Articles | Volume 17, issue 7
https://doi.org/10.5194/nhess-17-1047-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-17-1047-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures
Roozbeh Hasanzadeh Nafari
CORRESPONDING AUTHOR
Centre for Disaster Management and Public Safety (CDMPS), Department
of Infrastructure Engineering, University of Melbourne, Melbourne, 3010,
Australia
Bushfire & Natural Hazards Cooperative Research Centre, Melbourne,
3002, Australia
Mattia Amadio
Fondazione Eni Enrico Mattei (FEEM), Island of San Giorgio Maggiore, Venice, Italy
Risk Assessment and Adaptation Strategies Division, Euro-Mediterranean Center on Climate Change (CMCC), Island of San Giorgio Maggiore, Venice, Italy
Tuan Ngo
Director of the Advanced Protective Technologies for Engineering
Structures (APTES) Group, Department of Infrastructure Engineering,
University of Melbourne, Melbourne, 3010, Australia
Jaroslav Mysiak
Fondazione Eni Enrico Mattei (FEEM), Island of San Giorgio Maggiore, Venice, Italy
Risk Assessment and Adaptation Strategies Division, Euro-Mediterranean Center on Climate Change (CMCC), Island of San Giorgio Maggiore, Venice, Italy
Related authors
R. Hasanzadeh Nafari, T. Ngo, and W. Lehman
Nat. Hazards Earth Syst. Sci., 16, 15–27, https://doi.org/10.5194/nhess-16-15-2016, https://doi.org/10.5194/nhess-16-15-2016, 2016
Short summary
Short summary
In this paper, a newly derived flood loss function for Australian residential structures (FLFArs) is presented and calibrated by using historic data collected from an extreme event in Queensland, Australia, that occurred in 2013. Afterwards, the performance of FLFArs has been compared with the observed damage data collected from a 2012 flood event in Maranoa, Queensland. Based on this analysis, validation of FLFArs has been performed in terms of Australian geographical conditions.
Peyman Jafary, Davood Shojaei, Sara Pishgahi, Abbas Rajabifard, and Tuan Ngo
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 175–182, https://doi.org/10.5194/isprs-annals-X-4-2024-175-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-175-2024, 2024
P. Jafary, D. Shojaei, A. Rajabifard, and T. Ngo
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-W2-2022, 129–136, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-129-2022, https://doi.org/10.5194/isprs-annals-X-4-W2-2022-129-2022, 2022
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Mattia Amadio, Arthur H. Essenfelder, Stefano Bagli, Sepehr Marzi, Paolo Mazzoli, Jaroslav Mysiak, and Stephen Roberts
Nat. Hazards Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022, https://doi.org/10.5194/nhess-22-265-2022, 2022
Short summary
Short summary
We estimate the risk associated with storm surge events at two case study locations along the North Adriatic Italian coast, considering sea level rise up to the year 2100, and perform a cost–benefit analysis of planned or proposed coastal renovation projects. The study uses nearshore hydrodynamic modelling. Our findings represent a useful indication for disaster risk management, helping to understand the importance of investing in adaptation and estimating the economic return on investments.
Stephen Jewson, Giuliana Barbato, Paola Mercogliano, Jaroslav Mysiak, and Maximiliano Sassi
Nonlin. Processes Geophys., 28, 329–346, https://doi.org/10.5194/npg-28-329-2021, https://doi.org/10.5194/npg-28-329-2021, 2021
Short summary
Short summary
Climate model simulations are uncertain. In some cases this makes it difficult to know how to use them. Significance testing is often used to deal with this issue but has various shortcomings. We describe two alternative ways to manage uncertainty in climate model simulations that avoid these shortcomings. We test them on simulations of future rainfall over Europe and show they produce more accurate projections than either using unadjusted climate model output or statistical testing.
Mattia Amadio, Anna Rita Scorzini, Francesca Carisi, Arthur H. Essenfelder, Alessio Domeneghetti, Jaroslav Mysiak, and Attilio Castellarin
Nat. Hazards Earth Syst. Sci., 19, 661–678, https://doi.org/10.5194/nhess-19-661-2019, https://doi.org/10.5194/nhess-19-661-2019, 2019
Short summary
Short summary
Flood risk management relies on assessments performed using flood loss models of different complexities. We compared the performances of expert-based and empirical damage models on three major flood events in northern Italy. Our findings suggest that multivariate models have better potential to provide reliable damage estimates if extensive ancillary characterisation data are available. Expert-based approaches are better suited for transferability compared to empirically based approaches.
Jaroslav Mysiak, Sergio Castellari, Blaz Kurnik, Rob Swart, Patrick Pringle, Reimund Schwarze, Henk Wolters, Ad Jeuken, and Paul van der Linden
Nat. Hazards Earth Syst. Sci., 18, 3137–3143, https://doi.org/10.5194/nhess-18-3137-2018, https://doi.org/10.5194/nhess-18-3137-2018, 2018
Short summary
Short summary
Reducing disaster risks and adapting to climate change are ever more important policy goals. However, policies, methods, and practices across both policy areas often lack coherence, and opportunities are not fully exploited to build up resilience. The report "Climate change adaptation and disaster risk reduction in Europe" of the European Environment Agency identified several ways for how coherence and resilience can be built through knowledge sharing, collaboration, and investments.
Jaroslav Mysiak and C. Dionisio Pérez-Blanco
Nat. Hazards Earth Syst. Sci., 16, 2403–2419, https://doi.org/10.5194/nhess-16-2403-2016, https://doi.org/10.5194/nhess-16-2403-2016, 2016
Short summary
Short summary
Public–private partnerships (PPPs) have gained importance as a means of providing sustainable, equitable and affordable catastrophic natural hazard insurance. This paper reviews and summarizes the manifold legal background that influences the provision of insurance against natural catastrophes and examines how PPPs designed for sharing and transferring risk operate within the European regulatory constraints, illustrated on the example of the UK Flood Reinsurance Scheme.
Jaroslav Mysiak, Swenja Surminski, Annegret Thieken, Reinhard Mechler, and Jeroen Aerts
Nat. Hazards Earth Syst. Sci., 16, 2189–2193, https://doi.org/10.5194/nhess-16-2189-2016, https://doi.org/10.5194/nhess-16-2189-2016, 2016
Short summary
Short summary
In March 2015, a new international blueprint for disaster risk reduction (DRR) has been adopted in Sendai, Japan, at the end of the Third UN World Conference on Disaster Risk Reduction (WCDRR, March 14–18, 2015). We review and discuss the agreed commitments and targets, as well as the negotiation leading the Sendai Framework for DRR (SFDRR), and discuss briefly its implication for the later UN-led negotiations on sustainable development goals and climate change.
Elco E. Koks, Lorenzo Carrera, Olaf Jonkeren, Jeroen C. J. H. Aerts, Trond G. Husby, Mark Thissen, Gabriele Standardi, and Jaroslav Mysiak
Nat. Hazards Earth Syst. Sci., 16, 1911–1924, https://doi.org/10.5194/nhess-16-1911-2016, https://doi.org/10.5194/nhess-16-1911-2016, 2016
Short summary
Short summary
In this study we analyze the economic consequences for two flood scenarios in the Po River basin in Italy, using three regional disaster impact models: two hybrid IO models and a regionally CGE model. Modelling results indicate that the difference in estimated total (national) economic losses and the regional distribution of those losses may vary by up to a factor of 7 between the three models, depending on the type of recovery path. Total economic impact is negative in all models though.
