Articles | Volume 14, issue 8
https://doi.org/10.5194/nhess-14-1965-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/nhess-14-1965-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
MEDEX: a general overview
University of the Balearic Islands (UIB), Palma, Spain
formerly at: Agencia Estatal de Meteorología (AEMET), Palma, Spain
P. Alpert
Tel Aviv University (TAU), Tel Aviv, Israel
P. Arbogast
Meteo-France, Toulouse, France
A. Buzzi
Institute of Atmospheric Sciences and Climate (ISAC/CNR), Bologna, Italy
B. Ivancan-Picek
Meteorological and Hydrological Service (DHMZ), Zagreb, Croatia
V. Kotroni
National Observatory of Athens (NOA), Athens, Greece
M. C. Llasat
University of Barcelona (UB), Barcelona, Spain
C. Ramis
University of the Balearic Islands (UIB), Palma, Spain
E. Richard
Laboratoire d'Aérologie (LA/CNRS and Toulouse University), Toulouse, France
R. Romero
University of the Balearic Islands (UIB), Palma, Spain
A. Speranza
University of Camerino (UNICAM), Camerino, Italy
Related authors
Climent Ramis, Romualdo Romero, Víctor Homar, Sergio Alonso, Agustí Jansà, and Arnau Amengual
Nat. Hazards Earth Syst. Sci., 17, 2351–2364, https://doi.org/10.5194/nhess-17-2351-2017, https://doi.org/10.5194/nhess-17-2351-2017, 2017
Short summary
Short summary
During the hydrological year 2015–2016 (September to August) a severe drought affected the Balearic Islands, with substantial consequences on water availability. In this paper we analyze this anomalous episode in terms of the corresponding water balance. It is shown that the drought was the result of a lack of winter precipitation, the lowest in the last 43 years. In several analyzed meteorological stations, evaporation was greater than precipitation during all the months of the year.
M. A. Picornell, J. Campins, and A. Jansà
Nat. Hazards Earth Syst. Sci., 14, 1059–1070, https://doi.org/10.5194/nhess-14-1059-2014, https://doi.org/10.5194/nhess-14-1059-2014, 2014
Riccardo Biella, Anastasiya Shyrokaya, Ilias Pechlivanidis, Daniela Cid, Maria Carmen Llasat, Marthe Wens, Marleen Lam, Elin Stenfors, Samuel Sutanto, Elena Ridolfi, Serena Ceola, Pedro Alencar, Giuliano Di Baldassarre, Monica Ionita, Mariana Madruga de Brito, Scott J. McGrane, Benedetta Moccia, Viorica Nagavciuc, Fabio Russo, Svitlana Krakovska, Andrijana Todorovic, Faranak Tootoonchi, Patricia Trambauer, Raffaele Vignola, and Claudia Teutschbein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2073, https://doi.org/10.5194/egusphere-2024-2073, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights the crucial role of forecasting systems and Drought Management Plans in European drought risk management. Based on a survey of water managers during the 2022 European drought, it underscores the impact of preparedness on response and the evolution of drought management strategies across the continent. The study concludes with a plea for a European Drought Directive.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Arnau Amengual, Romu Romero, María Carmen Llasat, Alejandro Hermoso, and Montserrat Llasat-Botija
Nat. Hazards Earth Syst. Sci., 24, 2215–2242, https://doi.org/10.5194/nhess-24-2215-2024, https://doi.org/10.5194/nhess-24-2215-2024, 2024
Short summary
Short summary
On 22 October 2019, the Francolí River basin experienced a heavy precipitation event, resulting in a catastrophic flash flood. Few studies comprehensively address both the physical and human dimensions and their interrelations during extreme flash flooding. This research takes a step forward towards filling this gap in knowledge by examining the alignment among all these factors.
María Carmen Llasat, Montserrat Llasat-Botija, Erika Pardo, Raül Marcos-Matamoros, and Marc Lemus-Canovas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-206, https://doi.org/10.5194/nhess-2023-206, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Climate change is leading in the Pyrenees Massif to a change in socioeconomic increasing their sensitivity to natural risks such as floods. However, until now, no systematic study like this one had been carried out that would allow evaluating the frequency, distribution and main meteorological features of these events on a massif scale. In 35 years there have been 181 flood events that have produced 154 fatalities.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Marc Sanuy, Tomeu Rigo, José A. Jiménez, and M. Carmen Llasat
Hydrol. Earth Syst. Sci., 25, 3759–3781, https://doi.org/10.5194/hess-25-3759-2021, https://doi.org/10.5194/hess-25-3759-2021, 2021
Short summary
Short summary
This paper is a preliminary study to characterize events of simultaneous heavy rainfall and damaging waves at the regional scale (~600 km of coastline) in the NW Mediterranean. The atmospheric pressure conditions of such events are also classified into three main weather types, which are characterized in terms of severity of the forcing and probability of co-occurrence of simultaneous hazardous waves and rain. The study also presents some historical cases that are compared with obtained results.
