fatality: spatial modeling of the Chi-Chi earthquake and suburban syndrome
Simulating the effects of sea level rise and soil salinization on adaptation and migration decisions in Mozambique
Current status of water-related planning for climate change adaptation in the Spree river basin, Germany
Using a convection-permitting climate model to assess wine grape productivity: two case studies in Italy
Volcanic risk ranking and regional mapping of the Central Volcanic Zone of the Andes
Development of a regionally consistent and fully probabilistic earthquake risk model for Central Asia
Critical infrastructure resilience: a guide for building indicator systems based on a multi-criteria framework with a focus on implementable actions
Where to start with climate-smart forest management? Climatic risk for forest-based mitigation
Dynamic response of pile–slab retaining wall structure under rockfall impact
Urban growth and spatial segregation increase disaster risk: lessons learned from the 2023 disaster on the North Coast of São Paulo, Brazil
Enhancement of state response capability and famine mitigation: A comparative analysis of two drought events in northern China during the Ming dynasty
Content Analysis of Multi-Annual Time Series of Flood-Related Twitter (X) Data
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Flood exposure of environmental assets
Risk reduction through managed retreat? Investigating enabling conditions and assessing resettlement effects on community resilience in Metro Manila
Brief communication: Lessons learned and experiences gained from building up a global survey on societal resilience to changing droughts
Regional seismic risk assessment based on ground conditions in Uzbekistan
Unveiling transboundary challenges in river flood risk management: learning from the Ciliwung River basin
Quantitative study of storm surge risk assessment in an undeveloped coastal area of China based on deep learning and geographic information system techniques: a case study of Double Moon Bay
Mapping vulnerability to climate change for spatial planning in the region of Stuttgart
Adaptive Behavior of Over a Million Individual Farmers Under Consecutive Droughts: A Large-Scale Agent-Based Modeling Analysis in the Bhima Basin, India
Multisectoral analysis of drought impacts and management responses to the 2008–2015 record drought in the Colorado Basin, Texas
Impacts from cascading multi-hazards using hypergraphs: a case study from the 2015 Gorkha earthquake in Nepal
Simulating multi-hazard event sets for life cycle consequence analysis
Analysis of the effects of urban micro-scale vulnerabilities on tsunami evacuation using an agent-based model – case study in the city of Iquique, Chile
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
From insufficient rainfall to livelihoods: understanding the cascade of drought impacts and policy implications
Anticipating a risky future: long short-term memory (LSTM) models for spatiotemporal extrapolation of population data in areas prone to earthquakes and tsunamis in Lima, Peru
A new regionally consistent exposure database for Central Asia: population and residential buildings
Study on seismic risk assessment model of water supply systems in mainland China
Mapping current and future flood exposure using a 5 m flood model and climate change projections
A New Method for Calculating Highway Blocking due to High Impact Weather Conditions
Brief communication: On the environmental impacts of the 2023 floods in Emilia-Romagna (Italy)
A regional-scale approach to assessing non-residential building, transportation and cropland exposure in Central Asia
Towards a global impact-based forecasting model for tropical cyclones
Identifying vulnerable populations in urban society: a case study in a flood-prone district of Wuhan, China
An assessment of potential improvements in social capital, risk awareness, and preparedness from digital technologies
Spatial accessibility of emergency medical services under inclement weather: a case study in Beijing, China
Review article: Current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards
Estimating emergency costs for earthquakes and floods in Central Asia based on modelled losses
Compound flood impacts from Hurricane Sandy on New York City in climate-driven storylines
Regional-scale landslide risk assessment in Central Asia
Harikesan Baskaran, Ioanna Ioannou, Tiziana Rossetto, Jonas Cels, Mathis Joffrain, Nicolas Mortegoutte, Aurelie Fallon Saint-Lo, and Catalina Spataru
Nat. Hazards Earth Syst. Sci., 25, 49–76, https://doi.org/10.5194/nhess-25-49-2025, https://doi.org/10.5194/nhess-25-49-2025, 2025
Short summary
Short summary
There is a global need for insuring green economy assets against natural hazard events. But their complexity and low exposure history mean the data required for vulnerability evaluation by the insurance industry are scarce. A systematic literature review is conducted in this study to determine the suitability of current published literature for this purpose. Knowledge gaps are charted, and a representative asset–hazard taxonomy is proposed to guide future quantitative research.
Gabriela Guimarães Nobre, Jamie Towner, Bernardino Nhantumbo, Célio João da Conceição Marcos Matuele, Isaias Raiva, Massimiliano Pasqui, Sara Quaresima, and Rogério Manuel Lemos Pereira Bonifácio
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, https://doi.org/10.5194/nhess-24-4661-2024, https://doi.org/10.5194/nhess-24-4661-2024, 2024
Short summary
Short summary
The
Ready, Set & Go!system, developed by the World Food Programme and partners, employs seasonal forecasts to tackle droughts in Mozambique. With the Maputo Declaration, efforts to expand early warning systems are aligning with global initiatives for universal protection by 2027. Through advanced forecasting and anticipatory action, it could cover 76 % of districts against severe droughts, reaching 87 % national coverage for the first months of the rainy season.
