Articles | Volume 14, issue 2
https://doi.org/10.5194/nhess-14-413-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/nhess-14-413-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: the case study of Yialias basin in Cyprus
D. D. Alexakis
Cyprus University of Technology, Department of Civil Engineering and Geomatics, Remote Sensing and Geo-Environment Lab, Limassol, Cyprus
M. G. Grillakis
Technical University of Crete, Department of Environmental Engineering, Chania, Crete, Greece
A. G. Koutroulis
Technical University of Crete, Department of Environmental Engineering, Chania, Crete, Greece
A. Agapiou
Cyprus University of Technology, Department of Civil Engineering and Geomatics, Remote Sensing and Geo-Environment Lab, Limassol, Cyprus
K. Themistocleous
Cyprus University of Technology, Department of Civil Engineering and Geomatics, Remote Sensing and Geo-Environment Lab, Limassol, Cyprus
I. K. Tsanis
Technical University of Crete, Department of Environmental Engineering, Chania, Crete, Greece
McMaster University, Department of Civil Engineering, Hamilton, Ontario, Canada
S. Michaelides
Cyprus Meteorological Department, Nicosia, Cyprus
S. Pashiardis
Cyprus Meteorological Department, Nicosia, Cyprus
C. Demetriou
Water Development Department, Nicosia, Cyprus
K. Aristeidou
Water Development Department, Nicosia, Cyprus
A. Retalis
National Observatory of Athens, Athens, Greece
F. Tymvios
Cyprus Meteorological Department, Nicosia, Cyprus
D. G. Hadjimitsis
Cyprus University of Technology, Department of Civil Engineering and Geomatics, Remote Sensing and Geo-Environment Lab, Limassol, Cyprus
Related authors
No articles found.
Emmanouil Flaounas, Stavros Dafis, Silvio Davolio, Davide Faranda, Christian Ferrarin, Katharina Hartmuth, Assaf Hochman, Aristeidis Koutroulis, Samira Khodayar, Mario Marcello Miglietta, Florian Pantillon, Platon Patlakas, Michael Sprenger, and Iris Thurnherr
Weather Clim. Dynam., 6, 1515–1538, https://doi.org/10.5194/wcd-6-1515-2025, https://doi.org/10.5194/wcd-6-1515-2025, 2025
Short summary
Short summary
Storm Daniel (2023) is one of the most catastrophic storms ever documented in the Mediterranean. Our results highlight the different dynamics and therefore the different predictability skill of precipitation, its extremes and impacts that have been produced in Greece and Libya, the two most affected countries. Our approach concerns an analysis of the storm by articulating dynamics, weather prediction, hydrological and oceanographic implications, climate extremes, and attribution theory.
Marinos Ioannides, Drew Baker, Athos Agapiou, Petros Siegkas, and Anthony Cassar
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-9-2025, 623–628, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-623-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-9-2025-623-2025, 2025
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Bramha Dutt Vishwakarma, Jeffrey S. Kargel, Dan Shugar, Umesh Haritashya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
The Cryosphere, 19, 4113–4124, https://doi.org/10.5194/tc-19-4113-2025, https://doi.org/10.5194/tc-19-4113-2025, 2025
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the rapid disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock–ice mixtures called rock glaciers. This paper explores these scenarios.