Leenes Uzan, Smadar Egert, Pavel Khain, Yoav Levi, Elyakom Vadislavsky, and Pinhas Alpert
Atmos. Chem. Phys., 20, 12177–12192, https://doi.org/10.5194/acp-20-12177-2020, https://doi.org/10.5194/acp-20-12177-2020, 2020
Short summary
Short summary
Detection of the planetary boundary layer (PBL) height is crucial to various fields, from air pollution assessment to weather prediction. We examined the diurnal summer PBL height by eight ceilometers in Israel, radiosonde profiles, the global IFS, and regional COSMO models. Our analysis utilized the bulk Richardson number method, the parcel method, and the wavelet covariance transform method. A novel correction tool to improve model results against in-situ ceilometer measurements is introduced.
Olga Petrucci, Luigi Aceto, Cinzia Bianchi, Victoria Bigot, Rudolf Brázdil, Moshe Inbar, Abdullah Kahraman, Özgenur Kılıç, Vassiliki Kotroni, Maria Carmen Llasat, Montserrat Llasat-Botija, Michele Mercuri, Katerina Papagiannaki, Susana Pereira, Jan Řehoř, Joan Rossello Geli, Paola Salvati, Freddy Vinet, and José Luis Zêzere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-154, https://doi.org/10.5194/essd-2020-154, 2020
Preprint withdrawn
Short summary
Short summary
EUFF 2020 database (EUropean Flood Fatalities-FF) contains 2483 flood fatalities (1980–2018) occurred in 8 countries. Gender, age, activity of FF and dynamics of accidents were obtained from documentary sources. 64.8 % of FF were killed by floods killing less than 10 people. Males were more numerous than females due higher proportion of them driving and working outdoors. FF 30–64 years old died traveling to home/work, driving vehicles dragged by water. Elderly people were trapped indoor by flood.
Hélène Roux, Arnau Amengual, Romu Romero, Ernest Bladé, and Marcos Sanz-Ramos
Nat. Hazards Earth Syst. Sci., 20, 425–450, https://doi.org/10.5194/nhess-20-425-2020, https://doi.org/10.5194/nhess-20-425-2020, 2020
Short summary
Short summary
The performances of flash-flood forecasts are evaluated using a meteorological model forcing a rainfall-runoff model. Both deterministic (single forecast of the most likely weather) and ensemble forecasts (set or ensemble of forecasts) have been produced on three subcatchments of the eastern Pyrenees exhibiting different rainfall regimes. Results show that both overall discharge forecast and flood warning are improved by the ensemble strategies with respect to the deterministic forecast.
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
Jorge Lorenzo-Lacruz, Arnau Amengual, Celso Garcia, Enrique Morán-Tejeda, Víctor Homar, Aina Maimó-Far, Alejandro Hermoso, Climent Ramis, and Romualdo Romero
Nat. Hazards Earth Syst. Sci., 19, 2597–2617, https://doi.org/10.5194/nhess-19-2597-2019, https://doi.org/10.5194/nhess-19-2597-2019, 2019
Short summary
Short summary
On 9 October 2018, an extreme convective storm (> 300 mm accumulated in 6 h) generated a flash flood (305 m3 s−1) in the Ses Planes torrent that devastated the town of Sant Llorenç (Mallorca, Spain). Water reached a depth of 3 m in the most affected areas, and there was greatly increased flow velocity at bridges crossing the town. The floodwaters were very powerful and modified the channel morphology: more than 5000 t of sediment was deposited in the 2 km reach upstream of the town.
Damián Insua-Costa, Gonzalo Miguez-Macho, and María Carmen Llasat
Hydrol. Earth Syst. Sci., 23, 3885–3900, https://doi.org/10.5194/hess-23-3885-2019, https://doi.org/10.5194/hess-23-3885-2019, 2019
Short summary
Short summary
Here, we study the main moisture sources of the two famous western Mediterranean flood events of autumn 1982 (October and November). Results confirm the hypothesis that a large amount of precipitable water was involved, which was to a great extent advected from the tropics and subtropics. This remote moisture transport occurred at medium levels of the atmosphere via moisture plumes or atmospheric rivers. During the October event the contribution of local sources was also important.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, Olivier Caumont, Alexis Doerenbecher, Eric Wattrelot, Patrick Moll, Hervé Bénichou, Dominique Puech, Olivier Bock, Pierre Bosser, Patrick Chazette, Cyrille Flamant, Paolo Di Girolamo, Evelyne Richard, and Frédérique Saïd
Geosci. Model Dev., 12, 2657–2678, https://doi.org/10.5194/gmd-12-2657-2019, https://doi.org/10.5194/gmd-12-2657-2019, 2019
Short summary
Short summary
The AROME-WMED (western Mediterranean) model is a dedicated version of the mesoscale Numerical Weather Prediction AROME-France model that ran in real time during the first special observation period of HyMeX. Two reanalyses were performed after the campaign. This paper depicts the main differences between the real-time version and the benefits brought by both HyMeX reanalyses. The second reanalysis is found to be closer to observations than the previous AROME-WMED analyses.
