Brief communication 19 Jul 2016
Brief communication | 19 Jul 2016
Brief Communication: An update of the article "Modelling flood damages under climate change conditions – a case study for Germany"
Fred Fokko Hattermann et al.
Related authors
Stefan Liersch, Julia Tecklenburg, Henning Rust, Andreas Dobler, Madlen Fischer, Tim Kruschke, Hagen Koch, and Fred Fokko Hattermann
Hydrol. Earth Syst. Sci., 22, 2163–2185, https://doi.org/10.5194/hess-22-2163-2018, https://doi.org/10.5194/hess-22-2163-2018, 2018
Short summary
Short summary
Application-oriented regional impact studies require accurate simulations of future climate variables and water availability. We analyse the quality of global and regional climate projections and discuss potentials of correction methods that partly overcome this quality issue. The model ensemble used in this study projects increasing average annual discharges and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
T. Vetter, S. Huang, V. Aich, T. Yang, X. Wang, V. Krysanova, and F. Hattermann
Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, https://doi.org/10.5194/esd-6-17-2015, 2015
V. Aich, B. Koné, F. F. Hattermann, and E. N. Müller
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-5171-2014, https://doi.org/10.5194/nhessd-2-5171-2014, 2014
Revised manuscript not accepted
V. Aich, S. Liersch, T. Vetter, S. Huang, J. Tecklenburg, P. Hoffmann, H. Koch, S. Fournet, V. Krysanova, E. N. Müller, and F. F. Hattermann
Hydrol. Earth Syst. Sci., 18, 1305–1321, https://doi.org/10.5194/hess-18-1305-2014, https://doi.org/10.5194/hess-18-1305-2014, 2014
Zbigniew W. Kundzewicz, Buda Su, Yanjun Wang, Guojie Wang, Guofu Wang, Jinlong Huang, and Tong Jiang
Nat. Hazards Earth Syst. Sci., 19, 1319–1328, https://doi.org/10.5194/nhess-19-1319-2019, https://doi.org/10.5194/nhess-19-1319-2019, 2019
Short summary
Short summary
Considering flood risk composed of hazard, exposure, and vulnerability from global to local scales, this paper reviews and presents increasing observed flood losses and projections of flood hazard and losses. We acknowledge existence of multiple driving factors and of considerable uncertainty, in particular with regards to projections for the future. Finally, this paper analyses options for flood risk reduction from a global framework to regional and local scales.
Peter Hoffmann, Christoph Menz, and Arne Spekat
Adv. Sci. Res., 15, 107–116, https://doi.org/10.5194/asr-15-107-2018, https://doi.org/10.5194/asr-15-107-2018, 2018
Short summary
Short summary
The adjustment of bias, i.e., systematic errors, of climate models are a necessity when comparing results of an ensemble of these models. Usually, the meteorological parameters such as temperature or rainfall amounts themselves are subject to bias adjustments. We present a new method to apply bias adjustment to so-called climate indicators which are derived from those parameters, e.g., the number of days warmer than 30 °C or the number of days with more than 20 mm of rain.
Stefan Liersch, Julia Tecklenburg, Henning Rust, Andreas Dobler, Madlen Fischer, Tim Kruschke, Hagen Koch, and Fred Fokko Hattermann
Hydrol. Earth Syst. Sci., 22, 2163–2185, https://doi.org/10.5194/hess-22-2163-2018, https://doi.org/10.5194/hess-22-2163-2018, 2018
Short summary
Short summary
Application-oriented regional impact studies require accurate simulations of future climate variables and water availability. We analyse the quality of global and regional climate projections and discuss potentials of correction methods that partly overcome this quality issue. The model ensemble used in this study projects increasing average annual discharges and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Abdelkader Mezghani, Andreas Dobler, Jan Erik Haugen, Rasmus E. Benestad, Kajsa M. Parding, Mikołaj Piniewski, Ignacy Kardel, and Zbigniew W. Kundzewicz
Earth Syst. Sci. Data, 9, 905–925, https://doi.org/10.5194/essd-9-905-2017, https://doi.org/10.5194/essd-9-905-2017, 2017
Short summary
Short summary
Projected changes estimated from an ensemble of nine model simulations showed that annual means of temperature are expected to increase steadily by 1 °C until 2021–2050 and by 2 °C until 2071–2100 assuming the RCP4.5, which is accelerating assuming the RCP8.5 scenario and can reach up to almost 4 °C by 2071–2100. Similarly to temperature, projected changes in regional annual means of precipitation are expected to increase by 6 to 10 % and by 8 to 16 % for the two future horizons and RCPs.
Heike Huebener, Peter Hoffmann, Klaus Keuler, Susanne Pfeifer, Hans Ramthun, Arne Spekat, Christian Steger, and Kirsten Warrach-Sagi
Adv. Sci. Res., 14, 261–269, https://doi.org/10.5194/asr-14-261-2017, https://doi.org/10.5194/asr-14-261-2017, 2017
Short summary
Short summary
There is still a large gap between climate research results and their use in climate impact research and policy advisory. One of the many approaches taken to reduce this gap was a midterm user workshop of the German project ReKliEs-De. The users were asked to guide the further project work towards their needs. Conclusions from the workshop included the need for more
plain textguidance on climate model strengths and weaknesses as well as more research on climate impact system functioning.