Georgios Kafataris, Dimitrios Skarlatos, Marinos Vlachos, and Athos Agapiou
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-M-2-2025, 139–146, https://doi.org/10.5194/isprs-annals-X-M-2-2025-139-2025, https://doi.org/10.5194/isprs-annals-X-M-2-2025-139-2025, 2025
Konstantinos V. Varotsos, George Katavoutas, Gianna Kitsara, Anna Karali, Ioannis Lemesios, Platon Patlakas, Maria Hatzaki, Vassilis Tenentes, Athanasios Sarantopoulos, Basil Psiloglou, Aristeidis G. Koutroulis, Manolis G. Grillakis, and Christos Giannakopoulos
Earth Syst. Sci. Data, 17, 4455–4477, https://doi.org/10.5194/essd-17-4455-2025, https://doi.org/10.5194/essd-17-4455-2025, 2025
Short summary
Short summary
CLIMADAT-GRid is the first, publicly available, daily air temperature and precipitation gridded climate dataset for Greece at a high resolution of 1 km × 1 km and for the period 1981–2019. The dataset is based on quality-controlled station data, and various interpolation techniques were evaluated for generating the daily grids. CLIMADAT-GRid serves as a valuable resource for research and information in climate studies as well as in other areas such as hydrology, agriculture, energy, and health.
Kyriacos Themistocleous, Valentinos Evripidou, and Kyriakos Toumbas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1435–1440, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1435-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1435-2025, 2025
Marios Tzouvaras, Constantinos Panagiotou, Nicholas Kyriakides, Maria Prodromou, Panagiotis Vasiliou, Marina Doukanari, Kyriaki Fotiou, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1485–1491, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1485-2025, 2025
Hossein Panahifar, Maria Poutli, George Kotsias, Argyro Nisantzi, Silas Michaelides, Diofantos Hadjimitsis, Patric Seifert, Albert Ansmann, and Rodanthi-Elisavet Mamouri
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1153–1158, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1153-2025, 2025
Maria Prodromou, Marios Tzouvaras, Christodoulos Mettas, Andreas Konstantinidis, Andreas Pamboris, Iasonas Iasonos, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 1215–1222, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-1215-2025, 2025
Konstantinos Christofi, Charalambos Chrysostomou, Iason Tsardanidis, Michalis Mavrovouniotis, Giorgia Guerrisi, Charalampos Kontoes, and Diofantos G. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 295–300, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-295-2025, 2025
Eleftheria Kalogirou, Konstantinos Christofi, Despoina Makri, Muhammad Amjad Iqbal, Valeria La Pegna, Marios Tzouvaras, Christodoulos Mettas, and Diofantos Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 757–764, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-757-2025, 2025
Christos Theocharidis, Marinos Eliades, Kyriacos Themistocleous, Kyriacos Neocleous, Charalampos Kontoes, and Diofantos Hadjimitsis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 879–884, https://doi.org/10.5194/isprs-annals-X-G-2025-879-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-879-2025, 2025
Kyriakos Michaelides, Stylianos Hadjipetrou, Athos Agapiou, Apostolos Sarris, Victor Klinkenberg, and Miltiadis Polidorou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 67–74, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-67-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-67-2025, 2025
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Dimitrios Skarlatos, Branka Cuca, Georgios Kafataris, Mattia Previtali, and Athos Agapiou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W8-2024, 425–430, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-425-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W8-2024-425-2024, 2024
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
K. Themistocleous and M. Prodromou
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 505–510, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-505-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-505-2023, 2023
G. Giannarakis, I. Tsoumas, S. Neophytides, C. Papoutsa, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1379–1384, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1379-2023, 2023
M. Tzouvaras, S. Alatza, M. Prodromou, C. Theocharidis, K. Fotiou, A. Argyriou, C. Loupasakis, A. Apostolakis, Z. Pittaki, M. Kaskara, C. Kontoes, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1581–1587, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1581-2023, 2023
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
A. Agapiou, Y. Aktas, L. Barazzetti, A. Costa, B. Cuca, D. D’Ayala, N. Kyriakides, P. Kyriakidis, V. Lysandrou, D. Oreni, M. Previtali, D. Skarlatos, A. Tavares, and M. Vlachos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-2-2023, 27–32, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-27-2023, 2023
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
M. Prodromou, D. Cerra, K. Themistocleous, G. Schreier, T. Krauss, and D. Hadjimitsis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 263–269, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-263-2023, 2023
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Cited articles
Adhikari, S. and Southworth J.: Simulating Forest Cover Changes of Bannerghatta National Park Based on a CA-Markov Model: A Remote Sensing Approach, Rem. Sens., 4, 3215–3243, 2012.