Elisabeth Schoepfer, Jörn Lauterjung, Torsten Riedlinger, Harald Spahn, Juan Camilo Gómez Zapata, Christian D. León, Hugo Rosero-Velásquez, Sven Harig, Michael Langbein, Nils Brinckmann, Günter Strunz, Christian Geiß, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 4631–4660, https://doi.org/10.5194/nhess-24-4631-2024, https://doi.org/10.5194/nhess-24-4631-2024, 2024
Short summary
Short summary
In this paper, we provide a brief introduction of the paradigm shift from managing disasters to managing risks, followed by single-hazard to multi-risk assessment. We highlight four global strategies that address disaster risk reduction and call for action. Subsequently, we present a conceptual approach for multi-risk assessment which was designed to serve potential users like disaster risk managers, urban planners or operators of critical infrastructure to increase their capabilities.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Tzu-Hsin Karen Chen, Kuan-Hui Elaine Lin, Thung-Hong Lin, Gee-Yu Liu, Chin-Hsun Yeh, and Diana Maria Ceballos
Nat. Hazards Earth Syst. Sci., 24, 4457–4471, https://doi.org/10.5194/nhess-24-4457-2024, https://doi.org/10.5194/nhess-24-4457-2024, 2024
Short summary
Short summary
This study shows migration patterns to be a critical factor in seismic fatalities. Analyzing the Chi-Chi earthquake in Taiwan, we find that lower income and a higher indigenous population at migrants' origins are correlated with higher fatalities at their destinations. This underscores the need for affordable and safe housing on the outskirts of megacities, where migrants from lower-income and historically marginalized groups are more likely to reside due to precarious employment conditions.
Kushagra Pandey, Jens A. de Bruijn, Hans de Moel, W. J. Wouter Botzen, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 24, 4409–4429, https://doi.org/10.5194/nhess-24-4409-2024, https://doi.org/10.5194/nhess-24-4409-2024, 2024
Short summary
Short summary
As sea levels rise, coastal areas will experience more frequent flooding, and salt water will start seeping into the soil, which is a serious issue for farmers who rely on good soil quality for their crops. Here, we studied coastal Mozambique to understand the risks from sea level rise and flooding by looking at how salt intrusion affects farming and how floods damage buildings. We find that 15 %–21 % of coastal households will adapt and 13 %–20 % will migrate to inland areas in the future.
Saskia Arndt and Stefan Heiland
Nat. Hazards Earth Syst. Sci., 24, 4369–4383, https://doi.org/10.5194/nhess-24-4369-2024, https://doi.org/10.5194/nhess-24-4369-2024, 2024
Short summary
Short summary
This study provides an overview of the current status of climate change adaptation in plans for water management, spatial planning and landscape planning in the Spree river basin. Only 39 % of 28 plans analysed specify objectives and measures for adaptation to climate change. To fill this gap, more frequent updates of plans, a stronger focus on multifunctional measures, and the adaptation of best-practice examples for systematic integration of climate change impacts and adaptation are needed.
Laura T. Massano, Giorgia Fosser, Marco Gaetani, and Cécile Caillaud
Nat. Hazards Earth Syst. Sci., 24, 4293–4315, https://doi.org/10.5194/nhess-24-4293-2024, https://doi.org/10.5194/nhess-24-4293-2024, 2024
Short summary
Short summary
Traditional wine-growing regions are threatened by expected climate change. Climate models and observations are used to calculate bioclimatic indices based on both temperature and precipitation. These indices are correlated with grape productivity in two wine-growing regions in Italy. This analysis paves the way for using climate models to study how climate change will affect wine production in the future.
María-Paz Reyes-Hardy, Luigia Sara Di Maio, Lucia Dominguez, Corine Frischknecht, Sébastien Biass, Leticia Freitas Guimarães, Amiel Nieto-Torres, Manuela Elissondo, Gabriela Pedreros, Rigoberto Aguilar, Álvaro Amigo, Sebastián García, Pablo Forte, and Costanza Bonadonna
Nat. Hazards Earth Syst. Sci., 24, 4267–4291, https://doi.org/10.5194/nhess-24-4267-2024, https://doi.org/10.5194/nhess-24-4267-2024, 2024
Short summary
Short summary
The Central Volcanic Zone of the Andes (CVZA) spans four countries with 59 volcanoes. We identify those with the most intense and frequent eruptions and the highest potential impact that require risk mitigation actions. Using multiple risk factors, we encourage the use of regional volcanic risk assessments to analyse the level of preparedness especially of transboundary volcanoes. We hope that our work will motivate further collaborative studies and promote cooperation between CVZA countries.
Mario A. Salgado-Gálvez, Mario Ordaz, Benjamín Huerta, Osvaldo Garay, Carlos Avelar, Ettore Fagà, Mohsen Kohrangi, Paola Ceresa, Georgios Triantafyllou, and Ulugbek T. Begaliev
Nat. Hazards Earth Syst. Sci., 24, 3851–3868, https://doi.org/10.5194/nhess-24-3851-2024, https://doi.org/10.5194/nhess-24-3851-2024, 2024
Short summary
Short summary
Central Asia is prone to earthquake losses, which can heavily impact different types of assets. This paper presents the details of a probabilistic earthquake risk model which made use of a regionally consistent approach to assess feasible earthquake losses in five countries. Results are presented in terms of commonly used risk metrics, which are aimed at facilitating a policy dialogue regarding different disaster risk management strategies, from risk mitigation to disaster risk financing.
Zhuyu Yang, Bruno Barroca, Ahmed Mebarki, Katia Laffréchine, Hélène Dolidon, and Lionel Lilas
Nat. Hazards Earth Syst. Sci., 24, 3723–3753, https://doi.org/10.5194/nhess-24-3723-2024, https://doi.org/10.5194/nhess-24-3723-2024, 2024
Short summary
Short summary
To integrate resilience assessment into practical management, this study designs a step-by-step guide that enables managers of critical infrastructure (CI) to create specific indicator systems tailored to real cases. This guide considers the consequences of hazards to CI and the cost–benefit analysis and side effects of implementable actions. The assessment results assist managers, as they are based on a multi-criterion framework that addresses several factors valued in practical management.