Z. W. Kundzewicz and P. Matczak
Proc. IAHS, 369, 181–187, https://doi.org/10.5194/piahs-369-181-2015, https://doi.org/10.5194/piahs-369-181-2015, 2015
Z. W. Kundzewicz
Proc. IAHS, 369, 189–194, https://doi.org/10.5194/piahs-369-189-2015, https://doi.org/10.5194/piahs-369-189-2015, 2015
P. Matczak, J. Lewandowski, A. Choryński, M. Szwed, and Z. W. Kundzewicz
Proc. IAHS, 369, 195–199, https://doi.org/10.5194/piahs-369-195-2015, https://doi.org/10.5194/piahs-369-195-2015, 2015
T. Vetter, S. Huang, V. Aich, T. Yang, X. Wang, V. Krysanova, and F. Hattermann
Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, https://doi.org/10.5194/esd-6-17-2015, 2015
V. Aich, B. Koné, F. F. Hattermann, and E. N. Müller
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-5171-2014, https://doi.org/10.5194/nhessd-2-5171-2014, 2014
Revised manuscript not accepted
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
V. Aich, S. Liersch, T. Vetter, S. Huang, J. Tecklenburg, P. Hoffmann, H. Koch, S. Fournet, V. Krysanova, E. N. Müller, and F. F. Hattermann
Hydrol. Earth Syst. Sci., 18, 1305–1321, https://doi.org/10.5194/hess-18-1305-2014, https://doi.org/10.5194/hess-18-1305-2014, 2014
Related subject area
Hydrological Hazards
The uncertainty of flood frequency analyses in hydrodynamic model simulations
Flood risk assessment of the European road network
The impact of hydrological model structure on the simulation of extreme runoff events
Hydrometeorological analysis and forecasting of a 3 d flash-flood-triggering desert rainstorm
Land subsidence due to groundwater pumping: hazard probability assessment through the combination of Bayesian model and fuzzy set theory
Quantification of continuous flood hazard using random forest classification and flood insurance claims at large spatial scales: a pilot study in southeast Texas
Assessing Chinese flood protection and its social divergence
Typhoon rainstorm simulations with radar data assimilation on the southeast coast of China
Simulating historical flood events at the continental scale: observational validation of a large-scale hydrodynamic model
A dynamic bidirectional coupled surface flow model for flood inundation simulation
A revision of the Combined Drought Indicator (CDI) used in the European Drought Observatory (EDO)
Drought propagation and its impact on groundwater hydrology of wetlands: a case study on the Doode Bemde nature reserve (Belgium)
Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced
Assessment of probability distributions and analysis of the minimum storage draft rate in the equatorial region
Downsizing parameter ensembles for simulations of rare floods
Dynamic maps of human exposure to floods based on mobile phone data
What controls the coarse sediment yield to a Mediterranean delta? The case of the Llobregat River (NE Iberian Peninsula)
Open check dams and large wood: head losses and release conditions
Forecasting flood hazards in real time: a surrogate model for hydrometeorological events in an Andean watershed
Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study
Evaluation of EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment for the Euro-Mediterranean area) historical simulations by high-quality observational datasets in southern Italy: insights on drought assessment
A multidisciplinary drought catalogue for southwestern Germany dating back to 1801
Simulation of extreme rainfall and streamflow events in small Mediterranean watersheds with a one-way-coupled atmospheric–hydrologic modelling system
Annual flood damage influenced by El Niño in the Kan River basin, Iran
Multivariate statistical modelling of the drivers of compound flood events in south Florida
Building hazard maps with differentiated risk perception for flood impact assessment
Challenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco
A risk-based network analysis of distributed in-stream leaky barriers for flood risk management
Testing the impact of direct and indirect flood warnings on population behaviour using an agent-based model
Soil moisture and streamflow deficit anomaly index: An approach to quantify drought hazards by combining deficit and anomaly
Hydrogeomorphological analysis and modelling for a comprehensive understanding of flash-flood damage processes: the 9 October 2018 event in northeastern Mallorca
Hydrological impacts of climate change on small ungauged catchments – results from a global climate model–regional climate model–hydrologic model chain
Evaluating the efficacy of bivariate extreme modelling approaches for multi-hazard scenarios
Integrated evaluation of water-related disasters using the analytical hierarchy process under land use change and climate change issues in Laos
Event generation for probabilistic flood risk modelling: multi-site peak flow dependence model vs. weather-generator-based approach
Brief communication: Seasonal prediction of salinity intrusion in the Mekong Delta
Skill of large-scale seasonal drought impact forecasts
Brief communication: Comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping
Improving early warning of drought-driven food insecurity in southern Africa using operational hydrological monitoring and forecasting products
Invited perspectives: How machine learning will change flood risk and impact assessment
The role of spatial dependence for large-scale flood risk estimation
A method to use proxy data of runoff-related impacts for the evaluation of a model mapping intense storm runoff hazard: application to the railway context
Predictive skill for atmospheric rivers in the western Iberian Peninsula
Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain)
Ensemble flood simulation for a small dam catchment in Japan using nonhydrostatic model rainfalls – Part 2: Flood forecasting using 1600-member 4D-EnVar-predicted rainfalls
Improved accuracy and efficiency of flood inundation mapping of low-, medium-, and high-flow events using the AutoRoute model
Measuring compound flood potential from river discharge and storm surge extremes at the global scale
A joint probabilistic index for objective drought identification: the case study of Haiti
Evaluation of two hydrometeorological ensemble strategies for flash-flood forecasting over a catchment of the eastern Pyrenees
Modeling the effects of sediment concentration on the propagation of flash floods in an Andean watershed
Xudong Zhou, Wenchao Ma, Wataru Echizenya, and Dai Yamazaki
Nat. Hazards Earth Syst. Sci., 21, 1071–1085, https://doi.org/10.5194/nhess-21-1071-2021, https://doi.org/10.5194/nhess-21-1071-2021, 2021
Short summary
Short summary
This article assesses different uncertainties in the analysis of flood risk and found the runoff generated before the river routing is the primary uncertainty source. This calls for attention to be focused on selecting an appropriate runoff for the flood analysis. The uncertainties are reflected in the flood water depth, inundation area and the exposure of the population and economy to the floods.