R. Hasanzadeh Nafari, T. Ngo, and W. Lehman
Nat. Hazards Earth Syst. Sci., 16, 15–27, https://doi.org/10.5194/nhess-16-15-2016, https://doi.org/10.5194/nhess-16-15-2016, 2016
Short summary
Short summary
In this paper, a newly derived flood loss function for Australian residential structures (FLFArs) is presented and calibrated by using historic data collected from an extreme event in Queensland, Australia, that occurred in 2013. Afterwards, the performance of FLFArs has been compared with the observed damage data collected from a 2012 flood event in Maranoa, Queensland. Based on this analysis, validation of FLFArs has been performed in terms of Australian geographical conditions.
M. P. Hare, C. van Bers, P. van der Keur, H. J. Henriksen, J. Luther, C. Kuhlicke, F. Jaspers, C. Terwisscha van Scheltinga, J. Mysiak, E. Calliari, K. Warner, H. Daniel, J. Coppola, and P. F. McGrath
Nat. Hazards Earth Syst. Sci., 14, 2157–2163, https://doi.org/10.5194/nhess-14-2157-2014, https://doi.org/10.5194/nhess-14-2157-2014, 2014
Related subject area
Hydrological Hazards
Transferability of machine-learning-based modeling frameworks across flood events for hindcasting maximum river water depths in coastal watersheds
Floods in the Pyrenees: a global view through a regional database
Algorithmically detected rain-on-snow flood events in different climate datasets: a case study of the Susquehanna River basin
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting in typical mountainous catchments of northern China
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products
Flood occurrence and impact models for socioeconomic applications over Canada and the United States
Model-based assessment of climate change impact on inland flood risk at the German North Sea coast caused by compounding storm tide and precipitation events
An improved dynamic bidirectional coupled hydrologic–hydrodynamic model for efficient flood inundation prediction
Quantifying hazard resilience by modeling infrastructure recovery as a resource-constrained project scheduling problem
Hydrometeorological controls of and social response to the 22 October 2019 catastrophic flash flood in Catalonia, north-eastern Spain
A downward-counterfactual analysis of flash floods in Germany
Hyper-resolution flood hazard mapping at the national scale
Compound droughts under climate change in Switzerland
Brief communication: SWM – stochastic weather model for precipitation-related hazard assessments using ERA5-Land data
Tangible and intangible ex-post assessment of flood-induced damages to cultural heritage
Spatiotemporal variability of flash floods and their human impacts in the Czech Republic during the 2001–2023 period
Text mining uncovers the unique dynamics of socio-economic impacts of the 2018–2022 multi-year drought in Germany
The value of multi-source data for improved flood damage modelling with explicit input data uncertainty treatment: INSYDE 2.0
Impact of drought hazards on flow regimes in anthropogenically impacted streams: an isotopic perspective on climate stress
A multivariate statistical framework for mixed populations in compound flood analysis
Risk of compound flooding substantially increases in the future Mekong River delta
Limited effect of the confluence angle and tributary gradient on Alpine confluence morphodynamics under intense sediment loads
Influence of building collapse on pluvial and fluvial flood inundation of metro stations in central Shanghai
Does a convection-permitting regional climate model bring new perspectives on the projection of Mediterranean floods?
Added value of seasonal hindcasts to create UK hydrological drought storylines
Invited perspectives: Safeguarding the usability and credibility of flood hazard and risk assessments
Flash flood detection via copula-based intensity–duration–frequency curves: evidence from Jamaica
Seasonal forecasting of local-scale soil moisture droughts with Global BROOK90: a case study of the European drought of 2018
How to mitigate flood events similar to the 1979 catastrophic floods in the lower Tagus
Assessing LISFLOOD-FP with the next-generation digital elevation model FABDEM using household survey and remote sensing data in the Central Highlands of Vietnam
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment): a new model for geo-hydrological hazard assessment at the basin scale
The cascading effect of wildfires on flood risk: a study case in Ebro River basin Spain
Current and future rainfall-driven flood risk from hurricanes in Puerto Rico under 1.5 and 2 °C climate change
Modelling hazards impacting the flow regime in the Hranice Karst due to the proposed Skalička Dam
Using integrated hydrological–hydraulic modelling and global data sources to analyse the February 2023 floods in the Umbeluzi Catchment (Mozambique)
Integrating multi-hazard susceptibility and building exposure: A case study for Quang Nam province, Vietnam
Impact-based flood forecasting in the Greater Horn of Africa
Brief communication: A first hydrological investigation of extreme August 2023 floods in Slovenia, Europe
Multivariate regression trees as an “explainable machine learning” approach to explore relationships between hydroclimatic characteristics and agricultural and hydrological drought severity: case of study Cesar River basin
Review article: Towards improved drought prediction in the Mediterranean region – modeling approaches and future directions
Mind the Gap: Misalignment Between Drought Monitoring and Community Realities
Assessing typhoon-induced compound flood drivers: a case study in Ho Chi Minh City, Vietnam
Assessing the ability of a new seamless short-range ensemble rainfall product to anticipate flash floods in the French Mediterranean area
Sentinel-1-based analysis of the severe flood over Pakistan 2022
Maryam Pakdehi, Ebrahim Ahmadisharaf, Behzad Nazari, and Eunsaem Cho
Nat. Hazards Earth Syst. Sci., 24, 3537–3559, https://doi.org/10.5194/nhess-24-3537-2024, https://doi.org/10.5194/nhess-24-3537-2024, 2024
Short summary
Short summary
Machine learning (ML) algorithms have increasingly received attention for modeling flood events. However, there are concerns about the transferability of these models (their capability in predicting out-of-sample and unseen events). Here, we show that ML models can be transferable for hindcasting maximum river flood depths across extreme events (four hurricanes) in a large coastal watershed (HUC6) when informed by the spatial distribution of pertinent features and underlying physical processes.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci., 24, 3423–3443, https://doi.org/10.5194/nhess-24-3423-2024, https://doi.org/10.5194/nhess-24-3423-2024, 2024
Short summary
Short summary
This paper shows the first public and systematic dataset of flood episodes referring to the entire Pyrenees massif, at municipal scale, named PIRAGUA_flood. Of the 181 flood events (1981–2015) that produced 154 fatalities, 36 were transnational, with the eastern part of the massif most affected. Dominant weather types show a southern component flow, with a talweg on the Iberian Peninsula and a depression in the vicinity. A positive and significant trend was found in Nouvelle-Aquitaine.
Colin M. Zarzycki, Benjamin D. Ascher, Alan M. Rhoades, and Rachel R. McCrary
Nat. Hazards Earth Syst. Sci., 24, 3315–3335, https://doi.org/10.5194/nhess-24-3315-2024, https://doi.org/10.5194/nhess-24-3315-2024, 2024
Short summary
Short summary
We developed an automated workflow to detect rain-on-snow events, which cause flooding in the northeastern United States, in climate data. Analyzing the Susquehanna River basin, this technique identified known events affecting river flow. Comparing four gridded datasets revealed variations in event frequency and severity, driven by different snowmelt and runoff estimates. This highlights the need for accurate climate data in flood management and risk prediction for these compound extremes.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Sheik Umar Jam-Jalloh, Jia Liu, Yicheng Wang, and Yuchen Liu
Nat. Hazards Earth Syst. Sci., 24, 3155–3172, https://doi.org/10.5194/nhess-24-3155-2024, https://doi.org/10.5194/nhess-24-3155-2024, 2024
Short summary
Short summary
Our paper explores improving flood forecasting using advanced weather and hydrological models. By coupling the WRF model with WRF-Hydro and HEC-HMS, we achieved more accurate forecasts. WRF–WRF-Hydro excels for short, intense storms, while WRF–HEC-HMS is better for longer, evenly distributed storms. Our research shows how these models provide insights for adaptive atmospheric–hydrologic systems and aims to boost flood preparedness and response with more reliable, timely predictions.