Natalie Piazza, Luca Malanchini, Edoardo Nevola, and Giorgio Vacchiano
Nat. Hazards Earth Syst. Sci., 24, 3579–3595, https://doi.org/10.5194/nhess-24-3579-2024, https://doi.org/10.5194/nhess-24-3579-2024, 2024
Short summary
Short summary
Natural disturbances are projected to intensify in the future, threatening our forests and their functions such as wood production, protection against natural hazards, and carbon sequestration. By assessing risks to forests from wind and fire damage, alongside the vulnerability of carbon, it is possible to prioritize forest stands at high risk. In this study, we propose a novel methodological approach to support climate-smart forest management and inform better decision-making.
Peng Zou, Gang Luo, Yuzhang Bi, and Hanhua Xu
Nat. Hazards Earth Syst. Sci., 24, 3497–3517, https://doi.org/10.5194/nhess-24-3497-2024, https://doi.org/10.5194/nhess-24-3497-2024, 2024
Short summary
Short summary
The pile–slab retaining wall, an innovative rockfall shield, is widely used in China's western mountains. However, its dynamic impact response and resistance remain unclear due to structural complexity. A comprehensive dynamic analysis of the structure, under various impacts, was done using the finite-element method. The maximum impact energy that the structure can withstand is 905 kJ, and various indexes were obtained.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Fangyu Tian, Yun Su, Xudong Chen, and Le Tao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-159, https://doi.org/10.5194/nhess-2024-159, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study developed a model of extreme drought-induced famine processes and response mechanisms in ancient China. Spatial distribution of drought and famine during the Chenghua Drought and the Wanli Drought was constructed. By categorizing drought-affected counties into three types, a comparative analysis of the differences in famine severity and response effectiveness between the Chenghua and Wanli droughts was conducted.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
EGUsphere, https://doi.org/10.5194/egusphere-2024-2556, https://doi.org/10.5194/egusphere-2024-2556, 2024
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024, https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Short summary
This study delves into the dynamics of vulnerability within a multi-hazard context, proposing an enhanced impact-chain-based framework that analyses the augmentation of vulnerability. The case study refers to the flood events and the COVID-19 pandemic that affected Romania (2020–2021). The impact chain shows that (1) the unforeseen implications of impacts, (2) the wrongful action of adaptation options, and (3) inaction can form the basis for increased vulnerability.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024, https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Short summary
Iranian insurers have been offering earthquake coverage since the 1990s. However, despite international best practices, they still do not use modern methods for risk pricing and management. As such, they seem to be accumulating seismic risk over time. This paper examines the viability of this market in Iran by comparing the local market practices with international best practices in earthquake risk pricing (catastrophe modeling) and insurance risk management (European Solvency II regime).
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024, https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Short summary
Micro-businesses, often overlooked in adaptation research, show surprising willingness to contribute to collective adaptation despite limited finances and local support. Based on a study in Ho Chi Minh City in Vietnam, approximately 70 % are ready for awareness campaigns, and 39 % would provide financial support if costs were shared. These findings underscore the need for increased involvement of micro-businesses in local adaptation plans to enhance collective adaptive capacity.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Gabriele Bertoli, Chiara Arrighi, and Enrica Caporali
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-105, https://doi.org/10.5194/nhess-2024-105, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Environmental assets are crucial to sustain and fulfil life on Earth through ecosystem services. Assessing their flood risk is thus seminal, besides required by several norms. Even though, this field is not yet sufficiently developed. We explored the exposure component of the flood risk, and developed an evaluating methodology based on the ecosystem services provided by the environmental assets, to discern assets and areas more important than others with metrics suitable to large scale studies.
Hannes Lauer, Carmeli Marie C. Chaves, Evelyn Lorenzo, Sonia Islam, and Jörn Birkmann
Nat. Hazards Earth Syst. Sci., 24, 2243–2261, https://doi.org/10.5194/nhess-24-2243-2024, https://doi.org/10.5194/nhess-24-2243-2024, 2024
Short summary
Short summary
In many urban areas, people face high exposure to hazards. Resettling them to safer locations becomes a major strategy, not least because of climate change. This paper dives into the success factors of government-led resettlement in Manila and finds surprising results which challenge the usual narrative and fuel the conversation on resettlement as an adaptation strategy. Contrary to expectations, the location – whether urban or rural – of the new home is less important than safety from floods.
Marina Batalini de Macedo, Marcos Roberto Benso, Karina Simone Sass, Eduardo Mario Mendiondo, Greicelene Jesus da Silva, Pedro Gustavo Câmara da Silva, Elisabeth Shrimpton, Tanaya Sarmah, Da Huo, Michael Jacobson, Abdullah Konak, Nazmiye Balta-Ozkan, and Adelaide Cassia Nardocci
Nat. Hazards Earth Syst. Sci., 24, 2165–2173, https://doi.org/10.5194/nhess-24-2165-2024, https://doi.org/10.5194/nhess-24-2165-2024, 2024
Short summary
Short summary
With climate change, societies increasingly need to adapt to deal with more severe droughts and the impacts they can have on food production. To make better adaptation decisions, drought resilience indicators can be used. To build these indicators, surveys with experts can be done. However, designing surveys is a costly process that can influence how experts respond. In this communication, we aim to deal with the challenges encountered in the development of surveys to help further research.
Vakhitkhan Alikhanovich Ismailov, Sharofiddin Ismatullayevich Yodgorov, Akhror Sabriddinovich Khusomiddinov, Eldor Makhmadiyorovich Yadigarov, Bekzod Uktamovich Aktamov, and Shuhrat Bakhtiyorovich Avazov
Nat. Hazards Earth Syst. Sci., 24, 2133–2146, https://doi.org/10.5194/nhess-24-2133-2024, https://doi.org/10.5194/nhess-24-2133-2024, 2024
Short summary
Short summary
For the basis of seismic risk assessment, maps of seismic intensity increment and an improved map of seismic hazard have been developed, taking into account the engineering-geological conditions of the territory of Uzbekistan and the seismic characteristics of soils. For seismic risk map development, databases were created based on geographic information system platforms, allowing us to systematize and evaluate the regional distribution of information.