Kees C. H. van Ginkel, Francesco Dottori, Lorenzo Alfieri, Luc Feyen, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 21, 1011–1027, https://doi.org/10.5194/nhess-21-1011-2021, https://doi.org/10.5194/nhess-21-1011-2021, 2021
Short summary
Short summary
This study presents a state-of-the-art approach to assess flood damage for each unique road segment in Europe. We find a mean total flood risk of EUR 230 million per year for all individual road segments combined. We identify flood hotspots in the Alps, along the Sava River, and on the Scandinavian Peninsula. To achieve this, we propose a new set of damage curves for roads and challenge the community to validate and improve these. Analysis of network effects can be easily added to our analysis.
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary
Short summary
In this study, we combine climate model results with a hydrological model to investigate uncertainties in flood and drought risk. With the climate model, 2000 years of
current climatewas created. The hydrological model consisted of several building blocks that we could adapt. In this way, we could investigate the effect of these hydrological building blocks on high- and low-flow risk in four different climate zones with return periods of up to 500 years.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
William Mobley, Antonia Sebastian, Russell Blessing, Wesley E. Highfield, Laura Stearns, and Samuel D. Brody
Nat. Hazards Earth Syst. Sci., 21, 807–822, https://doi.org/10.5194/nhess-21-807-2021, https://doi.org/10.5194/nhess-21-807-2021, 2021
Short summary
Short summary
In southeast Texas, flood impacts are exacerbated by increases in impervious surfaces, human inaction, outdated FEMA-defined floodplains and modeling assumptions, and changing environmental conditions. The current flood maps are inadequate indicators of flood risk, especially in urban areas. This study proposes a novel method to model flood hazard and impact in urban areas. Specifically, we used novel flood risk modeling techniques to produce annualized flood hazard maps.
Dan Wang, Paolo Scussolini, and Shiqiang Du
Nat. Hazards Earth Syst. Sci., 21, 743–755, https://doi.org/10.5194/nhess-21-743-2021, https://doi.org/10.5194/nhess-21-743-2021, 2021
Short summary
Short summary
Flood protection level (FPL) is vital for risk analysis and management but scarce in realty particularly for developing countries. This paper develops a policy-based FPL dataset for China and validates it using local FPL designs. The FPLs are much higher than that in a global database, suggesting Chinese flood risk could be lower with the policy-required FPLs. Moreover, the FPLs are lower for western China and vulnerable people, implying a spatial and social divergence of the FPLs.
Jiyang Tian, Ronghua Liu, Liuqian Ding, Liang Guo, and Bingyu Zhang
Nat. Hazards Earth Syst. Sci., 21, 723–742, https://doi.org/10.5194/nhess-21-723-2021, https://doi.org/10.5194/nhess-21-723-2021, 2021
Short summary
Short summary
A typhoon always comes with heavy rainfall which leads to great loss. The aim of this study is to explore the reasonable use of Doppler radar data assimilation to correct the initial and lateral boundary conditions of the numerical weather prediction (NWP) systems for typhoon rainstorm forecasts at catchment scale. The results show that assimilating radial velocity at a time interval of 1 h can significantly improve the rainfall simulations and outperform the other assimilation modes.
Oliver E. J. Wing, Andrew M. Smith, Michael L. Marston, Jeremy R. Porter, Mike F. Amodeo, Christopher C. Sampson, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 21, 559–575, https://doi.org/10.5194/nhess-21-559-2021, https://doi.org/10.5194/nhess-21-559-2021, 2021
Short summary
Short summary
Global flood models are difficult to validate. They generally output theoretical flood events of a given probability rather than an observed event that they can be tested against. Here, we adapt a US-wide flood model to enable the rapid simulation of historical flood events in order to more robustly understand model biases. For 35 flood events, we highlight the challenges of model validation amidst observational data errors yet evidence the increasing skill of large-scale models.
Chunbo Jiang, Qi Zhou, Wangyang Yu, Chen Yang, and Binliang Lin
Nat. Hazards Earth Syst. Sci., 21, 497–515, https://doi.org/10.5194/nhess-21-497-2021, https://doi.org/10.5194/nhess-21-497-2021, 2021
Short summary
Short summary
We proposed a new dynamic coupling model for flood simulation and prediction. The model can dynamically alter the coupling boundary position based on the characteristic theory to determine the non-inundation and inundation regions, taking into account both mass and momentum exchange. Then the model was validated by several classic numerical test cases as well as experiment data and implemented in a real study case. Results show its capability for flood simulation and risk assessments.
Carmelo Cammalleri, Carolina Arias-Muñoz, Paulo Barbosa, Alfred de Jager, Diego Magni, Dario Masante, Marco Mazzeschi, Niall McCormick, Gustavo Naumann, Jonathan Spinoni, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, https://doi.org/10.5194/nhess-21-481-2021, 2021
Short summary
Short summary
Building on almost ten years of expertise and operational application of the Combined Drought Indicator (CDI) for the monitoring of agricultural droughts in Europe within the European Commission's European Drought Observatory (EDO), this paper proposes a revised version of the index. This paper shows that the proposed revised CDI reliably reproduces the evolution of major droughts, outperforming the current version of the indicator, especially for long-lasting events.
Buruk Kitachew Wossenyeleh, Kaleb Asnake Worku, Boud Verbeiren, and Marijke Huysmans
Nat. Hazards Earth Syst. Sci., 21, 39–51, https://doi.org/10.5194/nhess-21-39-2021, https://doi.org/10.5194/nhess-21-39-2021, 2021
Short summary
Short summary
Droughts are mainly caused by a reduction of precipitation, and they affect both surface and groundwater resources. Drought propagates through the hydrological cycle and may impact vulnerable ecosystems. We investigated drought propagation in the hydrological cycle, focusing on assessing its impact on a groundwater-fed wetland ecosystem in the Doode Bemde wetland in central Belgium. We used a method combining meteorological drought indices, water balance models and groundwater models.