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024, https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Short summary
Extreme rainfall is the leading weather-related source of damages in Europe, but it is still difficult to predict on long timescales. A recent example of this was the devastating floods in the Italian region of Emiglia Romagna in May 2023. We present perspectives based on large-scale dynamical information that allows us to better understand and predict such events.
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024, https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Short summary
Hydrological hazards affect people and ecosystems, but extremes are not fully understood due to limited observations. A large climate ensemble and simple hydrological model are used to assess unprecedented but plausible floods and droughts. The chain gives extreme flows outside the observed range: summer 2022 ~ 28 % lower and autumn 2023 ~ 42 % higher. Spatial dependence and temporal persistence are analysed. Planning for such events could help water supply resilience and flood risk management.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024, https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Short summary
Early warning is essential to minimise the impact of flash floods. We explore the use of highly detailed flood models to simulate the 2021 flood event in the lower Ahr valley (Germany). Using very high-resolution models resolving individual streets and buildings, we produce detailed, quantitative, and actionable information for early flood warning systems. Using state-of-the-art computational technology, these models can guarantee very fast forecasts which allow for sufficient time to respond.
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024, https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary
Short summary
The study proposes a new framework, named FLEXTH, to estimate flood water depth and improve satellite-based flood monitoring using topographical data. FLEXTH is readily available as a computer code, offering a practical and scalable solution for estimating flood depth quickly and systematically over large areas. The methodology can reduce the impacts of floods and enhance emergency response efforts, particularly where resources are limited.
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024, https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
Manuel Grenier, Mathieu Boudreault, David A. Carozza, Jérémie Boudreault, and Sébastien Raymond
Nat. Hazards Earth Syst. Sci., 24, 2577–2595, https://doi.org/10.5194/nhess-24-2577-2024, https://doi.org/10.5194/nhess-24-2577-2024, 2024
Short summary
Short summary
Modelling floods at the street level for large countries like Canada and the United States is difficult and very costly. However, many applications do not necessarily require that level of detail. As a result, we present a flood modelling framework built with artificial intelligence for socioeconomic studies like trend and scenarios analyses. We find for example that an increase of 10 % in average precipitation yields an increase in displaced population of 18 % in Canada and 14 % in the US.
Helge Bormann, Jenny Kebschull, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 2559–2576, https://doi.org/10.5194/nhess-24-2559-2024, https://doi.org/10.5194/nhess-24-2559-2024, 2024
Short summary
Short summary
Inland flooding is threatening coastal lowlands. If rainfall and storm surges coincide, the risk of inland flooding increases. We examine how such compound events are influenced by climate change. Data analysis and model-based scenario analysis show that climate change induces an increasing frequency and intensity of compounding precipitation and storm tide events along the North Sea coast. Overload of inland drainage systems will also increase if no timely adaptation measures are taken.
Yanxia Shen, Zhenduo Zhu, Qi Zhou, and Chunbo Jiang
Nat. Hazards Earth Syst. Sci., 24, 2315–2330, https://doi.org/10.5194/nhess-24-2315-2024, https://doi.org/10.5194/nhess-24-2315-2024, 2024
Short summary
Short summary
We present an improved Multigrid Dynamical Bidirectional Coupled hydrologic–hydrodynamic Model (IM-DBCM) with two major improvements: (1) automated non-uniform mesh generation based on the D-infinity algorithm was implemented to identify flood-prone areas where high-resolution inundation conditions are needed, and (2) ghost cells and bilinear interpolation were implemented to improve numerical accuracy in interpolating variables between the coarse and fine grids. The improved model was reliable.
Taylor Glen Johnson, Jorge Leandro, and Divine Kwaku Ahadzie
Nat. Hazards Earth Syst. Sci., 24, 2285–2302, https://doi.org/10.5194/nhess-24-2285-2024, https://doi.org/10.5194/nhess-24-2285-2024, 2024
Short summary
Short summary
Reliance on infrastructure creates vulnerabilities to disruptions caused by natural hazards. To assess the impacts of natural hazards on the performance of infrastructure, we present a framework for quantifying resilience and develop a model of recovery based upon an application of project scheduling under resource constraints. The resilience framework and recovery model were applied in a case study to assess the resilience of building infrastructure to flooding hazards in Accra, Ghana.
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024, https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
Short summary
On 22 October 2019, the Francolí River basin experienced a heavy precipitation event, resulting in a catastrophic flash flood. Few studies comprehensively address both the physical and human dimensions and their interrelations during extreme flash flooding. This research takes a step forward towards filling this gap in knowledge by examining the alignment among all these factors.
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 2147–2164, https://doi.org/10.5194/nhess-24-2147-2024, https://doi.org/10.5194/nhess-24-2147-2024, 2024
Short summary
Short summary
To identify flash flood potential in Germany, we shifted the most extreme rainfall events from the last 22 years systematically across Germany and simulated the consequent runoff reaction. Our results show that almost all areas in Germany have not seen the worst-case scenario of flood peaks within the last 22 years. With a slight spatial change of historical rainfall events, flood peaks of a factor of 2 or more would be achieved for most areas. The results can aid disaster risk management.
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Christoph Nathanael von Matt, Regula Muelchi, Lukas Gudmundsson, and Olivia Martius
Nat. Hazards Earth Syst. Sci., 24, 1975–2001, https://doi.org/10.5194/nhess-24-1975-2024, https://doi.org/10.5194/nhess-24-1975-2024, 2024
Short summary
Short summary
The simultaneous occurrence of meteorological (precipitation), agricultural (soil moisture), and hydrological (streamflow) drought can lead to augmented impacts. By analysing drought indices derived from the newest climate scenarios for Switzerland (CH2018, Hydro-CH2018), we show that with climate change the concurrence of all drought types will increase in all studied regions of Switzerland. Our results stress the benefits of and need for both mitigation and adaptation measures at early stages.
Melody Gwyneth Whitehead and Mark Stephen Bebbington
Nat. Hazards Earth Syst. Sci., 24, 1929–1935, https://doi.org/10.5194/nhess-24-1929-2024, https://doi.org/10.5194/nhess-24-1929-2024, 2024
Short summary
Short summary
Precipitation-driven hazards including floods, landslides, and lahars can be catastrophic and difficult to forecast due to high uncertainty around future weather patterns. This work presents a stochastic weather model that produces statistically similar (realistic) rainfall over long time periods at minimal computational cost. These data provide much-needed inputs for hazard simulations to support long-term, time and spatially varying risk assessments.
Claudia De Lucia, Michele Amaddii, and Chiara Arrighi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-104, https://doi.org/10.5194/nhess-2024-104, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The work describes the flood damages to cultural heritage (CH) occurred in the event of September 2022 in Central Italy. Datasets related to flood impacts to cultural heritage are rare and this work aims at highlighting both tangible and intangible aspects and their correlation with physical characteristics of the flood, i.e., water depth and flow velocity. The results show that current knowledge and datasets are inadequate for risk assessment of CH.