Harkunti Pertiwi Rahayu, Khonsa Indana Zulfa, Dewi Nurhasanah, Richard Haigh, Dilanthi Amaratunga, and In In Wahdiny
Nat. Hazards Earth Syst. Sci., 24, 2045–2064, https://doi.org/10.5194/nhess-24-2045-2024, https://doi.org/10.5194/nhess-24-2045-2024, 2024
Short summary
Short summary
Transboundary flood risk management in the Ciliwung River basin is placed in a broader context of disaster management, environmental science, and governance. This is particularly relevant for areas of research involving the management of shared water resources, the impact of regional development on flood risk, and strategies to reduce economic losses from flooding.
Lichen Yu, Hao Qin, Shining Huang, Wei Wei, Haoyu Jiang, and Lin Mu
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, https://doi.org/10.5194/nhess-24-2003-2024, https://doi.org/10.5194/nhess-24-2003-2024, 2024
Short summary
Short summary
This paper proposes a quantitative storm surge risk assessment method for data-deficient regions. A coupled model is used to simulate five storm surge scenarios. Deep learning is used to extract building footprints. Economic losses are calculated by combining adjusted depth–damage functions with inundation simulation results. Zoning maps illustrate risk levels based on economic losses, aiding in disaster prevention measures to reduce losses in coastal areas.
Joanna M. McMillan, Franziska Göttsche, Joern Birkmann, Rainer Kapp, Corinna Schmidt, Britta Weisser, and Ali Jamshed
EGUsphere, https://doi.org/10.5194/egusphere-2024-1407, https://doi.org/10.5194/egusphere-2024-1407, 2024
Short summary
Short summary
Adapting to climate extremes is a challenge for spatial planning. Risk maps that include not just a consideration of hazards but also social vulnerability can help. We develop social vulnerability maps for the Stuttgart region, Germany. We show the maps, describe how and why we developed them, and provide an analysis of practitioners’ needs and their feedback. Insights presented in this paper can help to improve map usability and to better link research and planning practice.
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1588, https://doi.org/10.5194/egusphere-2024-1588, 2024
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated all farmers' individual choices—like changing crops or digging wells—and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damages. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrology models in shaping policies to lessen drought impacts.
Stephen B. Ferencz, Ning Sun, Sean W. D. Turner, Brian A. Smith, and Jennie S. Rice
Nat. Hazards Earth Syst. Sci., 24, 1871–1896, https://doi.org/10.5194/nhess-24-1871-2024, https://doi.org/10.5194/nhess-24-1871-2024, 2024
Short summary
Short summary
Drought has long posed an existential threat to society. Population growth, economic development, and the potential for more extreme and prolonged droughts due to climate change pose significant water security challenges. Better understanding the impacts and adaptive responses resulting from extreme drought can aid adaptive planning. The 2008–2015 record drought in the Colorado Basin, Texas, United States, is used as a case study to assess impacts and responses to severe drought.
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
Leandro Iannacone, Kenneth Otárola, Roberto Gentile, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/nhess-24-1721-2024, https://doi.org/10.5194/nhess-24-1721-2024, 2024
Short summary
Short summary
The paper presents a review of the available classifications for hazard interactions in a multi-hazard context, and it incorporates such classifications from a modeling perspective. The outcome is a sequential Monte Carlo approach enabling efficient simulation of multi-hazard event sets (i.e., sequences of events throughout the life cycle). These event sets can then be integrated into frameworks for the quantification of consequences for the purposes of life cycle consequence (LCCon) analysis.
Rodrigo Cienfuegos, Gonzalo Álvarez, Jorge León, Alejandro Urrutia, and Sebastián Castro
Nat. Hazards Earth Syst. Sci., 24, 1485–1500, https://doi.org/10.5194/nhess-24-1485-2024, https://doi.org/10.5194/nhess-24-1485-2024, 2024
Short summary
Short summary
This study carries out a detailed analysis of possible tsunami evacuation scenarios in the city of Iquique in Chile. Evacuation modeling and tsunami modeling are integrated, allowing for an estimation of the potential number of people that the inundation may reach under different scenarios by emulating the dynamics and behavior of the population and their decision-making regarding the starting time of the evacuation.
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024, https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Short summary
An understanding of flood risk perceptions may aid in improving flood risk communication. We conducted a survey among 871 coastal residents in Florida who were threatened to be flooded by Hurricane Dorian. Part of the original sample was resurveyed after Dorian failed to make landfall to investigate changes in risk perception. We find a strong influence of previous flood experience and social norms on flood risk perceptions. Furthermore, flood risk perceptions declined after the near-miss event.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2024-650, https://doi.org/10.5194/egusphere-2024-650, 2024
Short summary
Short summary
The research aimed to understand the role of society in mitigating drought impacts through policy responses in the context of northeast Brazil. Results revealed that socio-environmental-economic impacts of drought are less frequently reported, while hydrological impacts of drought were the most reported. It emphasized that public policies addressing the impacts of drought need to focus not only on increasing water availability, but also on strengthening the local economy.