Agapiou, A., Hadjimitsis, D. G., Papoutsa, C., Alexakis, D. D., and Papadavid, G.: The Importance of Accounting for Atmospheric Effects in the Application of NDVI and Interpretation of Satellite Imagery Supporting Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos Sites in Cyprus, Rem. Sens., 3, 2605–2629, 2011.
Ahmed, B. and Ahmed, R: Modelling Urban Land Cover Growth Dynamics Using Multi\-Temporal Satellite Images: A Case Study of Dhaka, Bangladesh. ISPRS Int. J. Geo-Inf., 1, 3–31, 2012.
Alexakis D., Agapiou A., Hadjimitsis D. G., and Retalis A.: Optimizing statistical classification accuracy of satellite remotely sensed imagery for supporting fast flood hydrological analysis, Acta Geophys., 60, 959–984, 2012a.
Alexakis, D. D., Hadjimitsis, D. G., Agapiou, A., Themistocleous, K., and Retalis, A.: Monitoring urban land cover using satellite remote sensing techniques and field spectroradiometric measurements: the case study of Yialias catchment area in Cyprus. J. Appl. Rem. Sens., 6, 063603, https://doi.org/10.1117/1.JRS.6.063603, 2012b.
Baatz, M. and Schape, A.: Multiresolution segmentation – an optimization approach for high quality multi-scale image segmentation, in: Angewandte Geographische Informationsverarbeitung, edited by: Strobl, J., Blaschke, T., Griesebner, G., XII. Wichmann-Verlag, Heidelberg, 12–23, 2000.
Baatz, M., Benz, U., Dehghani, S., Heynen, M., Holtje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M., and Willhauck, G.: eCognition Professional: User Guide 4, Definiens-Imaging, Munich, 2004.
Bedient, P. B., Holder, A., Benavides, J. A., and Vieux, B. E.: Radar-based flood warning system applied to tropical storm Allison, J. Hydro Enginee., 8, 308–318, 2003.
Boegh, E., Poulsen, R. N., Butts, M., Abrahamsen, P., Dellwik, E., Hansen, S., Hasager, C. B., Ibrom, A., Loerup, J. K., Pilegaard and K., and Soegaard, H.: Remote sensing based evapotranspiration and runoff modeling of agricultural, forest and urban flux sites in Denmark: From field to macro-scale, J. Hydrol., 377, 300–316, 2009.
Chen, Y., Xu, Y., and Yin, Y.: Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China, Quat. Inter. 208, 121–128, 2009.
Clark, C. O.: Storage and the unit hydrograph, Transactions: American Society of Civil Engineers, 110, 1419–1488, 1945.
Definiens AG: Definiens Developer 7.0, User Guide, Munich, Germany, 506 pp., 2008.
DeFries, R. and Eshleman, K. N.: Land-use change and hydrologic processes: a major focus for the future, Hydrol. Process., 18, 2183–2186, 2004.
Elmer, F., Hoymann, J., Duthmann, D., Vorogyshyn, S., and Kreibich, H.: Drivers of flood risk change in residential areas, Nat. Hazards Earth Syst. Sci., 12, 1641–1657, 2012.
Fohrer, N., Haverkamp, S., Eckhardt, K., and Frede, H.G.: Hydrologic Response to Land Use Changes on the Catchment Scale, Phys. Chem. Earth, 26, 577–582, 2001.
Garrote, L. and Bras, R. L.: A distributed model for real-time flood forecasting using digital elevation models, J. Hydrol, 16, 279–306, 1995.
Giertz, S., Diekkrüger, B., Jaeger, A., and Schopp, M.: An interdisciplinary scenario analysis to assess the water availability and water consumption in the Upper Oueme catchment in Benin. Advan. Geosci., 9, 3–13, 2006.