Rudolf Brázdil, Dominika Faturová, Monika Šulc Michalková, Jan Řehoř, Martin Caletka, and Pavel Zahradníček
EGUsphere, https://doi.org/10.5194/egusphere-2024-1467, https://doi.org/10.5194/egusphere-2024-1467, 2024
Short summary
Short summary
Flash floods belong to natural hazards that can be enhanced in frequency, intensity and impacts during the recent climate change. The paper present a complex analysis of spatiotemporal variability and human impacts (including material damage and fatalities) of flash floods in the Czech Republic for the 2001–2023 period. The analysis shows generally not any statistically significant trends in the characteristics analysed.
Jan Sodoge, Christian Kuhlicke, Miguel D. Mahecha, and Mariana Madruga de Brito
Nat. Hazards Earth Syst. Sci., 24, 1757–1777, https://doi.org/10.5194/nhess-24-1757-2024, https://doi.org/10.5194/nhess-24-1757-2024, 2024
Short summary
Short summary
We delved into the socio-economic impacts of the 2018–2022 drought in Germany. We derived a dataset covering the impacts of droughts in Germany between 2000 and 2022 on sectors such as agriculture and forestry based on newspaper articles. Notably, our study illustrated that the longer drought had a wider reach and more varied effects. We show that dealing with longer droughts requires different plans compared to shorter ones, and it is crucial to be ready for the challenges they bring.
Mario Di Bacco, Daniela Molinari, and Anna Rita Scorzini
Nat. Hazards Earth Syst. Sci., 24, 1681–1696, https://doi.org/10.5194/nhess-24-1681-2024, https://doi.org/10.5194/nhess-24-1681-2024, 2024
Short summary
Short summary
INSYDE 2.0 is a tool for modelling flood damage to residential buildings. By incorporating ultra-detailed survey and desk-based data, it improves the reliability and informativeness of damage assessments while addressing input data uncertainties.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-44, https://doi.org/10.5194/nhess-2024-44, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin-Brandenburg region of NE Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help assess the impacts of climate change on future water resource management.
Pravin Maduwantha, Thomas Wahl, Sara Santamaria-Aguilar, Robert Andrew Jane, James F. Booth, Hanbeen Kim, and Gabriele Villarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-1122, https://doi.org/10.5194/egusphere-2024-1122, 2024
Short summary
Short summary
Most of the studies on compound flooding assume events that generate extreme rainfall and coastal water level responses originate from a single population, in reality, they originate from multiple populations each with unique statistical characteristics. This paper presents a flexible statistical framework for assessing the compound flood potential from multiple flood drivers that explicitly accounts for different event types.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Tran Ba, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, and Joël J.-M. Hirschi
EGUsphere, https://doi.org/10.5194/egusphere-2024-949, https://doi.org/10.5194/egusphere-2024-949, 2024
Short summary
Short summary
We look at how compound flooding from the combination of river flooding and storm tide (storm surge plus astronomical tide) may be changing over time due to climate change, with a case study of the Mekong River delta. We found that future compound flooding has potential to flood the region more extensively and be longer lasting than compound floods today. This is useful to know because it means that managers of deltas such as the Mekong can assess options for improving existing flood defences.
Théo St. Pierre Ostrander, Thomé Kraus, Bruno Mazzorana, Johannes Holzner, Andrea Andreoli, Francesco Comiti, and Bernhard Gems
Nat. Hazards Earth Syst. Sci., 24, 1607–1634, https://doi.org/10.5194/nhess-24-1607-2024, https://doi.org/10.5194/nhess-24-1607-2024, 2024
Short summary
Short summary
Mountain river confluences are hazardous during localized flooding events. A physical model was used to determine the dominant controls over mountain confluences. Contrary to lowland confluences, in mountain regions, the channel discharges and (to a lesser degree) the tributary sediment concentration control morphological patterns. Applying conclusions drawn from lowland confluences could misrepresent depositional and erosional patterns and the related flood hazard at mountain river confluences.
Zhi Li, Hanqi Li, Zhibo Zhang, Chaomeng Dai, and Simin Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1088, https://doi.org/10.5194/egusphere-2024-1088, 2024
Short summary
Short summary
This study used advanced computer simulations to investigate how earthquake-induced building collapse affects flooding of the metro stations in Shanghai. Results show that the influence of building collapse on rainfall-driven and river-driven flood are different because these two types of floods have different origination and propagation mechanisms.
Nils Poncet, Philippe Lucas-Picher, Yves Tramblay, Guillaume Thirel, Humberto Vergara, Jonathan Gourley, and Antoinette Alias
Nat. Hazards Earth Syst. Sci., 24, 1163–1183, https://doi.org/10.5194/nhess-24-1163-2024, https://doi.org/10.5194/nhess-24-1163-2024, 2024
Short summary
Short summary
High-resolution convection-permitting climate models (CPMs) are now available to better simulate rainstorm events leading to flash floods. In this study, two hydrological models are compared to simulate floods in a Mediterranean basin, showing a better ability of the CPM to reproduce flood peaks compared to coarser-resolution climate models. Future projections are also different, with a projected increase for the most severe floods and a potential decrease for the most frequent events.
Wilson C. H. Chan, Nigel W. Arnell, Geoff Darch, Katie Facer-Childs, Theodore G. Shepherd, and Maliko Tanguy
Nat. Hazards Earth Syst. Sci., 24, 1065–1078, https://doi.org/10.5194/nhess-24-1065-2024, https://doi.org/10.5194/nhess-24-1065-2024, 2024
Short summary
Short summary
The most recent drought in the UK was declared in summer 2022. We pooled a large sample of plausible winters from seasonal hindcasts and grouped them into four clusters based on their atmospheric circulation configurations. Drought storylines representative of what the drought could have looked like if winter 2022/23 resembled each winter circulation storyline were created to explore counterfactuals of how bad the 2022 drought could have been over winter 2022/23 and beyond.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-856, https://doi.org/10.5194/egusphere-2024-856, 2024
Short summary
Short summary
We discuss the validation of flood hazard and risk assessments (FHRAs) to ensure they are useful for decision-making. We propose a new validation framework that considers not only technical aspects but also the real-world context in which decisions are made. By applying this framework to flood emergency planning, we demonstrate its practicality.
Dino Collalti, Nekeisha Spencer, and Eric Strobl
Nat. Hazards Earth Syst. Sci., 24, 873–890, https://doi.org/10.5194/nhess-24-873-2024, https://doi.org/10.5194/nhess-24-873-2024, 2024
Short summary
Short summary
The risk of extreme rainfall events causing floods is likely increasing with climate change. Flash floods, which follow immediately after extreme rainfall, are particularly difficult to forecast and assess. We develop a decision rule for flash flood classification with data on all incidents between 2001 and 2018 in Jamaica with the statistical copula method. This decision rule tells us for any rainfall event of a certain duration how intense it has to be to likely trigger a flash flood.