Léo Seyfried, Claude Estournel, Patrick Marsaleix, and Evelyne Richard
Ocean Sci., 15, 179–198, https://doi.org/10.5194/os-15-179-2019, https://doi.org/10.5194/os-15-179-2019, 2019
Pavel Kishcha, Rachel T. Pinker, Isaac Gertman, Boris Starobinets, and Pinhas Alpert
Nat. Hazards Earth Syst. Sci., 18, 3007–3018, https://doi.org/10.5194/nhess-18-3007-2018, https://doi.org/10.5194/nhess-18-3007-2018, 2018
Short summary
Short summary
Increasing warming of steadily shrinking Dead Sea surface water was observed during the period of 2000–2016. We found that a positive feedback loop between the steady shrinking of the Dead Sea and positive sea surface temperature (SST) trends causes the acceleration of Dead Sea shrinking. Our findings imply the following essential point: any meteorological, hydrological or geophysical process causing steady shrinking of the Dead Sea will contribute to positive trends in SST.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Maria Cortès, Marco Turco, Montserrat Llasat-Botija, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 18, 857–868, https://doi.org/10.5194/nhess-18-857-2018, https://doi.org/10.5194/nhess-18-857-2018, 2018
Short summary
Short summary
The aim of this study is to develop and evaluate a methodology to estimate surface water flood damages from heavy precipitation in the Mediterranean region of study. The relationship between precipitation and insurance data has been assessed, using logistic regression models, to assess the probability of large monetary damages in relation to heavy precipitation events. Results show that our model is able to simulate the probability of a damaging event as a function of precipitation.
Leenes Uzan, Smadar Egert, and Pinhas Alpert
Atmos. Chem. Phys., 18, 3203–3221, https://doi.org/10.5194/acp-18-3203-2018, https://doi.org/10.5194/acp-18-3203-2018, 2018
Short summary
Short summary
The extraordinarily extreme dust storm of September 2015 is analyzed using an array of eight ceilometers and auxiliary measurements, revealing the dust plume penetration, ground coverage and gradual dispersion in the first kilometer above Israel. This research emphasized the importance of ceilometer networks as an essential tool in the analysis of meteorological phenomena and aerosol transport as being the most valuable in the mesoscale.
Antoine Colmet-Daage, Emilia Sanchez-Gomez, Sophie Ricci, Cécile Llovel, Valérie Borrell Estupina, Pere Quintana-Seguí, Maria Carmen Llasat, and Eric Servat
Hydrol. Earth Syst. Sci., 22, 673–687, https://doi.org/10.5194/hess-22-673-2018, https://doi.org/10.5194/hess-22-673-2018, 2018
Short summary
Short summary
Here, the first assessment of future changes in extreme precipitation in small Mediterranean watersheds is done through three watersheds frequently subjected to flash floods. Collaboration between Spanish and French laboratories enabled us to conclude that the intensity of high precipitation will increase at the end of the century. A high degree of confidence results from the multi-model approach used here with eight regional climate models (RCMs) developed in the Med and Euro-CORDEX project.
Léo Seyfried, Patrick Marsaleix, Evelyne Richard, and Claude Estournel
Ocean Sci., 13, 1093–1112, https://doi.org/10.5194/os-13-1093-2017, https://doi.org/10.5194/os-13-1093-2017, 2017
Climent Ramis, Romualdo Romero, Víctor Homar, Sergio Alonso, Agustí Jansà, and Arnau Amengual
Nat. Hazards Earth Syst. Sci., 17, 2351–2364, https://doi.org/10.5194/nhess-17-2351-2017, https://doi.org/10.5194/nhess-17-2351-2017, 2017
Short summary
Short summary
During the hydrological year 2015–2016 (September to August) a severe drought affected the Balearic Islands, with substantial consequences on water availability. In this paper we analyze this anomalous episode in terms of the corresponding water balance. It is shown that the drought was the result of a lack of winter precipitation, the lowest in the last 43 years. In several analyzed meteorological stations, evaporation was greater than precipitation during all the months of the year.
Adam Eshel, Hagit Messer, Jonatan Ostrometzky, Roi Raich, Pinhas Alpert, and Jonathan B. Laronne
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-963, https://doi.org/10.5194/acp-2017-963, 2017
Revised manuscript not accepted
Short summary
Short summary
The power of a signal between two telecommunication (cellular) towers weakens when rain falls in the medium. Through which, accurate rain intensity at ground level in remote areas can be derived. This unique database, together with weather radar data was used to show the feasibility of its integration into short-term flash flood warning in arid areas, a challenging task using traditional means. Commercial towers are widely spread sensors and were therefore used opportunistically.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Toni López Mayol, Víctor Homar, Climent Ramis, and José Antonio Guijarro
Nat. Hazards Earth Syst. Sci., 17, 1061–1074, https://doi.org/10.5194/nhess-17-1061-2017, https://doi.org/10.5194/nhess-17-1061-2017, 2017
Short summary
Short summary
This paper presents a very high-resolution atlas of daily precipitations across the Balearic Islands. The generation of this data set not only allows us to lay the groundwork for future updates ingesting a myriad of observation sources but also aims to provide support to local and network–topology independent studies of precipitation–sensitive systems such as ecosystems, water resources and energy systems. As an example, a better understanding of the negative precipitation trends is found.