Grillakis, M. G., Tsanis, I. K., and Koutroulis, A.G.: Application of the HBV hydrological model in a flash flood case in Slovenia, Nat. Hazards Earth Syst. Sci., 10, 2713–2725, 2010.
Grillakis, M. G., Koutroulis, A. G., and Tsanis, I. K.: Climate change impact on the hydrology of Spencer Creek watershed in Southern Ontario, Canada, J. Hydrol., 409, 1–19, 2011.
Hadjimitsis, D. G., Clayton, C. R. I., and Hope, V. S.: An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs, Int. J. Rem. Sens., 25, 3651–3674, 2004.
Hadjimitsis, D. G.: The importance of monitoring urban growth and land-cover changes in catchment areas in Cyprus using multi-temporal remotely sensed data, Nat. Haz. Eart. Syst. Scienc. J., 10, 2235–2240, 2010.
Hall, M. J.: Urban Hydrology. Elsevier Applied Science Publishers, Northern Ireland, 1984.
HEC: 2000 Hydrologic Modeling System: Technical Reference Manual, US Army Corps of Engineers Hydrologic Engineering Center, Davis, CA, 2000.
Ivits, E. and Koch, B.: Object-oriented remote sensing tools for biodiversity assessment: A European approach, In: Proceedings of the 22nd EARSeL symposium, Prague, Czech Republic, Rotterdam, Netherlands, Millpress Science Publishers, 2002.
Kityuttachai, K., Tripathi, N., Tipdecho, T., and Shrestha, R.: CA-Markov Analysis of Constrained Coastal Urban Growth Modeling: Hua Hin Seaside City, Thailand, Sustainability, 5, 1480–1500, 2013.
Knebl, M. R., Yang, Z. L., Hutchison, K., and Maidment, D. R.: Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event, J. Environ. Manag., 75, 325–336, 2005.
Koutroulis, A. and Tsanis, I.: A method for estimating flash flood peak discharge in a poorly gauged basin: Case study for the 13–14 January 1994 flood, Giofiros basin, Crete, Greece, J. Hydro., 385, 150–164, 2010.
Kull, D. and Feldman, A.: Evolution of Clark's unit graph method to spatially distributed runoff, J. Hydro. Engin., 3, 9-19, 1998.
Kundzewicz, Z. W., Ulbrich, U., brucher, T., Graczyk, D., Kruger,A., Leckebusch, G. C., and Lambin, E. F.: Modeling Deforestation Processes: A Review; European Commission: Luxemburg, 1–113, 1994.
Lin, Y., Hong, N., Wu, P., Wu, C., and Verburg, P.: Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan, Landscape and Urban Planning, 80, 111–126, 2007.
Mao, D. and Cherkauer, K. A.: Impacts of land-use change on hydrologic responses in the Great Lakes region, J. Hydrol., 374, 71–82, 2009.
Memarian, H., Balasundram, S. K., Talib, J. B., Sung, C. T. B., Sood, A. M., and Abbaspour, K.,: Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia J. Geograp. Info. Sys., 4, 542–554, 2012.
Moiwo, J. P., Lu, W. X., Zhao, Y. S., Yang, Y. H., and Yang, Y. M.: Impact of land use on distributed hydrological processes in the semi-arid wetland ecosystem of Western Jilin, Hydrol. Process., 24, 492–503, 2010.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models, Part I - A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Nejadhashemi, A. P. Wardynski, B. J., and Munoz, J. D.: Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin, Hydrol. Earth Syst. Sci. Discuss., 8, 3421–3468, https://doi.org/10.5194/hessd-8-3421-2011, 2011.
Ozturk, M., Copty, N., and Saysel, A.: 2013 Modeling the impact of land use change on the hydrology of a rural Watershed, J. Hydrol., 497, 97–109, 2013.