Ivan Vorobevskii, Thi Thanh Luong, and Rico Kronenberg
Nat. Hazards Earth Syst. Sci., 24, 681–697, https://doi.org/10.5194/nhess-24-681-2024, https://doi.org/10.5194/nhess-24-681-2024, 2024
Short summary
Short summary
This study presents a new version of a framework which allows us to model water balance components at any site on a local scale. Compared with the first version, the second incorporates new datasets used to set up and force the model. In particular, we highlight the ability of the framework to provide seasonal forecasts. This gives potential stakeholders (farmers, foresters, policymakers, etc.) the possibility to forecast, for example, soil moisture drought and thus apply the necessary measures.
Diego Fernández-Nóvoa, Alexandre M. Ramos, José González-Cao, Orlando García-Feal, Cristina Catita, Moncho Gómez-Gesteira, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 24, 609–630, https://doi.org/10.5194/nhess-24-609-2024, https://doi.org/10.5194/nhess-24-609-2024, 2024
Short summary
Short summary
The present study focuses on an in-depth analysis of floods in the lower section of the Tagus River from a hydrodynamic perspective by means of the Iber+ numerical model and on the development of dam operating strategies to mitigate flood episodes using the exceptional floods of February 1979 as a benchmark. The results corroborate the model's capability to evaluate floods in the study area and confirm the effectiveness of the proposed strategies to reduce flood impact in the lower Tagus valley.
Laurence Hawker, Jeffrey Neal, James Savage, Thomas Kirkpatrick, Rachel Lord, Yanos Zylberberg, Andre Groeger, Truong Dang Thuy, Sean Fox, Felix Agyemang, and Pham Khanh Nam
Nat. Hazards Earth Syst. Sci., 24, 539–566, https://doi.org/10.5194/nhess-24-539-2024, https://doi.org/10.5194/nhess-24-539-2024, 2024
Short summary
Short summary
We present a global flood model built using a new terrain data set and evaluated in the Central Highlands of Vietnam.
Andrea Abbate, Leonardo Mancusi, Francesco Apadula, Antonella Frigerio, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 24, 501–537, https://doi.org/10.5194/nhess-24-501-2024, https://doi.org/10.5194/nhess-24-501-2024, 2024
Short summary
Short summary
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment) is a new physically based and spatially distributed rainfall-runoff model. The main novelties consist of reproducing rainfall-induced geo-hydrological hazards such as shallow landslide, debris flow and watershed erosion through a multi-hazard approach. CRHyME was written in Python, works at a high spatial and temporal resolution, and is a tool suitable for quantifying extreme rainfall consequences at the basin scale.
Samuel Jonson Sutanto, Matthijs Janssen, Mariana Madruga de Brito, and Maria del Pozo Garcia
EGUsphere, https://doi.org/10.5194/egusphere-2024-153, https://doi.org/10.5194/egusphere-2024-153, 2024
Short summary
Short summary
A conventional flood risk assessment only evaluates flood hazard in isolation without considering wildfires. This study, therefore, evaluates the cascading impact of wildfires on flood risk, considering both current and future conditions for the Ebro River basin in Spain. Results show that extreme climate change increases the risk of flooding, especially when considering the cascading impacts of wildfires, highlighting the importance of adopting a multi-hazard risk management approach.
Leanne Archer, Jeffrey Neal, Paul Bates, Emily Vosper, Dereka Carroll, Jeison Sosa, and Daniel Mitchell
Nat. Hazards Earth Syst. Sci., 24, 375–396, https://doi.org/10.5194/nhess-24-375-2024, https://doi.org/10.5194/nhess-24-375-2024, 2024
Short summary
Short summary
We model hurricane-rainfall-driven flooding to assess how the number of people exposed to flooding changes in Puerto Rico under the 1.5 and 2 °C Paris Agreement goals. Our analysis suggests 8 %–10 % of the population is currently exposed to flooding on average every 5 years, increasing by 2 %–15 % and 1 %–20 % at 1.5 and 2 °C. This has implications for adaptation to more extreme flooding in Puerto Rico and demonstrates that 1.5 °C climate change carries a significant increase in risk.
Miroslav Spano and Jaromir Riha
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-21, https://doi.org/10.5194/nhess-2024-21, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Our study examines how building the Skalička Dam near the Hranice Karst affects local groundwater. We used advanced modeling to analyze two dam layouts: lateral and through-flow reservoirs. Results show the through-flow variant significantly alters water levels and mineral water discharge, while the lateral layout has less impact.
Luis Cea, Manuel Álvarez, and Jerónimo Puertas
Nat. Hazards Earth Syst. Sci., 24, 225–243, https://doi.org/10.5194/nhess-24-225-2024, https://doi.org/10.5194/nhess-24-225-2024, 2024
Short summary
Short summary
Mozambique is highly exposed to the impact of floods. To reduce flood damage, it is necessary to develop mitigation measures. Hydrological software is a very useful tool for that purpose, since it allows for a precise quantification of flood hazard in different scenarios. We present a methodology to quantify flood hazard in data-scarce regions, using freely available data and software, and we show its potential by analysing the flood event that took place in the Umbeluzi Basin in February 2023.
Chinh Luu, Giuseppe Forino, Lynda Yorke, Hang Ha, Quynh Duy Bui, Hanh Hong Tran, Dinh Quoc Nguyen, Hieu Cong Duong, and Matthieu Kervyn
EGUsphere, https://doi.org/10.5194/egusphere-2024-57, https://doi.org/10.5194/egusphere-2024-57, 2024
Short summary
Short summary
The study produced a novel and integrated approach to assessing the climate hazards of floods and wildfires. We explored multi-hazards assessment and risk through a machine learning modelling approach. The process includes (1) collecting a database of topography, climate, geology, environment, and building data, (2) developing models for multi-hazards assessment and coding in Google Earth Engine, and (3) producing credible multi-hazard susceptibility and building exposure maps.
Lorenzo Alfieri, Andrea Libertino, Lorenzo Campo, Francesco Dottori, Simone Gabellani, Tatiana Ghizzoni, Alessandro Masoero, Lauro Rossi, Roberto Rudari, Nicola Testa, Eva Trasforini, Ahmed Amdihun, Jully Ouma, Luca Rossi, Yves Tramblay, Huan Wu, and Marco Massabò
Nat. Hazards Earth Syst. Sci., 24, 199–224, https://doi.org/10.5194/nhess-24-199-2024, https://doi.org/10.5194/nhess-24-199-2024, 2024
Short summary
Short summary
This work describes Flood-PROOFS East Africa, an impact-based flood forecasting system for the Greater Horn of Africa. It is based on hydrological simulations, inundation mapping, and estimation of population and assets exposed to upcoming river floods. The system supports duty officers in African institutions in the daily monitoring of hydro-meteorological disasters. A first evaluation shows the system performance for the catastrophic floods in the Nile River basin in summer 2020.
Nejc Bezak, Panos Panagos, Leonidas Liakos, and Matjaž Mikoš
Nat. Hazards Earth Syst. Sci., 23, 3885–3893, https://doi.org/10.5194/nhess-23-3885-2023, https://doi.org/10.5194/nhess-23-3885-2023, 2023
Short summary
Short summary
Extreme flooding occurred in Slovenia in August 2023. This brief communication examines the main causes, mechanisms and effects of this event. The flood disaster of August 2023 can be described as relatively extreme and was probably the most extreme flood event in Slovenia in recent decades. The economic damage was large and could amount to well over 5 % of Slovenia's annual gross domestic product; the event also claimed three lives.