Christian Geiß, Jana Maier, Emily So, Elisabeth Schoepfer, Sven Harig, Juan Camilo Gómez Zapata, and Yue Zhu
Nat. Hazards Earth Syst. Sci., 24, 1051–1064, https://doi.org/10.5194/nhess-24-1051-2024, https://doi.org/10.5194/nhess-24-1051-2024, 2024
Short summary
Short summary
We establish a model of future geospatial population distributions to quantify the number of people living in earthquake-prone and tsunami-prone areas of Lima and Callao, Peru, for the year 2035. Areas of high earthquake intensity will experience a population growth of almost 30 %. The population in the tsunami inundation area is estimated to grow by more than 60 %. Uncovering those relations can help urban planners and policymakers to develop effective risk mitigation strategies.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Vakhitkhan Ismailov, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Faga
Nat. Hazards Earth Syst. Sci., 24, 929–945, https://doi.org/10.5194/nhess-24-929-2024, https://doi.org/10.5194/nhess-24-929-2024, 2024
Short summary
Short summary
Central Asia is highly exposed to multiple hazards, including earthquakes, floods and landslides, for which risk reduction strategies are currently under development. We provide a regional-scale database of assets at risk, including population and residential buildings, based on existing information and recent data collected for each Central Asian country. The population and number of buildings are also estimated for the year 2080 to support the definition of disaster risk reduction strategies.
Tianyang Yu, Banghua Lu, Hui Jiang, and Zhi Liu
Nat. Hazards Earth Syst. Sci., 24, 803–822, https://doi.org/10.5194/nhess-24-803-2024, https://doi.org/10.5194/nhess-24-803-2024, 2024
Short summary
Short summary
A basic database for seismic risk assessment of 720 urban water supply systems in mainland China is established. The parameters of the seismic risk curves of 720 cities are calculated. The seismic fragility curves of various facilities in the water supply system are given based on the logarithmic normal distribution model. The expected seismic loss and the expected loss rate index of 720 urban water supply systems in mainland China in the medium and long term are given.
Connor Darlington, Jonathan Raikes, Daniel Henstra, Jason Thistlethwaite, and Emma K. Raven
Nat. Hazards Earth Syst. Sci., 24, 699–714, https://doi.org/10.5194/nhess-24-699-2024, https://doi.org/10.5194/nhess-24-699-2024, 2024
Short summary
Short summary
The impacts of climate change on local floods require precise maps that clearly demarcate changes to flood exposure; however, most maps lack important considerations that reduce their utility in policy and decision-making. This article presents a new approach to identifying current and projected flood exposure using a 5 m model. The results highlight advancements in the mapping of flood exposure with implications for flood risk management.
Duanyang Liu, Tian Jing, Mingyue Yan, Ismail Gultepe, Yunxuan Bao, Hongbin Wang, and Fan Zu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-230, https://doi.org/10.5194/nhess-2023-230, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The highway-blocking events are characterized by diurnal variation. A classification method of severity levels of highway blocking is developed into five levels. The severity levels of highway blocking due to high-impact weather are evaluated. A method for calculating the degree of highway load in China is proposed. A quantitative assessment of the losses of highway blocking due to dense fog is conducted. The highway losses caused by dense fog are concentrated in North, East and Southwest China.
Chiara Arrighi and Alessio Domeneghetti
Nat. Hazards Earth Syst. Sci., 24, 673–679, https://doi.org/10.5194/nhess-24-673-2024, https://doi.org/10.5194/nhess-24-673-2024, 2024
Short summary
Short summary
In this communication, we reflect on environmental flood impacts by analysing the reported environmental consequences of the 2023 Emilia-Romagna floods. The most frequently reported damage involves water resources and water-related ecosystems. Indirect effects in time and space, intrinsic recovery capacity, cascade impacts on socio-economic systems, and the lack of established monitoring activities appear to be the most challenging aspects for future research.
Chiara Scaini, Alberto Tamaro, Baurzhan Adilkhan, Satbek Sarzhanov, Zukhritdin Ergashev, Ruslan Umaraliev, Mustafo Safarov, Vladimir Belikov, Japar Karayev, and Ettore Fagà
Nat. Hazards Earth Syst. Sci., 24, 355–373, https://doi.org/10.5194/nhess-24-355-2024, https://doi.org/10.5194/nhess-24-355-2024, 2024
Short summary
Short summary
Central Asia is prone to multiple hazards such as floods, landslides and earthquakes, which can affect a wide range of assets at risk. We develop the first regionally consistent database of assets at risk for non-residential buildings, transportation and croplands in Central Asia. The database combines global and regional data sources and country-based information and supports the development of regional-scale disaster risk reduction strategies for the Central Asia region.
Mersedeh Kooshki Forooshani, Marc van den Homberg, Kyriaki Kalimeri, Andreas Kaltenbrunner, Yelena Mejova, Leonardo Milano, Pauline Ndirangu, Daniela Paolotti, Aklilu Teklesadik, and Monica L. Turner
Nat. Hazards Earth Syst. Sci., 24, 309–329, https://doi.org/10.5194/nhess-24-309-2024, https://doi.org/10.5194/nhess-24-309-2024, 2024
Short summary
Short summary
We improve an existing impact forecasting model for the Philippines by transforming the target variable (percentage of damaged houses) to a fine grid, using only features which are globally available. We show that our two-stage model conserves the performance of the original and even has the potential to introduce savings in anticipatory action resources. Such model generalizability is important in increasing the applicability of such tools around the world.
Jia Xu, Makoto Takahashi, and Weifu Li
Nat. Hazards Earth Syst. Sci., 24, 179–197, https://doi.org/10.5194/nhess-24-179-2024, https://doi.org/10.5194/nhess-24-179-2024, 2024
Short summary
Short summary
Through the development of micro-individual social vulnerability indicators and cluster analysis, this study assessed the level of social vulnerability of 599 residents from 11 communities in the Hongshan District of Wuhan. The findings reveal three levels of social vulnerability: high, medium, and low. Quantitative assessments offer specific comparisons between distinct units, and the results indicate that different types of communities have significant differences in social vulnerability.