Darren Lumbroso, Mark Davison, Richard Body, and Gregor Petkovšek
Nat. Hazards Earth Syst. Sci., 21, 21–37, https://doi.org/10.5194/nhess-21-21-2021, https://doi.org/10.5194/nhess-21-21-2021, 2021
Short summary
Short summary
A tailings dam is an earth embankment used to store the waste from mines, known as tailings. In 2019, the Brumadinho tailings dam in Brazil failed, releasing a mudflow which killed ~ 300 people. This paper details the use of an agent-based model to estimate the risk to people downstream of this dam. The agent-based model represents each individual person. The modelling indicated that if a warning had been issued as the dam failed, the number of fatalities could have been reduced.
Hasrul Hazman Hasan, Siti Fatin Mohd Razali, Nur Shazwani Muhammad, and Firdaus Mohamad Hamzah
Nat. Hazards Earth Syst. Sci., 21, 1–19, https://doi.org/10.5194/nhess-21-1-2021, https://doi.org/10.5194/nhess-21-1-2021, 2021
Short summary
Short summary
This study aims to understand the concept of low-flow drought characteristics and the predictive significance of river storage draft rates in managing sustainable water catchment. This study consists of four types of analyses: streamflow trend analysis, low-flow frequency analysis, determination of the minimum storage draft rates and hydrological-drought characteristics. The results are useful for developing measures to maintain flow variability and can be used to develop water policies.
Anna E. Sikorska-Senoner, Bettina Schaefli, and Jan Seibert
Nat. Hazards Earth Syst. Sci., 20, 3521–3549, https://doi.org/10.5194/nhess-20-3521-2020, https://doi.org/10.5194/nhess-20-3521-2020, 2020
Short summary
Short summary
This work proposes methods for reducing the computational requirements of hydrological simulations for the estimation of very rare floods that occur on average less than once in 1000 years. These methods enable the analysis of long streamflow time series (here for example 10 000 years) at low computational costs and with modelling uncertainty. They are to be used within continuous simulation frameworks with long input time series and are readily transferable to similar simulation tasks.
Matteo Balistrocchi, Rodolfo Metulini, Maurizio Carpita, and Roberto Ranzi
Nat. Hazards Earth Syst. Sci., 20, 3485–3500, https://doi.org/10.5194/nhess-20-3485-2020, https://doi.org/10.5194/nhess-20-3485-2020, 2020
Short summary
Short summary
Flood risk is an increasing threat to urban communities and their strategical assets worldwide. Non-structural practices, such as emergency management plans, can be effective in order to decrease the flood risk in strongly urbanized areas. Mobile phone data provide reliable estimates of the spatiotemporal variability in people exposed to flooding, thus enhancing the preparedness of stakeholders involved in flood risk management. Further, practical advantages emerge with respect to crowdsourcing.
Juan P. Martín-Vide, Arnau Prats-Puntí, and Carles Ferrer-Boix
Nat. Hazards Earth Syst. Sci., 20, 3315–3331, https://doi.org/10.5194/nhess-20-3315-2020, https://doi.org/10.5194/nhess-20-3315-2020, 2020
Short summary
Short summary
An alluvial Mediterranean river changed its riverine and deltaic landscape. The delta has been heavily retreating (up to 800 m) for more than a century. We focus on the river, channelized in the last 50 years, trying to link its sandy sediment yield to the delta evolution. Sediment availability in the last 30 km of the river channel is deemed responsible for the decrease in the sediment yield to the delta. Sediment supply reduction to the coast jeopardizes the future of the delta and beaches.
Guillaume Piton, Toshiyuki Horiguchi, Lise Marchal, and Stéphane Lambert
Nat. Hazards Earth Syst. Sci., 20, 3293–3314, https://doi.org/10.5194/nhess-20-3293-2020, https://doi.org/10.5194/nhess-20-3293-2020, 2020
Short summary
Short summary
Open check dams are flood protection structures trapping sediment and large wood. Large wood obstructs openings of dams, thus increasing flow levels. If flow levels become higher than the dam crest, the trapped large wood may overtop the structure and be suddenly released downstream, which may also eventually obstruct downstream bridges. This paper is based on experiments on small-scale models. It shows how to compute the increase in flow level and conditions leading to sudden overtopping.
María Teresa Contreras, Jorge Gironás, and Cristián Escauriaza
Nat. Hazards Earth Syst. Sci., 20, 3261–3277, https://doi.org/10.5194/nhess-20-3261-2020, https://doi.org/10.5194/nhess-20-3261-2020, 2020
Short summary
Short summary
The prediction of multiple scenarios of flood hazard in mountain regions is typically based on expensive high-resolution models that simulate the flood propagation using significant computational resources. In this investigation we develop a surrogate model that provides a rapid evaluation of the flood hazard using a statistical approach and precomputed scenarios. This surrogate model is an advanced tool that can be used for early warning systems and to help decision makers and city planners.
Jerom P. M. Aerts, Steffi Uhlemann-Elmer, Dirk Eilander, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, https://doi.org/10.5194/nhess-20-3245-2020, 2020
Short summary
Short summary
We compare and analyse flood hazard maps from eight global flood models that represent the current state of the global flood modelling community. We apply our comparison to China as a case study, and for the first time, we include industry models, pluvial flooding, and flood protection standards. We find substantial variability between the flood hazard maps in the modelled inundated area and exposed gross domestic product (GDP) across multiple return periods and in expected annual exposed GDP.
David J. Peres, Alfonso Senatore, Paola Nanni, Antonino Cancelliere, Giuseppe Mendicino, and Brunella Bonaccorso
Nat. Hazards Earth Syst. Sci., 20, 3057–3082, https://doi.org/10.5194/nhess-20-3057-2020, https://doi.org/10.5194/nhess-20-3057-2020, 2020
Short summary
Short summary
Regional climate models (RCMs) are commonly used for high-resolution assessment of climate change impacts. This research assesses the reliability of several RCMs in a Mediterranean area (southern Italy), comparing historic climate and drought characteristics with
high-density and high-quality ground-based observational datasets. We propose a general methodology and identify the more skilful models able to reproduce precipitation and temperature variability as well as drought characteristics.