Ana Paez-Trujilo, Jeffer Cañon, Beatriz Hernandez, Gerald Corzo, and Dimitri Solomatine
Nat. Hazards Earth Syst. Sci., 23, 3863–3883, https://doi.org/10.5194/nhess-23-3863-2023, https://doi.org/10.5194/nhess-23-3863-2023, 2023
Short summary
Short summary
This study uses a machine learning technique, the multivariate regression tree approach, to assess the hydroclimatic characteristics that govern agricultural and hydrological drought severity. The results show that the employed technique successfully identified the primary drivers of droughts and their critical thresholds. In addition, it provides relevant information to identify the areas most vulnerable to droughts and design strategies and interventions for drought management.
Bouchra Zellou, Nabil El Moçayd, and El Houcine Bergou
Nat. Hazards Earth Syst. Sci., 23, 3543–3583, https://doi.org/10.5194/nhess-23-3543-2023, https://doi.org/10.5194/nhess-23-3543-2023, 2023
Short summary
Short summary
In this study, we underscore the critical importance of strengthening drought prediction capabilities in the Mediterranean region. We present an in-depth evaluation of current drought forecasting approaches, encompassing statistical, dynamical, and hybrid statistical–dynamical models, and highlight unexplored research opportunities. Additionally, we suggest viable directions to enhance drought prediction and early warning systems within the area.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2726, https://doi.org/10.5194/egusphere-2023-2726, 2023
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In Northeast Brazil, we assess official data against local experiences, finding data mismatches and blindspots. Mismatches occur due to the data's broad scope missing finer details. Blindspots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Francisco Rodrigues do Amaral, Nicolas Gratiot, Thierry Pellarin, and Tran Anh Tu
Nat. Hazards Earth Syst. Sci., 23, 3379–3405, https://doi.org/10.5194/nhess-23-3379-2023, https://doi.org/10.5194/nhess-23-3379-2023, 2023
Short summary
Short summary
We propose an in-depth analysis of typhoon-induced compound flood drivers in the megacity of Ho Chi Minh, Vietnam. We use in situ and satellite measurements throughout the event to form a holistic overview of its impact. No evidence of storm surge was found, and peak precipitation presents a 16 h time lag to peak river discharge, which evacuates only 1.5 % of available water. The astronomical tide controls the river level even during the extreme event, and it is the main urban flood driver.
Juliette Godet, Olivier Payrastre, Pierre Javelle, and François Bouttier
Nat. Hazards Earth Syst. Sci., 23, 3355–3377, https://doi.org/10.5194/nhess-23-3355-2023, https://doi.org/10.5194/nhess-23-3355-2023, 2023
Short summary
Short summary
This article results from a master's research project which was part of a natural hazards programme developed by the French Ministry of Ecological Transition. The objective of this work was to investigate a possible way to improve the operational flash flood warning service by adding rainfall forecasts upstream of the forecasting chain. The results showed that the tested forecast product, which is new and experimental, has a real added value compared to other classical forecast products.
Florian Roth, Bernhard Bauer-Marschallinger, Mark Edwin Tupas, Christoph Reimer, Peter Salamon, and Wolfgang Wagner
Nat. Hazards Earth Syst. Sci., 23, 3305–3317, https://doi.org/10.5194/nhess-23-3305-2023, https://doi.org/10.5194/nhess-23-3305-2023, 2023
Short summary
Short summary
In August and September 2022, millions of people were impacted by a severe flood event in Pakistan. Since many roads and other infrastructure were destroyed, satellite data were the only way of providing large-scale information on the flood's impact. Based on the flood mapping algorithm developed at Technische Universität Wien (TU Wien), we mapped an area of 30 492 km2 that was flooded at least once during the study's time period. This affected area matches about the total area of Belgium.
Cited articles
Aerts, J. C. J. H. and Botzen, W. J. W.: Climate change impacts on pricing long-term flood insurance: A comprehensive study for the Netherlands, Global Environ. Chang., 21, 1045–1060, https://doi.org/10.1016/j.gloenvcha.2011.04.005, 2011.
Agenzia delle Entrate: Osservatorio del Mercato Immobiliare – Quotazioni zone OMI, available at: http://www.agenziaentrate.gov.it/wps/content/Nsilib/Nsi/Documentazione/omi/Banche+dati/Quotazioni+immobiliari/ (last access: 7 January 2015), 2014.
Alfieri, L., Burek, P., Feyen, L., and Forzieri, G.: Global warming increases the frequency of river floods in Europe, Hydrol. Earth Syst. Sci., 19, 2247–2260, https://doi.org/10.5194/hess-19-2247-2015, 2015.
Alfieri, L., Feyen, L., Salamon, P., Thielen, J., Bianchi, A., Dottori, F., and Burek, P.: Modelling the socio-economic impact of river floods in Europe, Nat. Hazards Earth Syst. Sci., 16, 1401–1411, https://doi.org/10.5194/nhess-16-1401-2016, 2016.
Amadio, M., Mysiak, J., Carrera, L., and Koks, E.: Improving flood damage assessment models in Italy, Nat. Hazards, 82, 2075–2088, https://doi.org/10.1007/s11069-016-2286-0, 2016.
ANCE/CRESME: Lo stato del territorio italiano 2012, Insediamento e rischio sismico e idrogeologico, 284 p., 2012.
Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009.
Barton, C., Viney, E., Heinrich, L., and Turnley, M.: The Reality of Determining Urban Flood Damages, in: NSW Floodplain Management Authorities Annual Conference, Sydney, 2003.
Bouwer, L.M., Bubeck, P., and Aerts, J. C. J. H.: Changes in future flood risk due to climate and development in a Dutch polder area, Global Environ. Chang., 20, 463–471, https://doi.org/10.1016/j.gloenvcha.2010.04.002, 2010.
Bubeck, P., de Moel, H., Bouwer, L. M., and Aerts, J. C. J. H.: How reliable are projections of future flood damage?, Nat. Hazards Earth Syst. Sci., 11, 3293–3306, https://doi.org/10.5194/nhess-11-3293-2011, 2011.
Cammerer, H., Thieken, A. H., and Lammel, J.: Adaptability and transferability of flood loss functions in residential areas, Nat. Hazards Earth Syst. Sci., 13, 3063–3081, https://doi.org/10.5194/nhess-13-3063-2013, 2013.
Carrera, L., Standardi, G., Bosello, F., and Mysiak, J.: Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling, Environ. Modell. Softw., 63, 109–122. https://doi.org/10.1016/j.envsoft.2014.09.016, 2015.
Chai, T. and Draxler, R. R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014, 2014.
Chang, L. F., Lin, C. H., and Su, M. D.: Application of geographic weighted regression to establish flood-damage functions reflecting spatial variation, Water SA, 34, 209–216, 2008.
D'Alpaos, L., Brath, A., and Fioravante, V.: Relazione tecnico-scientifica sulle cause del collasso dell' argine del fiume Secchia avvenuto il giorno 19 gennaio 2014 presso la frazione San Matteo, 2014.
de Bruijn, K. M.: Bepalen van schade ten gevolge van overstromingen voor verschillende scenario's en bij verschillende beleidsopties, 2006.
de Moel, H., Aerts, J. C. J. H., and Koomen, E.: Development of flood exposure in the Netherlands during the 20th and 21st century, Global Environ. Chang., 21, 620–627, https://doi.org/10.1016/j.gloenvcha.2010.12.005, 2011.
de Moel, H., van Vliet, M., and Aerts, J. C. J. H.: Evaluating the effect of flood damage-reducing measures: a case study of the unembanked area of Rotterdam, the Netherlands, Reg. Environ. Change, 14, 895–908, https://doi.org/10.1007/s10113-013-0420-z, 2013.