Tommaso Piseddu, Mathilda Englund, and Karina Barquet
Nat. Hazards Earth Syst. Sci., 24, 145–161, https://doi.org/10.5194/nhess-24-145-2024, https://doi.org/10.5194/nhess-24-145-2024, 2024
Short summary
Short summary
Contributions to social capital, risk awareness, and preparedness constitute the parameters to test applications in disaster risk management. We propose an evaluation of four of these: mobile positioning data, social media crowdsourcing, drones, and satellite imaging. The analysis grants the opportunity to investigate how different methods to evaluate surveys' results may influence final preferences. We find that the different assumptions on which these methods rely deliver diverging results.
Yuting Zhang, Kai Liu, Xiaoyong Ni, Ming Wang, Jianchun Zheng, Mengting Liu, and Dapeng Yu
Nat. Hazards Earth Syst. Sci., 24, 63–77, https://doi.org/10.5194/nhess-24-63-2024, https://doi.org/10.5194/nhess-24-63-2024, 2024
Short summary
Short summary
This article is aimed at developing a method to quantify the influence of inclement weather on the accessibility of emergency medical services (EMSs) in Beijing, China, and identifying the vulnerable areas that could not get timely EMSs under inclement weather. We found that inclement weather could reduce the accessibility of EMSs by up to 40%. Furthermore, towns with lower baseline EMSs accessibility are more vulnerable when inclement weather occurs.
Soheil Mohammadi, Silvia De Angeli, Giorgio Boni, Francesca Pirlone, and Serena Cattari
Nat. Hazards Earth Syst. Sci., 24, 79–107, https://doi.org/10.5194/nhess-24-79-2024, https://doi.org/10.5194/nhess-24-79-2024, 2024
Short summary
Short summary
This paper critically reviews disaster recovery literature from a multi-risk perspective. Identified key challenges encompass the lack of approaches integrating physical reconstruction and socio-economic recovery, the neglect of multi-risk interactions, the limited exploration of recovery from a pre-disaster planning perspective, and the low consideration of disaster recovery as a non-linear process in which communities need change over time.
Emilio Berny, Carlos Avelar, Mario A. Salgado-Gálvez, and Mario Ordaz
Nat. Hazards Earth Syst. Sci., 24, 53–62, https://doi.org/10.5194/nhess-24-53-2024, https://doi.org/10.5194/nhess-24-53-2024, 2024
Short summary
Short summary
This paper presents a methodology to estimate the total emergency costs based on modelled damages for earthquakes and floods, together with the demographic and building characteristics of the study area. The methodology has been applied in five countries in central Asia, the first time that these estimates are made available for the study area and are intended to be useful for regional and local stakeholders and decision makers.
Henrique M. D. Goulart, Irene Benito Lazaro, Linda van Garderen, Karin van der Wiel, Dewi Le Bars, Elco Koks, and Bart van den Hurk
Nat. Hazards Earth Syst. Sci., 24, 29–45, https://doi.org/10.5194/nhess-24-29-2024, https://doi.org/10.5194/nhess-24-29-2024, 2024
Short summary
Short summary
We explore how Hurricane Sandy (2012) could flood New York City under different scenarios, including climate change and internal variability. We find that sea level rise can quadruple coastal flood volumes, while changes in Sandy's landfall location can double flood volumes. Our results show the need for diverse scenarios that include climate change and internal variability and for integrating climate information into a modelling framework, offering insights for high-impact event assessments.
Francesco Caleca, Chiara Scaini, William Frodella, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 13–27, https://doi.org/10.5194/nhess-24-13-2024, https://doi.org/10.5194/nhess-24-13-2024, 2024
Short summary
Short summary
Landslide risk analysis is a powerful tool because it allows us to identify where physical and economic losses could occur due to a landslide event. The purpose of our work was to provide the first regional-scale analysis of landslide risk for central Asia, and it represents an advanced step in the field of risk analysis for very large areas. Our findings show, per square kilometer, a total risk of about USD 3.9 billion and a mean risk of USD 0.6 million.
Cited articles
Abbott, M. B. and Ionescu, F.: On the numerical computation of nearly
horizontal flows, J. Hydraul. Res., 5, 97–117, 1967.
Apel, H., Martínez Trepat, O., Hung, N. N., Chinh, D. T., Merz, B.,
and Dung, N. V.: Combined fluvial and pluvial urban flood hazard analysis:
concept development and application to Can Tho city, Mekong Delta,
Vietnam, Nat. Hazards Earth Syst. Sci., 16, 941–961, https://doi.org/10.5194/nhess-16-941-2016, 2016.
Aronica, G., Bates, P., and Horritt, M.: Assessing the uncertainty in
distributed model predictions using observed binary pattern information
within GLUE, Hydrol. Process., 16, 2001–2016, 2002.
Bouvet, A. and Le Toan, T.: Use of ENVISAT/ASAR wide-swath data for timely
rice fields mapping in the Mekong River Delta, Remote Sens.
Environ., 115, 1090–1101, https://doi.org/10.1016/j.rse.2010.12.014, 2011.
Bouvet, A., Le Toan, T., and Nguyen, L. D.: Monitoring of the Rice Cropping
System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data, IEEE
T. Geosci. Remote, 47, 10,
https://doi.org/10.1109/TGRS.2008.2007963, 2009.
Brandt, S. A.: Modeling and visualizing uncertainties of flood boundary
delineation: algorithm for slope and DEM resolution dependencies of 1D
hydraulic models, Stoch. Env. Res. Risk A., 30,
1677–1690, https://doi.org/10.1007/s00477-016-1212-z, 2016.
