Articles | Volume 18, issue 4
https://doi.org/10.5194/nhess-18-1073-2018
https://doi.org/10.5194/nhess-18-1073-2018
Brief communication
 | 
19 Apr 2018
Brief communication |  | 19 Apr 2018

Brief communication: Loss of life due to Hurricane Harvey

Sebastiaan N. Jonkman, Maartje Godfroy, Antonia Sebastian, and Bas Kolen

Related authors

Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025,https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary
Deep learning methods for flood mapping: a review of existing applications and future research directions
Roberto Bentivoglio, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 26, 4345–4378, https://doi.org/10.5194/hess-26-4345-2022,https://doi.org/10.5194/hess-26-4345-2022, 2022
Short summary
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022,https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary

Related subject area

Hydrological Hazards
Post-wildfire sediment source and transport modeling, empirical observations, and applied mitigation: an Arizona, USA, case study
Edward R. Schenk, Alex Wood, Allen Haden, Gabriel Baca, Jake Fleishman, and Joe Loverich
Nat. Hazards Earth Syst. Sci., 25, 727–745, https://doi.org/10.5194/nhess-25-727-2025,https://doi.org/10.5194/nhess-25-727-2025, 2025
Short summary
Causes of the exceptionally high number of fatalities in the Ahr valley, Germany, during the 2021 flood
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025,https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Large-scale flood risk assessment in data-scarce areas: an application to Central Asia
Paola Ceresa, Gianbattista Bussi, Simona Denaro, Gabriele Coccia, Paolo Bazzurro, Mario Martina, Ettore Fagà, Carlos Avelar, Mario Ordaz, Benjamin Huerta, Osvaldo Garay, Zhanar Raimbekova, Kanatbek Abdrakhmatov, Sitora Mirzokhonova, Vakhitkhan Ismailov, and Vladimir Belikov
Nat. Hazards Earth Syst. Sci., 25, 403–428, https://doi.org/10.5194/nhess-25-403-2025,https://doi.org/10.5194/nhess-25-403-2025, 2025
Short summary
Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025,https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
The role of antecedent conditions in translating precipitation events into extreme floods at the catchment scale and in a large-basin context
Maria Staudinger, Martina Kauzlaric, Alexandre Mas, Guillaume Evin, Benoit Hingray, and Daniel Viviroli
Nat. Hazards Earth Syst. Sci., 25, 247–265, https://doi.org/10.5194/nhess-25-247-2025,https://doi.org/10.5194/nhess-25-247-2025, 2025
Short summary

Cited articles

Ashley, S. T. and Ashley, W. S.: Flood Fatalities in the United States, J. Appl. Meteorol. Clim., 47, 805–818, https://doi.org/10.1175/2007jamc1611.1, 2008. 
Blake, E. S. and Zelinsky, D. A.: National Hurricane Center Tropical Cyclone Report, Miami, FL, available at: https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf, last access: 6 March 2018. 
Blessing, R., Sebastian, A., and Brody, S. D.: Flood Risk Delineation in the United States: How Much Loss Are We Capturing?, Nat. Hazards Rev., 18, 4017002, https://doi.org/10.1061/(asce)nh.1527-6996.0000242, 2017. 
Brody, S. D., Sebastian, A., Blessing, R., and Bedient, P. B.: Case study results from southeast Houston, Texas: identifying the impacts of residential location on flood risk and loss, J. Flood Risk Manage., 11, 110–120, https://doi.org/10.1111/jfr3.12184, 2018. 
Chowdhury, A. M. R., Bhuyia, A. U., Choudhury, A. Y., and Sen, R.: The Bangladesh Cyclone of 1991: Why So Many People Died, Disasters, 17, 291–304, https://doi.org/10.1111/j.1467-7717.1993.tb00503.x, 1993. 
Download
Short summary
An analysis was made of the loss of life directly caused by Hurricane Harvey. Information was collected for 70 fatalities that occurred directly due to the event. Most of the fatalities occurred in the greater Houston area, which was most severely affected by extreme rainfall and heavy flooding. The majority of fatalities in this area were recovered outside the designated 100- and 500-year flood zones. Most fatalities occurred due to drowning (81 %), particularly in and around vehicles.
Share
Altmetrics
Final-revised paper
Preprint