Elmer, F., Thieken, A. H., Pech, I., and Kreibich, H.: Influence of flood frequency on residential building losses, Nat. Hazards Earth Syst. Sci., 10, 2145–2159, https://doi.org/10.5194/nhess-10-2145-2010, 2010.
Emanuelsson, M. A. E., Mcintyre, N., Hunt, C. F., Mawle, R., Kitson, J., and Voulvoulis, N.: Flood risk assessment for infrastructure networks, J. Flood Risk Manag., 7, 31–41, https://doi.org/10.1111/jfr3.12028, 2014.
European Environment Agency: Mapping the impacts of recent natural disasters and technological accidents in Europe – An overview of the last decade, EEA Technical report, https://doi.org/10.2800/62638, 2010.
FEMA: Multi-Hazard Loss Estimation Methodology, Flood Model: Hazus-MH Technical Manual, Washington, D.C., 2012.
Fuchs, S., Kuhlicke, C., and Meyer, V.: Editorial for the special issue: vulnerability to natural hazards, the challenge of integration, Nat. Hazards, 58, 609–619, https://doi.org/10.1007/s11069-011-9825-5, 2011.
Gissing, A. and Blong, R.: Accounting for variability in commercial flood damage estimation, Aust. Geogr., 35, 209–222, https://doi.org/10.1080/0004918042000249511, 2004.
Grahn, T. and Nyberg, R.: Damage assessment of lake floods: Insured damage to private property during two lake floods in Sweden 2000/2001, Int. J. Disaster Risk Reduct., 10, 305–314, https://doi.org/10.1016/j.ijdrr.2014.10.003, 2014.
Hallegatte, S.: An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina, Risk Anal., 28, 779–799, https://doi.org/10.1111/j.1539-6924.2008.01046.x, 2008.
Hammond, M. J., Chen, A. S., Djordjević, S., Butler, D., and Mark, O.: Urban flood impact assessment: a state-of-the-art review, Urban Water J., 12, 14–29, https://doi.org/10.1080/1573062X.2013.857421, 2015.
Hasanzadeh Nafari, R., Ngo, T., and Lehman, W.: Results comparison and model validation for flood loss functions in Australian geographical conditions. Nat. Hazards Earth Syst. Sci. Discuss., 3, 3823–3860, https://doi.org/10.5194/nhessd-3-3823-2015, 2015.
Hasanzadeh Nafari, R., Ngo, T., and Lehman, W.: Calibration and validation of FLFArs – a new flood loss function for Australian residential structures, Nat. Hazards Earth Syst. Sci., 16, 15–27, https://doi.org/10.5194/nhess-16-15-2016, 2016a.
Hasanzadeh Nafari, R., Ngo, T., and Lehman, W.: Development and evaluation of FLFAcs – A new Flood Loss Function for Australian commercial structures, Int. J. Disaster Risk Reduct., https://doi.org/10.1016/j.ijdrr.2016.03.007, 17, 13–23, 2016b.
Hasanzadeh Nafari, R., Ngo, T., and Mendis, P.: An Assessment of the Effectiveness of Tree-Based Models for Multi-Variate Flood Damage Assessment in Australia, Water, 8, 282–299, https://doi.org/10.3390/w8070282, 2016c.
Huizinga, H. J.: Flood damage functions for EU member states. Technical report implemented in the framework of the contract # 382441-F1SC awarded by the European Commission – Joint Research Centre, 2007.
Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J. C. J. H., and Ward, P. J.: Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.
Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C. J. H., Mechler, R., Botzen, W. J. W., Bouwer, L. M., Pflug, G., Rojas, R., and Ward, P. J.: Increasing stress on disaster-risk finance due to large floods, Nat. Clim. Chang., 4, 264–268, https://doi.org/10.1038/NCLIMATE2124, 2014.
Jonkman, S. N.: Loss of life estimation in flood risk assessment; theory and applications, Delft University of Technology, 2007.
Kaplan, S. and Garrick, B. J.: On the quantitative definition of risk, Risk Anal., 1, 11–27, 1981.
Karagiorgos, K., Heiser, M., Thaler, T., Hübl, J., and Fuchs, S.: Micro-sized enterprises: vulnerability to flash floods, Nat. Hazards, 84, 1091–1107, https://doi.org/10.1007/s11069-016-2476-9, 2016.
Klijn, F., Baan, P. J. A., De Bruijn, K. M., and Kwadijk, J.: Overstromingsrisico's in Nederland in een veranderend klimaat: verwachtingen, schattingen en berekeningen voor het project Nederland Later, Delft Hydraulics, Deltares (WL), 2007.
Kok, M., Huizinga, H. J., and Barendregt, A.: Standard Method 2004. Damage and Casualties Caused by Flooding, Client: Highway and Hydraulic Engineering Department, 2004.
Koks, E. E., de Moel, H., and Bouwer, L. M.: Effect of spatial adaptation measures on flood risk in the coastal area of Flanders, Valorisation Report 10b: CcASPAR, 2012.
Koks, E. E., Bockarjova, M., De Moel, H., and Aerts, J. C. J. H.: Integrated direct and indirect flood risk modeling: development and sensitivity analysis, Risk Anal., 35, 882–900, 2014.
Koks, E. E., Carrera, L., Jonkeren, O., Aerts, J. C. J. H., Husby, T. G., Thissen, M., Standardi, G., and Mysiak, J.: Regional disaster impact analysis: comparing input-output and computable general equilibrium models, Nat. Hazards Earth Syst. Sci., 16, 1911–1924, https://doi.org/10.5194/nhess-16-1911-2016, 2016.
Kreibich, H. and Thieken, A. H.: Assessment of damage caused by high groundwater inundation, Water Resour. Res., 44, 1–14, https://doi.org/10.1029/2007WR006621, 2008.
Kreibich, H., Seifert, I., Merz, B., and Thieken, A. H.: Development of FLEMOcs – a new model for the estimation of flood losses in the commercial sector, Hydrolog. Sci. J., 55, 1302–1314, https://doi.org/10.1080/02626667.2010.529815, 2010.
Lehman, W. and Hasanzadeh Nafari, R.: An Empirical, Functional approach to Depth Damages, in: FLOODrisk 2016, the 3rd European Conference on Flood Risk Management, Lyon, France, 2016.
Luino, F., Cirio, C. G., Biddoccu, M., Agangi, A., Giulietto, W., Godone, F., and Nigrelli, G.: Application of a model to the evaluation of flood damage, Geoinformatica 13, 339–353, https://doi.org/10.1007/s10707-008-0070-3, 2009.
McBean, E., Fortin, M., and Gorrie, J.: A critical analysis of residential flood damage estimation curves, Can. J. Civ. Eng., 13, 86–94, https://doi.org/10.1139/l86-012, 1986.
McGrath, H., Stefanakis, E., and Nastev, M.: Sensitivity analysis of flood damage estimates: A case study in Fredericton, New Brunswick, Int. J. Disaster Risk Reduct., 14, 379–387, https://doi.org/10.1016/j.ijdrr.2015.09.003, 2015.
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.
Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, 2013.