Chinh, D., Dung, N., Gain, A., and Kreibich, H.: Flood Loss Models and Risk
Analysis for Private Households in Can Tho City, Vietnam, Water, 9, 313,
2017.
Chinh, D. T., Bubeck, P., Dung, N. V., and Kreibich, H.: The 2011 flood event
in the Mekong Delta: preparedness, response, damage and recovery of private
households and small businesses, Disasters, 40, 753–778, https://doi.org/10.1111/disa.12171, 2016.
Dang, T. D., Cochrane, T. A., Arias, M. E., and Tri, V. P. D.: Future
hydrological alterations in the Mekong Delta under the impact of water
resources development, land subsidence and sea level rise, J.
Hydrol.-Regional Studies, 15, 119–133, https://doi.org/10.1016/j.ejrh.2017.12.002, 2018.
Delgado, J. M., Apel, H., and Merz, B.: Flood trends and variability in
the Mekong river, Hydrol. Earth Syst. Sci., 14, 407–418, https://doi.org/10.5194/hess-14-407-2010, 2010.
Deltares: Mekong Delta Plan, Long-term vision and strategy for a safe,
prosperous and sustainable delta, available at:
https://www.deltares.nl/app/uploads/2014/01/Mekong-delta-plan-Long-term-vision-and-strategy.pdf (last access: 20 July 2018), 126, 2013.
Dinh, Q., Balica, S., Popescu, I., and Jonoski, A.: Climate change impact on
flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the
Mekong Delta, International Journal of River Basin Management, 10, 103–120,
2012.
Dung, N. V., Merz, B., Bárdossy, A., Thang, T. D., and Apel, H.: Multi-objective
automatic calibration of hydrodynamic models utilizing inundation maps and gauge
data, Hydrol. Earth Syst. Sci., 15, 1339–1354, https://doi.org/10.5194/hess-15-1339-2011, 2011.
Dung, N. V., Merz, B., Bárdossy, A., and Apel, H.: Handling uncertainty
in bivariate quantile estimation – An application to flood hazard analysis in
the Mekong Delta, J. Hydrol., 527, 704–717, 2015.
Dutta, D., Herath, S., and Musiake, K.: A mathematical model for flood loss
estimation, J. Hydrol., 277, 24–49, 2003.
Förster, S., Kuhlmann, B., Lindenschmidt, K.-E., and Bronstert, A.:
Assessing flood risk for a rural detention area, Nat. Hazards Earth Syst. Sci., 8, 311–322, https://doi.org/10.5194/nhess-8-311-2008, 2008.
GSO: Statistical handbook of Vietnam 2015, General statistics office of Viet
Nam, 2015.
Hak, D., Nadaoka, K., Patrick Bernado, L., Le Phu, V., Hong Quan, N., Quang
Toan, T., Hieu Trung, N., Van Ni, D., and Pham Dang Tri, V.: Spatio-temporal
variations of sea level around the Mekong Delta: their causes and
consequences on the coastal environment, Hydrological Research Letters, 10,
60–66, 2016.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate
change, Nat. Clim. Change, 3, 816, https://doi.org/10.1038/nclimate1911,
2013.
Howie, C.: High dykes in the Mekong Delta in Vietnam bring social gains and
environmental pains, Aquaculture News, 32, 15–17, 2005.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L.
G.: Overview of the radiometric and biophysical performance of the MODIS
vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Hung, N. N., Delgado, J. M., Tri, V. K., Hung, L. M., Merz, B.,
Bárdossy, A., and Apel, H.: Floodplain hydrology of the Mekong Delta,
Vietnam, Hydrol. Process., 26, 674–686, https://doi.org/10.1002/hyp.8183, 2012.
Käkönen, M.: Mekong Delta at the crossroads: more control or
adaptation?, AMBIO, 37, 205–212, 2008.
Klaus, S., Kreibich, H., Merz, B., Kuhlmann, B., and Schröter, K.:
Large-scale, seasonal flood risk analysis for agricultural crops in Germany,
Environ. Earth Sci., 75, 1289, https://doi.org/10.1007/s12665-016-6096-1, 2016.
Kotera, A., Nagano, T., Hanittinan, P., and Koontanakulvong, S.: Assessing
the degree of flood damage to rice crops in the Chao Phraya delta, Thailand,
using MODIS satellite imaging, Paddy Water Environ., 14, 271–280, 2016.
Laura, E. E., Steven, M. G., and Howard, A. Z.: Groundwater extraction, land subsidence,
and sea-level rise in the Mekong Delta, Vietnam, Environmental Research Letters, 9, 084010, 2014.
Le, T. N., Bregt, A. K., van Halsema, G. E., Hellegers, P. J. G. J., and
Nguyen, L.-D.: Interplay between land-use dynamics and changes in
hydrological regime in the Vietnamese Mekong Delta, Land Use Policy, 73,
269–280, https://doi.org/10.1016/j.landusepol.2018.01.030,
2018.
Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C., and Haruyama, S.:
The combined impact on the flooding in Vietnam's Mekong River delta of local
man-made structures, sea level rise, and dams upstream in the river
catchment, Estuar. Coast. Shelf Sci., 71, 110–116, https://doi.org/10.1016/j.ecss.2006.08.021, 2007.
Leinenkugel, P., Kuenzer, C., Oppelt, N., and Dech, S.: Characterisation of
land surface phenology and land cover based on moderate resolution satellite
data in cloud prone areas – A novel product for the Mekong Basin, Remote
Sens. Environ., 136, 180–198, https://doi.org/10.1016/j.rse.2013.05.004, 2013.