Valerio Lembo, Isabella Bordi, and Antonio Speranza
Earth Syst. Dynam., 8, 295–312, https://doi.org/10.5194/esd-8-295-2017, https://doi.org/10.5194/esd-8-295-2017, 2017
Short summary
Short summary
The study wishes to better characterize the annual and semiannual cycles of surface temperature and baroclinicity at midlatitudes as observed in ERA-Interim reanalysis data and AOGCM simulations. Results show that at the semiannual frequency model phases between surface temperature and baroclinicity have wide dispersion in both hemispheres with large errors in the estimates, denoting uncertainty and a degree of disagreement among models.
Assaf Hochman, Hadas Saaroni, Miryam Bar-Matthews, Baruch Ziv, and Pinhas Alpert
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-90, https://doi.org/10.5194/cp-2016-90, 2016
Manuscript not accepted for further review
Leenes Uzan, Smadar Egert, and Pinhas Alpert
Atmos. Meas. Tech., 9, 4387–4398, https://doi.org/10.5194/amt-9-4387-2016, https://doi.org/10.5194/amt-9-4387-2016, 2016
Short summary
Short summary
Compared to other regions, the eastern Mediterranean is rich in aerosol content and dust storms but poor in atmospheric measurements. This research is a first attempt in Israel to estimate the diurnal mixed layer height (MLH) based on CL31 ceilometers using the wavelet covariance transform (WCT) method. Simultaneous measurements, onshore and inland, showed a significant difference of 200 m of the MLH between the two sites, only 7.5 km apart, which complies well with radiosonde profiles.
Rosa Claudia Torcasio, Stefano Federico, Claudia Roberta Calidonna, Elenio Avolio, Oxana Drofa, Tony Christian Landi, Piero Malguzzi, Andrea Buzzi, and Paolo Bonasoni
Ann. Geophys., 34, 347–356, https://doi.org/10.5194/angeo-34-347-2016, https://doi.org/10.5194/angeo-34-347-2016, 2016
Short summary
Short summary
Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market.
This work shows the application of a technique to improve wind forecasting. The study area is southern Italy.
S. O. Krichak, S. B. Feldstein, P. Alpert, S. Gualdi, E. Scoccimarro, and J.-I. Yano
Nat. Hazards Earth Syst. Sci., 16, 269–285, https://doi.org/10.5194/nhess-16-269-2016, https://doi.org/10.5194/nhess-16-269-2016, 2016
Short summary
Short summary
This paper presents a review of a large number of research studies focused on the investigation of cold season extreme precipitation events (EPEs) in the Mediterranean region (MR) demonstrating an important role of anomalously intense transports of moist air from the tropical and subtropical Atlantic in the occurrence of the MR EPEs. The issue of a possible role of the recent past decline in Arctic sea ice in the climatology of the MR EPEs during the period is also addressed.
K. Papagiannaki, K. Lagouvardos, V. Kotroni, and A. Bezes
Nat. Hazards Earth Syst. Sci., 15, 1859–1871, https://doi.org/10.5194/nhess-15-1859-2015, https://doi.org/10.5194/nhess-15-1859-2015, 2015
Short summary
Short summary
48 flash flood events in the urban Attica region (2005-2014) resulted in 3,500 fire service operations, mostly in autumn. Events were mostly associated with max accumulated rain over 20mm/24h and 3mm/10min. Impact intensity was particularly high for more than 60mm/24h.
Rain intensity thresholds for flood triggering are produced for 15 sub-areas of the Attica region. The quality of the produced thresholds depends on the distribution and density of the rain gauges that cover each sub-area.