Mathilde Erfurt, Georgios Skiadaresis, Erik Tijdeman, Veit Blauhut, Jürgen Bauhus, Rüdiger Glaser, Julia Schwarz, Willy Tegel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 20, 2979–2995, https://doi.org/10.5194/nhess-20-2979-2020, https://doi.org/10.5194/nhess-20-2979-2020, 2020
Short summary
Short summary
Droughts are multifaceted hazards with widespread negative consequences for the environment and society. This study explores different perspectives on drought and determines the added value of multidisciplinary datasets for a comprehensive understanding of past drought events in southwestern Germany. A long-term evaluation of drought frequency since 1801 revealed that events occurred in all decades, but a particular clustering was found in the mid-19th century and the most recent decade.
Corrado Camera, Adriana Bruggeman, George Zittis, Ioannis Sofokleous, and Joël Arnault
Nat. Hazards Earth Syst. Sci., 20, 2791–2810, https://doi.org/10.5194/nhess-20-2791-2020, https://doi.org/10.5194/nhess-20-2791-2020, 2020
Short summary
Short summary
Can numerical models simulate intense rainfall events and consequent streamflow in a mountainous area with small watersheds well? We applied state-of-the-art one-way-coupled atmospheric–hydrologic models and we found that, despite rainfall events simulated with low errors, large discrepancies between the observed and simulated streamflow were observed. Shifts in time and space of the modelled rainfall peak are the main reason. Still, the models can be applied for climate change impact studies.
Farhad Hooshyaripor, Sanaz Faraji-Ashkavar, Farshad Koohyian, Qiuhong Tang, and Roohollah Noori
Nat. Hazards Earth Syst. Sci., 20, 2739–2751, https://doi.org/10.5194/nhess-20-2739-2020, https://doi.org/10.5194/nhess-20-2739-2020, 2020
Short summary
Short summary
The effect of El Niño on flood damage was investigated. The methodology was based on the calculation of increasing rainfall amount during El Niño events compared to normal conditions. With the southern oscillation index equal to −1.0 as the threshold of El Niño, the annual percentage of increased rainfall is 12.2 %. The annual change factor may not necessarily be transferred to extreme values. Nonetheless, the change factor was applied for generating simulated storms of different return periods.
Robert Jane, Luis Cadavid, Jayantha Obeysekera, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 20, 2681–2699, https://doi.org/10.5194/nhess-20-2681-2020, https://doi.org/10.5194/nhess-20-2681-2020, 2020
Short summary
Short summary
Full dependence is assumed between drivers in flood protection assessments of coastal water control structures in south Florida. A 2-D analysis of rainfall and coastal water level showed that the magnitude of the conservative assumption in the original design is highly sensitive to the regional sea level rise projection considered. The vine copula and HT04 model outperformed five higher-dimensional copulas in capturing the dependence between rainfall, coastal water level, and groundwater level.
Punit K. Bhola, Jorge Leandro, and Markus Disse
Nat. Hazards Earth Syst. Sci., 20, 2647–2663, https://doi.org/10.5194/nhess-20-2647-2020, https://doi.org/10.5194/nhess-20-2647-2020, 2020
Short summary
Short summary
In operational flood risk management, a single best model is used to assess the impact of flooding, which might misrepresent uncertainties in the modelling process. We have used quantified uncertainties in flood forecasting to generate flood hazard maps that were combined based on different exceedance probability scenarios with the purpose to differentiate impacts of flooding and to account for uncertainties in flood hazard maps that can be used by decision makers.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
Barry Hankin, Ian Hewitt, Graham Sander, Federico Danieli, Giuseppe Formetta, Alissa Kamilova, Ann Kretzschmar, Kris Kiradjiev, Clint Wong, Sam Pegler, and Rob Lamb
Nat. Hazards Earth Syst. Sci., 20, 2567–2584, https://doi.org/10.5194/nhess-20-2567-2020, https://doi.org/10.5194/nhess-20-2567-2020, 2020
Short summary
Short summary
With growing support for nature-based solutions to reduce flooding by local communities, government authorities and international organisations, it is still important to improve how we assess risk reduction. We demonstrate an efficient, simplified 1D network model that allows us to explore the
whole-systemresponse of numerous leaky barriers placed in different stream networks, whilst considering utilisation, synchronisation effects and cascade failure, and we provide advice on their siting.
Thomas O'Shea, Paul Bates, and Jeffrey Neal
Nat. Hazards Earth Syst. Sci., 20, 2281–2305, https://doi.org/10.5194/nhess-20-2281-2020, https://doi.org/10.5194/nhess-20-2281-2020, 2020
Short summary
Short summary
Outlined here is a multi-disciplinary framework for analysing and evaluating the nature of vulnerability to, and capacity for, flood hazard within a complex urban society. It provides scope beyond the current, reified, descriptors of
flood riskand models the role of affected individuals within flooded areas. Using agent-based modelling coupled with the LISFLOOD-FP hydrodynamic model, potentially influential behaviours that give rise to the flood hazard system are identified and discussed.
Eklavyya Popat and Petra Döll
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-265, https://doi.org/10.5194/nhess-2020-265, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Two drought hazard indices are presented that combine the drought deficit and anomaly aspects: one for soil moisture drought (SMDAI), where we simplified the DSI and the other for streamflow drought (QDAI), to our knowledge, is the first-ever deficit-anomaly drought index including surface water demand. Both indices are tested at the global scale with WaterGAP 2.2d outputs, provides more differentiated, spatial and temporal patterns distinguishing the actual degree of respective drought hazards.