Peters, J. C. and Easton, D. J.: Runoff simulation using radar rainfall data, J. Americ. Water Resource. Assoc., 32, 753–760, 1996.
Ragab, R. and Cooper, J. D.: Variability of unsaturated zone water transport parameters: implications for hydrological modelling, 1. In situ measurements, J. Hydrol., 148, 109–131, 1993.
Roosmalen, L., Sonnenborg, T., and Jensen, K.: Impact of climate and land use change on the hydrology of a large-scale agricultural catchment, Water Resour.Resear., 45, W00A15, https://doi.org/10.1029/2007WR006760, 2009.
Savary, S., Rousseau, A. N., and Quilbiota, R.: Assessing the effects of historical land cover changes on runoff and low flows using remote sensing and hydrological modeling, J. Hydrol. Eng. 14, 575–587, 2009.
SCS National Engineering Handbook: Section 4: Hydrology, Soil Conservation Service, USDA, Washington, DC, 1985.
Schilling, K. E., Chan, K. S., Liu, H., and Zhang, Y. K.: Quantifying the effect of land use land cover change on increasing discharge in the Upper Mississippi River, J. Hydrol., 387, 343–345, 2010.
Stephens, E. M., Bates P. D. Freer, J. E., and Mason, D. C.: The impact of uncertainty in satellite data on the assessment of flood inundation models, J. Hydrol., 414–415, 162–173, 2012.
Stow, D., Lopez, A., Lippitt, C., Hinton, S., and Weeks, J.: Object-based classification of residential land use within Accra, Ghana based on QuickBird satellite data, Inter. J. Remo. Sens., 28, 5167–5173, 2007.
Taubenböck, H., Wurm, M., Netzband, M., Zwenzner, H., Roth, A., Rahman, A., and Dech, S.: Flood risks in urbanized areas – multi-sensoral approaches using remotely sensed data for risk assessment, Nat. Hazards Earth Syst. Sci., 11, 431–444, https://doi.org/10.5194/nhess-11-431-2011, 2011.
te Linde, A. H., Bubeck, P., Dekkers, J. E. C., de Moel, H., and Aerts, J. C. J. H.: Future flood risk estimates along the river Rhine, Nat. Hazards Earth Syst. Sci., 11, 459–473, https://doi.org/10.5194/nhess-11-459-2011, 2011.
Tsanis, I. K., Koutroulis, A. G., Daliakopoulos, I. N., and Jacob, D.: Severe climate induced water shortage and extremes in Crete, Clim. Change, 106, 667–677, 2011.
Turnbull, L., Wainwright, J., and Brazier, R. E.: Changes in hydrology and erosion over a transition from grassland to shrubland, Hydrol. Process., 24, 393–414, 2010.
US Department of Agriculture: Soil Conservation Service.National Engineering Handbook, Hydrology Section 4, Chapters 4–10, Washington, DC, USDA, 1972.
Whiteside, T., Boggs, G., and Maier, S.: Comparing object-based and pixel-based classifications for mapping savannas, Int. J. Appl. Earth Observ. Geoinfo., 13, 884–893, 2011.
Willhauck, G., Schneider, T., De Kok, R., and Ammer, U.: Comparison of object oriented classification techniques and standard image analysis for the use of change detection between SPOT multispectral satellite images and aerial photos, in: Proceedings of XIX ISPRS Congress, Amsterdam, July 16–22, 2000.
Wu, X., Sullivan, T. J., and Heidinger, K. A.: Operational calibration of the advanced very high resolution radiometer (AVHRR) visible and near-infrared channels, Can. J. Rem. Sens., 36, 602–616, 2010.
Xingnan, Z., Yangyang L., Yuanhao F., Bojuan L., and Dazhong, X.: Modeling and assessing hydrologic processes for historical and potential land-cover change in the Duoyingping watershed, southwest China, Phys. Chem. Earth, 53/54, 19–29, 2012.
Special issue
Altmetrics
Final-revised paper
Preprint