S. Margiotta, A. Lettino, A. Speranza, and V. Summa
Nat. Hazards Earth Syst. Sci., 15, 1551–1561, https://doi.org/10.5194/nhess-15-1551-2015, https://doi.org/10.5194/nhess-15-1551-2015, 2015
A. Hally, O. Caumont, L. Garrote, E. Richard, A. Weerts, F. Delogu, E. Fiori, N. Rebora, A. Parodi, A. Mihalović, M. Ivković, L. Dekić, W. van Verseveld, O. Nuissier, V. Ducrocq, D. D'Agostino, A. Galizia, E. Danovaro, and A. Clematis
Nat. Hazards Earth Syst. Sci., 15, 537–555, https://doi.org/10.5194/nhess-15-537-2015, https://doi.org/10.5194/nhess-15-537-2015, 2015
E. Defer, J.-P. Pinty, S. Coquillat, J.-M. Martin, S. Prieur, S. Soula, E. Richard, W. Rison, P. Krehbiel, R. Thomas, D. Rodeheffer, C. Vergeiner, F. Malaterre, S. Pedeboy, W. Schulz, T. Farges, L.-J. Gallin, P. Ortéga, J.-F. Ribaud, G. Anderson, H.-D. Betz, B. Meneux, V. Kotroni, K. Lagouvardos, S. Roos, V. Ducrocq, O. Roussot, L. Labatut, and G. Molinié
Atmos. Meas. Tech., 8, 649–669, https://doi.org/10.5194/amt-8-649-2015, https://doi.org/10.5194/amt-8-649-2015, 2015
Short summary
Short summary
The paper summarizes the scientific objectives and the observational/modeling strategy of the atmospheric electricity PEACH project of the HyMeX program focusing on the lightning activity and the electrical state of Mediterranean thunderstorms. Examples of concurrent observations from radio frequency to acoustic for regular and atypical lightning flashes and for storms are discussed, showing the unique and comprehensive description of lightning flashes recorded during a dedicated field campaign.
A. Barrera-Escoda and M. C. Llasat
Hydrol. Earth Syst. Sci., 19, 465–483, https://doi.org/10.5194/hess-19-465-2015, https://doi.org/10.5194/hess-19-465-2015, 2015
Short summary
Short summary
Catastrophic floods (the most severe ones) in Catalonia from 1301 do not show any statistical trend, while extraordinary floods (moderate ones) have increased since 1850 due to a marked increase in developed land and population in small coastal basins.
The most significant flood-rich periods occurred with a strong negative NAO phase.
Solar activity has some impact on changes in catastrophic floods: flood-rich periods in autumn generally occurred during periods of increased solar activity.
Y. Liberman, R. Samuels, P. Alpert, and H. Messer
Atmos. Meas. Tech., 7, 3549–3563, https://doi.org/10.5194/amt-7-3549-2014, https://doi.org/10.5194/amt-7-3549-2014, 2014
A. Speranza, R. Caggiano, S. Margiotta, and S. Trippetta
Nat. Hazards Earth Syst. Sci., 14, 2727–2733, https://doi.org/10.5194/nhess-14-2727-2014, https://doi.org/10.5194/nhess-14-2727-2014, 2014
P. Kishcha, A. M. da Silva, B. Starobinets, C. N. Long, O. Kalashnikova, and P. Alpert
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23309-2014, https://doi.org/10.5194/acpd-14-23309-2014, 2014
Revised manuscript not accepted
K. Papagiannaki, K. Lagouvardos, V. Kotroni, and G. Papagiannakis
Nat. Hazards Earth Syst. Sci., 14, 2375–2386, https://doi.org/10.5194/nhess-14-2375-2014, https://doi.org/10.5194/nhess-14-2375-2014, 2014
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
L. Barbería, J. Amaro, M. Aran, and M. C. Llasat
Nat. Hazards Earth Syst. Sci., 14, 1843–1852, https://doi.org/10.5194/nhess-14-1843-2014, https://doi.org/10.5194/nhess-14-1843-2014, 2014
A. Buzzi, S. Davolio, P. Malguzzi, O. Drofa, and D. Mastrangelo
Nat. Hazards Earth Syst. Sci., 14, 1325–1340, https://doi.org/10.5194/nhess-14-1325-2014, https://doi.org/10.5194/nhess-14-1325-2014, 2014
A. Hally, E. Richard, and V. Ducrocq
Nat. Hazards Earth Syst. Sci., 14, 1071–1084, https://doi.org/10.5194/nhess-14-1071-2014, https://doi.org/10.5194/nhess-14-1071-2014, 2014
M. A. Picornell, J. Campins, and A. Jansà
Nat. Hazards Earth Syst. Sci., 14, 1059–1070, https://doi.org/10.5194/nhess-14-1059-2014, https://doi.org/10.5194/nhess-14-1059-2014, 2014
M. C. Llasat, M. Turco, P. Quintana-Seguí, and M. Llasat-Botija
Nat. Hazards Earth Syst. Sci., 14, 427–441, https://doi.org/10.5194/nhess-14-427-2014, https://doi.org/10.5194/nhess-14-427-2014, 2014
R. Deidda, M. Marrocu, G. Caroletti, G. Pusceddu, A. Langousis, V. Lucarini, M. Puliga, and A. Speranza
Hydrol. Earth Syst. Sci., 17, 5041–5059, https://doi.org/10.5194/hess-17-5041-2013, https://doi.org/10.5194/hess-17-5041-2013, 2013
C. Ramis, V. Homar, A. Amengual, R. Romero, and S. Alonso
Nat. Hazards Earth Syst. Sci., 13, 2483–2491, https://doi.org/10.5194/nhess-13-2483-2013, https://doi.org/10.5194/nhess-13-2483-2013, 2013
M. C. Llasat, M. Llasat-Botija, O. Petrucci, A. A. Pasqua, J. Rosselló, F. Vinet, and L. Boissier
Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, https://doi.org/10.5194/nhess-13-1337-2013, 2013
M. Turco, M. C. Llasat, A. Tudela, X. Castro, and A. Provenzale
Nat. Hazards Earth Syst. Sci., 13, 649–652, https://doi.org/10.5194/nhess-13-649-2013, https://doi.org/10.5194/nhess-13-649-2013, 2013
Related subject area
Atmospheric, Meteorological and Climatological Hazards
On the potential of using smartphone sensors for wildfire hazard estimation through citizen science
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
Surprise floods: the role of our imagination in preparing for disasters