Joan Estrany, Maurici Ruiz-Pérez, Raphael Mutzner, Josep Fortesa, Beatriz Nácher-Rodríguez, Miquel Tomàs-Burguera, Julián García-Comendador, Xavier Peña, Adolfo Calvo-Cases, and Francisco J. Vallés-Morán
Nat. Hazards Earth Syst. Sci., 20, 2195–2220, https://doi.org/10.5194/nhess-20-2195-2020, https://doi.org/10.5194/nhess-20-2195-2020, 2020
Short summary
Short summary
A catastrophic flash-flood event hit the northeastern part of Mallorca in 2018, causing 13 casualties and impacting on the international opinion in one of the most important tourist resorts. The analysis of the rainfall–runoff processes illustrated an unprecedented flashy behaviour in Europe triggering the natural disaster. UAVs and hydrogeomorphological precision techniques were used as a rapid post-catastrophe decision-making tool, playing a key role during the rescue searching tasks.
Aynalem T. Tsegaw, Marie Pontoppidan, Erle Kristvik, Knut Alfredsen, and Tone M. Muthanna
Nat. Hazards Earth Syst. Sci., 20, 2133–2155, https://doi.org/10.5194/nhess-20-2133-2020, https://doi.org/10.5194/nhess-20-2133-2020, 2020
Short summary
Short summary
Hydrological impacts of climate change are generally performed by following steps from global to regional climate modeling through data tailoring and hydrological modeling. Usually, the climate–hydrology chain primary focuses on medium to large catchments. To study impacts of climate change on small catchments, a high-resolution regional climate model and hydrological model are required. The results from high-resolution models help in proposing specific adaptation strategies for impacts.
Aloïs Tilloy, Bruce D. Malamud, Hugo Winter, and Amélie Joly-Laugel
Nat. Hazards Earth Syst. Sci., 20, 2091–2117, https://doi.org/10.5194/nhess-20-2091-2020, https://doi.org/10.5194/nhess-20-2091-2020, 2020
Short summary
Short summary
Estimating risks induced by interacting natural hazards remains a challenge for practitioners. An approach to tackle this challenge is to use multivariate statistical models. Here we evaluate the efficacy of six models. The models are compared against synthetic data which are comparable to time series of environmental variables. We find which models are more appropriate to estimate relations between hazards in a range of cases. We highlight the benefits of this approach with two examples.
Sengphrachanh Phrakonkham, So Kazama, and Komori Daisuke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-195, https://doi.org/10.5194/nhess-2020-195, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
The main objective of this study was to propose a new approach to integrating hazard maps to detect hazardous areas on a national scale, for which area-limited data are available. The analytical hierarchy process (AHP) was used as a tool to combine the different hazard maps into an integrated hazard map. The results from integrated hazard maps can identify dangerous areas from both individual and integrated hazards.
Benjamin Winter, Klaus Schneeberger, Kristian Förster, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 20, 1689–1703, https://doi.org/10.5194/nhess-20-1689-2020, https://doi.org/10.5194/nhess-20-1689-2020, 2020
Short summary
Short summary
In this paper two different methods to generate spatially coherent flood events for probabilistic flood risk modelling are compared: on the one hand, a semi-conditional multi-variate dependence model applied to discharge observations and, on the other hand, a continuous hydrological modelling of synthetic meteorological fields generated by a multi-site weather generator. The results of the two approaches are compared in terms of simulated spatial patterns and overall flood risk estimates.
Heiko Apel, Mai Khiem, Nguyen Hong Quan, and To Quang Toan
Nat. Hazards Earth Syst. Sci., 20, 1609–1616, https://doi.org/10.5194/nhess-20-1609-2020, https://doi.org/10.5194/nhess-20-1609-2020, 2020
Short summary
Short summary
This study deals with salinity intrusion in the Mekong Delta, a pressing issue in the third-largest river delta on Earth. It presents a simple, efficient, and cross-validated seasonal forecast model for salinity intrusion during the dry season based on logistic regression using ENSO34 or standardized streamflow indexes as predictors. The model performs exceptionally well, enabling a reliable forecast of critical salinity threshold exceedance up to 9 months prior to the dry season.
Samuel J. Sutanto, Melati van der Weert, Veit Blauhut, and Henny A. J. Van Lanen
Nat. Hazards Earth Syst. Sci., 20, 1595–1608, https://doi.org/10.5194/nhess-20-1595-2020, https://doi.org/10.5194/nhess-20-1595-2020, 2020
Short summary
Short summary
Present-day drought early warning systems only provide information on drought hazard forecasts. Here, we have developed drought impact functions to forecast drought impacts up to 7 months ahead using machine learning techniques, logistic regression, and random forest. Our results show that random forest produces a higher-impact forecasting skill than logistic regression. For German county levels, drought impacts can be forecasted up to 4 months ahead using random forest.
Giuliano Di Baldassarre, Fernando Nardi, Antonio Annis, Vincent Odongo, Maria Rusca, and Salvatore Grimaldi
Nat. Hazards Earth Syst. Sci., 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020, https://doi.org/10.5194/nhess-20-1415-2020, 2020
Short summary
Short summary
Global floodplain mapping has rapidly progressed over the past few years. Different methods have been proposed to identify areas prone to river flooding, resulting in a plethora of available products. Here we assess the potential and limitations of two main paradigms and provide guidance on the use of these global products in assessing flood risk in data-poor regions.
Shraddhanand Shukla, Kristi R. Arsenault, Abheera Hazra, Christa Peters-Lidard, Randal D. Koster, Frank Davenport, Tamuka Magadzire, Chris Funk, Sujay Kumar, Amy McNally, Augusto Getirana, Greg Husak, Ben Zaitchik, Jim Verdin, Faka Dieudonne Nsadisa, and Inbal Becker-Reshef
Nat. Hazards Earth Syst. Sci., 20, 1187–1201, https://doi.org/10.5194/nhess-20-1187-2020, https://doi.org/10.5194/nhess-20-1187-2020, 2020
Short summary
Short summary
The region of southern Africa is prone to climate-driven food insecurity events, as demonstrated by the major drought event in 2015–2016. This study demonstrates that recently developed NASA Hydrological Forecasting and Analysis System-based root-zone soil moisture monitoring and forecasting products are well correlated with interannual regional crop yield, can identify below-normal crop yield events and provide skillful crop yield forecasts, and hence support early warning of food insecurity.
