Articles | Volume 14, issue 9
https://doi.org/10.5194/nhess-14-2435-2014
https://doi.org/10.5194/nhess-14-2435-2014
Research article
 | 
12 Sep 2014
Research article |  | 12 Sep 2014

Risk identification of agricultural drought for sustainable Agroecosystems

N. R. Dalezios, A. Blanta, N. V. Spyropoulos, and A. M. Tarquis

Abstract. Drought is considered as one of the major natural hazards with a significant impact on agriculture, environment, society and economy. Droughts affect sustainability of agriculture and may result in environmental degradation of a region, which is one of the factors contributing to the vulnerability of agriculture. This paper addresses agrometeorological or agricultural drought within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with risk identification of agricultural drought, which involves drought quantification and monitoring, as well as statistical inference. For the quantitative assessment of agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the vegetation health index (VHI). The computation of VHI is based on satellite data of temperature and the normalized difference vegetation index (NDVI). The spatiotemporal features of drought, which are extracted from VHI, are areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981–2001) time series of the National Oceanic and Atmospheric Administration/advanced very high resolution radiometer (NOAA/AVHRR) satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural drought-prone region of Greece, characterized by vulnerable agriculture. The results show that agricultural drought appears every year during the warm season in the region. The severity of drought is increasing from mild to extreme throughout the warm season, with peaks appearing in the summer. Similarly, the areal extent of drought is also increasing during the warm season, whereas the number of extreme drought pixels is much less than those of mild to moderate drought throughout the warm season. Finally, the areas with diachronic drought persistence can be located. Drought early warning is developed using empirical functional relationships of severity and areal extent. In particular, two second-order polynomials are fitted, one for low and the other for high severity drought classes, respectively. The two fitted curves offer a forecasting tool on a monthly basis from May to October. The results of this drought risk identification effort are considered quite satisfactory offering a prognostic potential. The adopted remote-sensing data and methods have proven very effective in delineating spatial variability and features in drought quantification and monitoring.

Download
Altmetrics
Final-revised paper
Preprint