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Insights into ground strike point properties in Europe through the EUCLID lightning location system
The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy
Precipitation extremes in Ukraine from 1979 to 2019: climatology, large-scale flow conditions, and moisture sources
Characterizing hail-prone environments using convection-permitting reanalysis and overshooting top detections over south-central Europe
Aircraft engine dust ingestion at global airports
Catchment-scale assessment of drought impact on environmental flow in the Indus Basin, Pakistan
The risk of synoptic-scale Arctic cyclones to shipping
Estimation of future rainfall extreme values by temperature-dependent disaggregation of climate model data
Climatic characteristics of the Jianghuai cyclone and its linkage with precipitation during the Meiyu period from 1961 to 2020
Application of the teaching–learning-based optimization algorithm to an analytical model of thunderstorm outflows to analyze the variability of the downburst kinematic and geometric parameters
Projections and uncertainties of winter windstorm damage in Europe in a changing climate
Improving seasonal predictions of German Bight storm activity
A satellite view of the exceptionally warm summer of 2022 over Europe
Demographic yearbooks as a source of weather-related fatalities: the Czech Republic, 1919–2022
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Assessment of wind–damage relations for Norway using 36 years of daily insurance data
Interannual variations in the seasonal cycle of extreme precipitation in Germany and the response to climate change
Convection-permitting climate model representation of severe convective wind gusts and future changes in southeastern Australia
Climatology of large hail in Europe: characteristics of the European Severe Weather Database
Amplified potential for vegetation stress under climate-change-induced intensifying compound extreme events in the Greater Mediterranean Region
GTDI: a gaming integrated drought index implying hazard causing and bearing impacts changing
Assimilation of surface pressure observations from personal weather stations in AROME-France
An open-source radar-based hail damage model for buildings and cars
Linkages between atmospheric rivers and humid heat across the United States
Insurance loss model vs meteorological loss index – How comparable are their loss estimates for European windstorms?
A modelled multi-decadal hailday time series for Switzerland
Evaluating pySTEPS optical flow algorithms for convection nowcasting over the Maritime Continent using satellite data
Climate change impacts on regional fire weather in heterogeneous landscapes of central Europe
High-resolution projections of ambient heat for major European cities using different heat metrics
Heat wave characteristics: evaluation of regional climate model performances for Germany
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Spatial identification of regions at risk to multi-hazards at pan European level: an implemented methodological approach
Intense rains in Israel associated with the 'Train effect'
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Wind as a natural hazard in Poland
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
Forecasting large hail and lightning using additive logistic regression models and the ECMWF reforecasts
The impact of global navigation satellite system (GNSS) zenith total delay data assimilation on the short-term precipitable water vapor and precipitation forecast over Italy using the Weather Research and Forecasting (WRF) model
Shallow and deep learning of extreme rainfall events from convective atmospheres
Linking reported drought impacts with drought indices, water scarcity and aridity: the case of Kenya
Future heat extremes and impacts in a convection-permitting climate ensemble over Germany
Assessment of subseasonal-to-seasonal (S2S) ensemble extreme precipitation forecast skill over Europe
Hofit Shachaf, Colin Price, Dorita Rostkier-Edelstein, and Cliff Mass
Nat. Hazards Earth Syst. Sci., 24, 3035–3047, https://doi.org/10.5194/nhess-24-3035-2024, https://doi.org/10.5194/nhess-24-3035-2024, 2024
Short summary
Short summary
We have used the temperature and relative humidity sensors in smartphones to estimate the vapor pressure deficit (VPD), an important atmospheric parameter closely linked to fuel moisture and wildfire risk. Our analysis for two severe wildfire case studies in Israel and Portugal shows the potential for using smartphone data to compliment the regular weather station network while also providing high spatial resolution of the VPD index.
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024, https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Short summary
High-impact river floods are often caused by extreme precipitation. Flood protection relies on reliable estimates of the return values. Observational time series are too short for a precise calculation. Here, 100-year return values of daily precipitation are estimated on a global grid based on a large set of model-generated precipitation events from ensemble weather prediction. The statistical uncertainties in the return values can be substantially reduced compared to observational estimates.