Dennis Wagenaar, Alex Curran, Mariano Balbi, Alok Bhardwaj, Robert Soden, Emir Hartato, Gizem Mestav Sarica, Laddaporn Ruangpan, Giuseppe Molinario, and David Lallemant
Nat. Hazards Earth Syst. Sci., 20, 1149–1161, https://doi.org/10.5194/nhess-20-1149-2020, https://doi.org/10.5194/nhess-20-1149-2020, 2020
Short summary
Short summary
This invited perspective paper addresses how machine learning may change flood risk and impact assessments. It goes through different modelling components and provides an analysis of how current assessments are done without machine learning, current applications of machine learning and potential future improvements. It is based on a 2-week-long intensive collaboration among experts from around the world during the Understanding Risk Field lab on urban flooding in June 2019.
Ayse Duha Metin, Nguyen Viet Dung, Kai Schröter, Sergiy Vorogushyn, Björn Guse, Heidi Kreibich, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 20, 967–979, https://doi.org/10.5194/nhess-20-967-2020, https://doi.org/10.5194/nhess-20-967-2020, 2020
Short summary
Short summary
For effective risk management, flood risk should be properly assessed. Traditionally, risk is assessed by making the assumption of invariant flow or loss probabilities (the chance that a given discharge or loss is exceeded) within the river catchment during a single flood event. However, in reality, flooding is more severe in some regions than others. This study indicates the importance of representing the spatial dependence of flood peaks and damage for risk assessments.
Isabelle Braud, Lilly-Rose Lagadec, Loïc Moulin, Blandine Chazelle, and Pascal Breil
Nat. Hazards Earth Syst. Sci., 20, 947–966, https://doi.org/10.5194/nhess-20-947-2020, https://doi.org/10.5194/nhess-20-947-2020, 2020
Short summary
Short summary
A method for the evaluation of a model that maps the susceptibility of a territory to surface runoff is presented. It is based on proxy data of localized impacts related to runoff. It accounts for the hazard level, the vulnerability of the study area and possible mitigation actions taken to reduce the risk. The evaluation is made on a 80 km railway line in Normandy (north of France), where a comprehensive database of runoff-related impacts on the railway has been gathered over the 20th century.
Alexandre M. Ramos, Pedro M. Sousa, Emanuel Dutra, and Ricardo M. Trigo
Nat. Hazards Earth Syst. Sci., 20, 877–888, https://doi.org/10.5194/nhess-20-877-2020, https://doi.org/10.5194/nhess-20-877-2020, 2020
Rubén Moratiel, Raquel Bravo, Antonio Saa, Ana M. Tarquis, and Javier Almorox
Nat. Hazards Earth Syst. Sci., 20, 859–875, https://doi.org/10.5194/nhess-20-859-2020, https://doi.org/10.5194/nhess-20-859-2020, 2020
Short summary
Short summary
The estimation of ETo using temperature is particularly attractive in places where air humidity, wind speed and solar radiation data are not readily available. In this study we used, for the estimation of ETo, seven models against Penman–Monteith FAO 56 with temporal (annual and seasonal) and spatial perspective over Duero basin (Spain). The results of the tested models can be useful for adopting appropriate measures for efficient water management under the limitation of agrometeorological data.
Kenichiro Kobayashi, Le Duc, Apip, Tsutao Oizumi, and Kazuo Saito
Nat. Hazards Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/nhess-20-755-2020, https://doi.org/10.5194/nhess-20-755-2020, 2020
Short summary
Short summary
The feasibility of flood forecasting with 1600 rainfall forecasts was investigated. The rainfall forecasts were obtained from an advanced data assimilation system. The high probability of flood occurrence was predicted, which is not possible by the single deterministic forecast. The necessity of emergency flood operation was shown with a long leading time. This suggests that it is worth investing in increasing numbers of meteorological ensembles to improve flood forecasting.
Michael L. Follum, Ricardo Vera, Ahmad A. Tavakoly, and Joseph L. Gutenson
Nat. Hazards Earth Syst. Sci., 20, 625–641, https://doi.org/10.5194/nhess-20-625-2020, https://doi.org/10.5194/nhess-20-625-2020, 2020
Short summary
Short summary
AutoRoute is one of the tools used by the US Military to create
high-resolution flood inundation maps at regional to continental scales. Although proven to be useful in simulating floods in remote regions of the world, the accuracy of the model has had only limited testing for nonextreme flood cases. This paper presents improvements to AutoRoute to accurately simulate both extreme and nonextreme flood cases while improving the applicability in a production setting.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Beatrice Monteleone, Brunella Bonaccorso, and Mario Martina
Nat. Hazards Earth Syst. Sci., 20, 471–487, https://doi.org/10.5194/nhess-20-471-2020, https://doi.org/10.5194/nhess-20-471-2020, 2020
Short summary
Short summary
This study proposes a new drought index that combines meteorological and agricultural drought aspects. The index is scalable, transferable all over the globe, can be updated in near real time and is a
remote-sensing product, since only satellite-based datasets were employed. A set of rules to objectively identify drought events is also implemented. We found that the set of rules, applied together with the new index, outperformed conventional drought indices in identifying droughts in Haiti.
Hélène Roux, Arnau Amengual, Romu Romero, Ernest Bladé, and Marcos Sanz-Ramos
Nat. Hazards Earth Syst. Sci., 20, 425–450, https://doi.org/10.5194/nhess-20-425-2020, https://doi.org/10.5194/nhess-20-425-2020, 2020
Short summary
Short summary
The performances of flash-flood forecasts are evaluated using a meteorological model forcing a rainfall-runoff model. Both deterministic (single forecast of the most likely weather) and ensemble forecasts (set or ensemble of forecasts) have been produced on three subcatchments of the eastern Pyrenees exhibiting different rainfall regimes. Results show that both overall discharge forecast and flood warning are improved by the ensemble strategies with respect to the deterministic forecast.