Messner, F., Penning-Rowsell, E., Green, C., Tunstall, S., van der Veen, A., Tapsell, S., Wilson, T., Krywkow, J., Logtmeijer, C., Fernández-Bilbao, A., Geurts, P., and Haase, D.: Evaluating flood damages: guidance and recommendations on principles and methods, Flood Risk Manag. Hazards, Vulnerability Mitig. Meas., 189 pp., 2007.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Molinari, D., Ballio, F., Berni, N., and Pandolfo, C.: Implementing the Floods Directive: the case of the Umbria Region, in: FLOODRisk 2012, Rotterdam, 1–7, 2012.
Molinari, D., Ballio, F., Handmer, H., and Menoni, S.: On the modeling of significance for flood damage assessment, Int. J. Disaster Risk Reduct., 10, 381–391, https://doi.org/10.1016/j.ijdrr.2014.10.009, 2014a.
Molinari, D., Menoni, S., Aronica, G. T., Ballio, F., Berni, N., Pandolfo, C., Stelluti, M., and Minucci, G.: Ex post damage assessment: an Italian experience, Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, 2014b.
Neale, T. and Weir, J. K.: Navigating scientific uncertainty in wildfire and flood risk mitigation: A qualitative review, Int. J. Disaster Risk Reduct., 13, 255–265, https://doi.org/10.1016/j.ijdrr.2015.06.010, 2015.
Papathoma-Köhle, M., Keiler, M., Totschnig, R., and Glade, T.: Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol, Nat. Hazards, 64, 2083–2105, https://doi.org/10.1007/s11069-012-0105-9, 2012.
Penning-Rowsell, E., Johnson, C., Tunstall, S., Morris, J., Chatterton, J., Green, C., Koussela, K., and Fernandez-Bilbao, A.: The Benefits of Flood and Coastal Risk Management: A Handbook of Assessment Techniques, Middlesex Univ. Press, 89 pp., uuid:33f2d216-c9bf-419c-b3b1-415a6f6fd881, 2005.
Poussin, J. K., Bubeck, P., Aerts, J. C. J. H., and Ward, P. J.: Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: case study for the Meuse, Nat. Hazards Earth Syst. Sci., 12, 3455–3471, https://doi.org/10.5194/nhess-12-3455-2012, 2012.
Proverbs, D. G. and Soetanto, R.: Flood Damaged Property; A Guide to Repair, Blackwell Publishing Ltd., 2004.
Refaeilzadeh, P., Tang, L., and Liu., H.: “Cross-Validation”, in: Encyclopedia of Database Systems. Springer US, 532–538, 2009.
Regione Emilia Romagna: Coperture vettoriali dell'uso del suolo, available at: http://servizigis.regione.emilia-romagna.it/ctwmetadatiRER/metadatoISO.ejb?stato_IdMetadato=iOrg01iEnP1idMetadato76868 (last access: 7 January 2015), 2011a.
Regione Emilia-Romagna: Servizio Statistica e Informazione geografica, 2008 – Coperture vettoriali dell'uso del suolo – Edizione 2011, http://geoportale.regione.emilia-romagna.it/it/download/dati-e-prodotti-cartografici-preconfezionati/tutti-download-preconfezionati/usosuolo2008_utma_rer.zip, http://geoportale.regione.emilia-romagna.it/it/download/dati-e-prodotti-cartografici-preconfezionati/pianificazione-e-catasto/uso-del-suolo-1/2008-coperture-vettoriali-uso-del-suolo-edizione-2011/Documentazione 2008.pdf/at_download/file (last access: 20 December 2016), 2011b.
Regione Emilia-Romagna: Servizio Statistica e Informazione geografica, DBTR – Edificio, http://geoportale.regione.emilia-romagna.it/it/catalogo/dati-cartografici/cartografia-di-base/database-topografico-regionale/immobili/edificato/edificio-dbtr-edi_gpg, http://servizigis.regione.emilia-romagna.it/ctwmetadatiRER/metadatoISO.ejb?stato_IdMetadato=iOrg01iEnP1idMetadato78164, last access: 20 December 2016a.
Regione Emilia-Romagna: Servizio Statistica e Informazione geografica, DBTR – Civico, http://geoportale.regione.emilia-romagna.it/it/catalogo/dati-cartografici/cartografia-di-base/database-topografico-regionale/gestione-viabilita-indirizzi/toponimi-e-numeri-civici/dbtr-civico-ncv_gpt, http://servizigis.regione.emilia-romagna.it/ctwmetadatiRER/metadatoISO.ejb?stato_IdMetadato=iOrg01iEnP1idMetadato78148, last access: 20 December 2016b.
Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., and Merz, B.: How useful are complex flood damage models?, Water Resour. Res., 50, 3378–3395, https://doi.org/10.1002/2013WR014396, 2014.
Scorzini, A. R. and Frank, E.: Flood damage curves: new insights from the 2010 flood in Veneto, Italy, J. Flood Risk Manag., https://doi.org/10.1111/jfr3.12163, 2015.
Seifert, I., Kreibich, H., Merz, B., and Thieken, A. H.: Application and validation of FLEMOcs – a flood-loss estimation model for the commercial sector, Hydrol. Sci. J., 55, 1315–1324, https://doi.org/10.1080/02626667.2010.536440, 2010.
Smith, D.: Flood damage estimation. A review of urban stage-damage curves and loss function, Water SA, 20, 231–238, 1994.
Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and influencing factors: New insights from the August 2002 flood in Germany, Water Resour. Res., 41, 1–16, https://doi.org/10.1029/2005WR004177, 2005.
Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S., and Merz, B.: Development and evaluation of FLEMOps – a new Flood Loss Estimation MOdel for the private sector, Flood Recover. Innov. Response, WIT Press, 315–324, 2008.
Thieken, A. H., Ackermann, V., Elmer, F., Kreibich, H., Kuhlmann, B., Kunert, U., Maiwald, H., Merz, B., Müller, M., Piroth, K., Schwarz, J., Schwarze, R., Seifert, I., and Seifert, J.: Methods for the evaluation of direct and indirect flood losses, in: RIMAX Contributions at the 4th International Symposium on Flood Defence (ISFD4), 1–10, 2009.
Trigila, A., Iadanza, C., Bussettini, M., Lastoria, B., and Barbano, A.: Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio, ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, 2015.
UNISDR: Terminology. Basic terms of disaster risk reduction, United Nations Int. Strateg. Disaster Reduct. (UNISDR), Geneva, 1–30, 2004.
Vacondio, R., Aureli, F., Ferrari, A., Mignosa, P., and Dal Palù, A.: Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme, Nat. Hazards, 80, 103–125, https://doi.org/10.1007/s11069-015-1959-4, 2016.
Ward, P. J., de Moel, H., and Aerts, J. C. J. H.: How are flood risk estimates affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-11-3181-2011, 2011.
Zampetti, G., Ottaviani, F., and Minutolo, A.: I costi del rischio idrogeologico, Dossier Legambiente, Roma, 2012.
Short summary
Floods are frequent natural hazards in Italy, triggering significant adverse consequences on the economy every year. Their impact is expected to worsen in the near future due to socio-economic development and climate variability. To be able to reduce the probability and magnitude of expected economic losses, flood risk managers need to be correctly informed about the potential damage from flood hazards. In this study, we have developed a new and accurate model for Italian residential buildings.
Floods are frequent natural hazards in Italy, triggering significant adverse consequences on the...
Altmetrics
Final-revised paper
Preprint