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024, https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Short summary
Associating extreme weather events with changes in the climate remains difficult. We have explored two ways these relationships can be investigated: one using a more common method and one relying solely on long-running records of meteorological observations.
Our results show that while both methods lead to similar conclusions for two recent weather events in Sweden, the commonly used method risks underestimating the strength of the connection between the event and changes to the climate.
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024, https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Short summary
Weather prediction uncertainties can be described as sets of possible scenarios – a technique called ensemble prediction. Our machine learning technique translates them into more easily interpretable scenarios for various users, balancing the detection of high precipitation with false alarms. Key parameters are precipitation intensity and space and time scales of interest. We show that the approach can be used to facilitate warnings of extreme precipitation.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024, https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary
Short summary
The study presents an open-source model to determine the occurrence of hail damage to field crops and grapevines after hailstorms in Switzerland based on radar, agricultural land use data, and insurance damage reports. The model performs best at 8 km resolution for field crops and 1 km for grapevine and in the main production areas. Highlighting performance trade-offs and the relevance of user needs, the study is a first step towards the assessment of risk and damage for crops in Switzerland.
Dieter Roel Poelman, Hannes Kohlmann, and Wolfgang Schulz
Nat. Hazards Earth Syst. Sci., 24, 2511–2522, https://doi.org/10.5194/nhess-24-2511-2024, https://doi.org/10.5194/nhess-24-2511-2024, 2024
Short summary
Short summary
EUCLID's lightning data unveil distinctive ground strike point (GSP) patterns in Europe. Over seas, GSPs per flash surpass inland, reaching a minimum in the Alps. Mountainous areas like the Alps and Pyrenees have the closest GSP separation, highlighting terrain elevation's impact. The daily peak current correlates with average GSPs per flash. These findings could significantly influence lightning protection measures, urging a focus on GSP density rather than flash density for risk assessment.
Nicola Loglisci, Giorgio Boni, Arianna Cauteruccio, Francesco Faccini, Massimo Milelli, Guido Paliaga, and Antonio Parodi
Nat. Hazards Earth Syst. Sci., 24, 2495–2510, https://doi.org/10.5194/nhess-24-2495-2024, https://doi.org/10.5194/nhess-24-2495-2024, 2024
Short summary
Short summary
We analyse the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in Genoa. Rainfall observations were made using rain gauge networks based on either official networks or citizen science networks. The merged analysis stresses the spatial variability in the precipitation, which cannot be captured by the current spatial density of authoritative stations. Results show that at minimal distances the variations in cumulated rainfall over a sub-hourly duration are significant.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Antonio Giordani, Michael Kunz, Kristopher M. Bedka, Heinz Jürgen Punge, Tiziana Paccagnella, Valentina Pavan, Ines M. L. Cerenzia, and Silvana Di Sabatino
Nat. Hazards Earth Syst. Sci., 24, 2331–2357, https://doi.org/10.5194/nhess-24-2331-2024, https://doi.org/10.5194/nhess-24-2331-2024, 2024
Short summary
Short summary
To improve the challenging representation of hazardous hailstorms, a proxy for hail frequency based on satellite detections, convective parameters from high-resolution reanalysis, and crowd-sourced reports is tested and presented. Hail likelihood peaks in mid-summer at 15:00 UTC over northern Italy and shows improved agreement with observations compared to previous estimates. By separating ambient signatures based on hail severity, enhanced appropriateness for large-hail occurrence is found.
Claire L. Ryder, Clément Bézier, Helen F. Dacre, Rory Clarkson, Vassilis Amiridis, Eleni Marinou, Emmanouil Proestakis, Zak Kipling, Angela Benedetti, Mark Parrington, Samuel Rémy, and Mark Vaughan
Nat. Hazards Earth Syst. Sci., 24, 2263–2284, https://doi.org/10.5194/nhess-24-2263-2024, https://doi.org/10.5194/nhess-24-2263-2024, 2024
Short summary
Short summary
Desert dust poses a hazard to aircraft via degradation of engine components. This has financial implications for the aviation industry and results in increased fuel burn with climate impacts. Here we quantify dust ingestion by aircraft engines at airports worldwide. We find Dubai and Delhi in summer are among the dustiest airports, where substantial engine degradation would occur after 1000 flights. Dust ingestion can be reduced by changing take-off times and the altitude of holding patterns.