María Teresa Contreras and Cristián Escauriaza
Nat. Hazards Earth Syst. Sci., 20, 221–241, https://doi.org/10.5194/nhess-20-221-2020, https://doi.org/10.5194/nhess-20-221-2020, 2020
Short summary
Short summary
In this investigation we study the effects of high sediment concentrations on the dynamics of flash floods in mountain regions, with an application to a river in the Andes that has produced catastrophic events in the city of Santiago, Chile. We develop an advanced computational model to understand the effects of floods with high sediment loads on steep channels. These new insights can be used to design early warning systems and contribute to urban planning in cities near mountain rivers.
Cited articles
Böhm, U., Kücken, M., Ahrens, W., Block, A., Hauffe, D., Keuler, K., Rockel, B., and Will, A.: CLM-the climate version of LM: Brief description and long-term applications, COSMO Newsletter, 6, 225–235, 2006.
Collins, M., Booth, B. B., Harris, G. R., Murphy, J. M., Sexton, D. M., and Webb, M. J.: Towards quantifying uncertainty in transient climate change, Clima. Dynam., 27, 127–147, 2006.
Falter, D., Schröter, K., Dung, N. V., Vorogushyn, S., Kreibich, H., Hundecha, Y., Apel, H., and Merz, B.: Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain, J. Hydrol., 524, 182–193, https://doi.org/10.1016/j.jhydrol.2015.02.021, 2015.
Gobiet, A., Suklitsch, M., and Heinrich, G.: The effect of empirical-statistical correction of intensity-dependent model errors on the temperature climate change signal, Hydrol. Earth Syst. Sci., 19, 4055–4066, https://doi.org/10.5194/hess-19-4055-2015, 2015.
Hattermann, F. F., Wattenbach, M., Krysanova, V., and Wechsung, F.: Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment-validation and uncertainty analysis, Hydrol. Process., 19, 693–714, https://doi.org/10.1002/hyp.5625, 2005.
Hattermann, F. F., Weiland, M., Huang, S., Krysanova, V., and Kundzewicz, Z. W.: Model-supported impact assessment for the water sector in Central Germany under climate change – a case study, Water Resour. Manag., 25, 3113–3134, 2011.
Hattermann, F. F., Kundzewicz, Z. W., Huang, S., Vetter, T., Kron, W., Burghoff, O., Merz, B., Bronstert, A., Krysanova, V., and Gerstengabe, F.-W.: Flood risk in holistic perspective – observed changes in Germany, in: Changes in Flood Risk in Europe, edited by Kundzewicz, Z. W., IAHS Press, Wallingford, Oxfordshire, UK, 212–237, 2012.
Hattermann, F. F., Huang, S., Burghoff, O., Willems, W., Österle, H., Büchner, M., and Kundzewicz, Z.: Modelling flood damages under climate change conditions – a case study for Germany, Nat. Hazards Earth Syst. Sci., 14, 3151–3168, https://doi.org/10.5194/nhess-14-3151-2014, 2014.
Hattermann, F. F., Huang, S., and Koch, H.: Climate change impacts on hydrology and water resources, Meteorol. Z., 24, 201–211, https://doi.org/10.1127/metz/2014/0575, 2015.
Huang, S., Krysanova, V., Oesterle, H., and Hattermann, F. F.: Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change, Hydrol. Process., 24, 3289–3306, https://doi.org/10.1002/hyp.7753, 2010.
Huang, S., Hattermann, F. F., Krysanova, V., and Bronstert, A.: Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model, Climatic Change, 116, 631–663, 2013.
Jacob, D., Petersen, J., Eggert, B., et al.: EURO-CORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Krysanova, V., Hattermann, F., Huang, S., Hesse, C., Vetter, T., Liersch, S., Koch, H., and Kundzewicz, Z. W.: Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications, Hydrolog. Sci. J., 60, 606–635, https://doi.org/10.1080/02626667.2014.925560, 2015.
Kundzewicz, Z. and Schellnhuber, H.: Floods in the IPCC TAR perspective, Nat. Hazards, 31, 111–128, 2004.
Lehmann, J., Coumou, D., and Frieler, K.: Increased record-breaking precipitation events under global warming, Climatic Change, 132, 501–515, https://doi.org/10.1007/s10584-015-1434-y, 2015.
Pall, P., Allen, M., and Stone, D.: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming, Clim. Dynam., 28, 351–363, https://doi.org/10.1007/s00382-006-0180-2, 2007.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Manzini, L., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The Atmospheric General Circulation Model ECHAM5: Part 1: Model Description, Max-Planck-Institute for Meteorology, Hamburg, Germany, Report No. 349, 140 pp., 2003.
Tomassini, L. and Jacob, D.: Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany, J. Geophys. Res., 114, D12113, https://doi.org/10.1029/2008JD010652, 2009.
Van der Linden, P. and Mitchell, J. F. B. (Eds.): ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Met Office Hadley Centre, Exeter, UK, 160 pp., 2009.
Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., and Hattermann, F.: Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, 2015.
Wilcke, R., Mendlik, T., and Gobiet, A.: Multi-variable error correction of regional climate models, Climatic Change, 120, 871–887, https://doi.org/10.1007/s10584-013-0845-x, 2013.
Short summary
We report that a considerable increase in flood-related losses can be expected in Germany in a future warmer climate. The general significance of the study is supported by the fact that the outcome of an ensemble of global climate models (GCMs) and regional climate models (RCMs) was used as a climate driver for a hydrological model considering more than 3000 river basins in Germany.
We report that a considerable increase in flood-related losses can be expected in Germany in a...
Altmetrics
Final-revised paper
Preprint