Manh, N. V., Merz, B., and Apel, H.: Sedimentation monitoring including uncertainty
analysis in complex floodplains: a case study in the Mekong
Delta, Hydrol. Earth Syst. Sci., 17, 3039–3057, https://doi.org/10.5194/hess-17-3039-2013, 2013.
Manh, N. V., Dung, N. V., Hung, N. N., Merz, B., and Apel, H.: Large-scale suspended
sediment transport and sediment deposition in the Mekong
Delta, Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, 2014.
Merz, B., Elmer, F., and Thieken, A. H.: Significance of “high probability/low damage” versus “low probability/high damage”
flood events, Nat. Hazards Earth Syst. Sci., 9, 1033–1046, https://doi.org/10.5194/nhess-9-1033-2009, 2009.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic
flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H.,
and Stouthamer, E.: Impacts of 25 years of groundwater extraction on subsidence
in the Mekong delta, Vietnam, Environ. Res. Lett., 12, 064006, https://doi.org/10.1088/1748-9326/aa7146, 2017.
MRC: Flood Damages, Benefits and Flood Risk in Focal Areas, Mekong River
Commission, 184 pp., 2009.
MRC: Flood situation report 2011, MRC Technical Paper No. 36, Mekong River
Commission, Phnom Phenh, 57 pp., 2011.
MRC: The Impact and Management of Floods and Droughts in the Lower Mekong
Basin and The Implications of Possible Climate Change, Mekong River
Commission, 129 pp., 2012.
Nguyen, D. B., Clauss, K., Cao, S. M., Naeimi, V., Kuenzer, C., and Wagner, W.:
Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data, Remote Sensing, 7, 15868–15893, https://doi.org/10.3390/rs71215808, 2015.
Penning-Rowsell, E. C., Wilson, T., and Centre, F. H. R.: The benefits of
flood and coastal defence: techniques and data for 2003, Middlesex
University, London, UK, 2003.
Sampson, C. C., Smith, A. M., Bates, P. B., Neal, J. C., Alfieri, L., and
Freer, J. E.: A high-resolution global flood hazard model, Water Resour.
Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015.
Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., and
Merz, B.: How useful are complex flood damage models?, Water Resour.
Res., 50, 3378–3395, 2014.
Smajgl, A., Toan, T. Q., Nhan, D. K., Ward, J., Trung, N. H., Tri, L. Q.,
Tri, V. P. D., and Vu, P. T.: Responding to rising sea levels in the Mekong
Delta, Nat. Clim. Change, 5, 167–174, https://doi.org/10.1038/nclimate2469, 2015.
The Government of Viet Nam: Decision No. 99/TTg on water resources,
infrastructure and rural development plan for the Vietnamese Mekong Delta
during the period 1996–2000, 1996 (in Vietnamese).
The Government of Viet Nam: Decision No. 315/TTg on pilot programme for
agriculture insurance in Vietnam, 2011 (in Vietnamese).
Tinh, D. N.: 2011 flood lesson leraned in Vietnam, Presentation at 2012
South-East-Asia Flood Risk Reduction Forum, Vietnam, 19, 2012.
Toan, T. Q.: Climate Change and Sea Level Rise in the Mekong Delta: Flood,
Tidal Inundation, Salinity Intrusion, and Irrigation Adaptation Methods, in:
Coastal Disasters and Climate Change in Vietnam, edited by: Esteban, N. D.
T., Hiroshi Takagi Miguel, Elsevier, Oxford, 199–218, 2014.
Tran, D. D., van Halsema, G., Hellegers, P. J. G. J., Ludwig, F., and Wyatt,
A.: Questioning triple rice intensification on the Vietnamese mekong delta
floodplains: An environmental and economic analysis of current land-use
trends and alternatives, J. Environ. Manage., 217, 429–441,
https://doi.org/10.1016/j.jenvman.2018.03.116, 2018.
Tri, V.: Hydrology and Hydraulic Infrastructure Systems in the Mekong Delta,
Vietnam, in: The Mekong Delta System, edited by: Renaud, F. G. and Kuenzer,
C., Springer Environmental Science and Engineering, Springer Netherlands,
49–81, 2012.
Triet, N. V. K., Dung, N. V., Fujii, H., Kummu, M., Merz, B., and Apel, H.:
Has dyke development in the Vietnamese Mekong Delta shifted flood hazard
downstream?, Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, 2017.
Van, P. D. T., Popescu, I., van Griensven, A., Solomatine, D. P., Trung, N. H., and Green, A.:
A study of the climate change impacts on fluvial flood propagation in the
Vietnamese Mekong Delta, Hydrol. Earth Syst. Sci., 16, 4637–4649, https://doi.org/10.5194/hess-16-4637-2012, 2012.
Van, T. C.: Identification of sea level rise impacts on the Mekong Delta and
orientation of adaptation activities, 2009.
Ward, P. J., de Moel, H., and Aerts, J. C. J. H.: How are flood risk estimates
affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-11-3181-2011, 2011.
Xo, L. Q., Hien, N. X., Thanh, N. D., Ngoc, B., Khoi, N. H., Lam, D. T.,
Khoi, T. M., Tien, H. T., and Uyen, N. T.: Mekong Delta flood management
plan to 2020 and 2030, Southern Institute of Water Resources
Planning, Hochiminh City, Vietnam, 2015 (in Vietnamese).
Short summary
In this study we provide an estimation of flood damages and risks to rice cultivation in the Mekong Delta. The derived modelling concept explicitly takes plant phenomenology and timing of floods in a probabilistic modelling framework into account. This results in spatially explicit flood risk maps to rice cultivation, quantified as expected annual damage. Furthermore, the changes in flood risk of two land-use scenarios were estimated and discussed.
In this study we provide an estimation of flood damages and risks to rice cultivation in the...
Special issue
Altmetrics
Final-revised paper
Preprint