Khalil Ur Rahman, Songhao Shang, Khaled Saeed Balkhair, Hamza Farooq Gabriel, Khan Zaib Jadoon, and Kifayat Zaman
Nat. Hazards Earth Syst. Sci., 24, 2191–2214, https://doi.org/10.5194/nhess-24-2191-2024, https://doi.org/10.5194/nhess-24-2191-2024, 2024
Short summary
Short summary
This paper assesses the impact of drought (meteorological drought) on the hydrological alterations in major rivers of the Indus Basin. Threshold regression and range of variability analysis are used to determine the drought severity and times where drought has caused low flows and extreme low flows (identified using indicators of hydrological alterations). Moreover, this study also examines the degree of alterations in river flows due to drought using the hydrological alteration factor.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Ran Zhu and Lei Chen
Nat. Hazards Earth Syst. Sci., 24, 1937–1950, https://doi.org/10.5194/nhess-24-1937-2024, https://doi.org/10.5194/nhess-24-1937-2024, 2024
Short summary
Short summary
There is a positive correlation between the frequency of Jianghuai cyclone activity and precipitation during the Meiyu period. Its occurrence frequency has an obvious decadal variation, which corresponds well with the quasi-periodic and decadal variation in precipitation during the Meiyu period. This study provides a reference for the long-term and short-term forecasting of precipitation during the Meiyu period.
Andi Xhelaj and Massimiliano Burlando
Nat. Hazards Earth Syst. Sci., 24, 1657–1679, https://doi.org/10.5194/nhess-24-1657-2024, https://doi.org/10.5194/nhess-24-1657-2024, 2024
Short summary
Short summary
The study provides an in-depth analysis of a severe downburst event in Sânnicolau Mare, Romania, utilizing an analytical model and optimization algorithm. The goal is to explore a multitude of generating solutions and to identify potential alternatives to the optimal solution. Advanced data analysis techniques help to discern three main distinct storm scenarios. For this particular event, the best overall solution from the optimization algorithm shows promise in reconstructing the downburst.
Luca G. Severino, Chahan M. Kropf, Hilla Afargan-Gerstman, Christopher Fairless, Andries Jan de Vries, Daniela I. V. Domeisen, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 1555–1578, https://doi.org/10.5194/nhess-24-1555-2024, https://doi.org/10.5194/nhess-24-1555-2024, 2024
Short summary
Short summary
We combine climate projections from 30 climate models with a climate risk model to project winter windstorm damages in Europe under climate change. We study the uncertainty and sensitivity factors related to the modelling of hazard, exposure and vulnerability. We emphasize high uncertainties in the damage projections, with climate models primarily driving the uncertainty. We find climate change reshapes future European windstorm risk by altering damage locations and intensity.
Daniel Krieger, Sebastian Brune, Johanna Baehr, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 24, 1539–1554, https://doi.org/10.5194/nhess-24-1539-2024, https://doi.org/10.5194/nhess-24-1539-2024, 2024
Short summary
Short summary
Previous studies found that climate models can predict storm activity in the German Bight well for averages of 5–10 years but struggle in predicting the next winter season. Here, we improve winter storm activity predictions by linking them to physical phenomena that occur before the winter. We guess the winter storm activity from these phenomena and discard model solutions that stray too far from the guess. The remaining solutions then show much higher prediction skill for storm activity.
João P. A. Martins, Sara Caetano, Carlos Pereira, Emanuel Dutra, and Rita M. Cardoso
Nat. Hazards Earth Syst. Sci., 24, 1501–1520, https://doi.org/10.5194/nhess-24-1501-2024, https://doi.org/10.5194/nhess-24-1501-2024, 2024
Short summary
Short summary
Over Europe, 2022 was truly exceptional in terms of extreme heat conditions, both in terms of temperature anomalies and their temporal and spatial extent. The satellite all-sky land surface temperature (LST) is used to provide a climatological context to extreme heat events. Where drought conditions prevail, LST anomalies are higher than 2 m air temperature anomalies. ERA5-Land does not represent this effect correctly due to a misrepresentation of vegetation anomalies.
Rudolf Brázdil, Kateřina Chromá, and Pavel Zahradníček
Nat. Hazards Earth Syst. Sci., 24, 1437–1457, https://doi.org/10.5194/nhess-24-1437-2024, https://doi.org/10.5194/nhess-24-1437-2024, 2024
Short summary
Short summary
The official mortality data in the Czech Republic in 1919–2022 are used to show long-term fluctuations in the number of fatalities caused by excessive natural cold and heat, lightning, natural disasters, and falls on ice/snow, as well as the sex and age of the deceased, based on certain meteorological, historical, and socioeconomic factors that strongly influence changes in the number and structure of such fatalities. Knowledge obtained is usable in risk management for the preservation of lives.
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024, https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
Short summary
This paper presents the development and verification of FOREWARNS, a novel method for regional-scale forecasting of surface water flooding. We detail outcomes from a workshop held with UK forecast users, who indicated they valued the forecasts and would use them to complement national guidance. We use results of objective forecast tests against flood observations over northern England to show that this confidence is justified and that FOREWARNS meets the needs of UK flood responders.
Ashbin Jaison, Asgeir Sorteberg, Clio Michel, and Øyvind Breivik
Nat. Hazards Earth Syst. Sci., 24, 1341–1355, https://doi.org/10.5194/nhess-24-1341-2024, https://doi.org/10.5194/nhess-24-1341-2024, 2024
Short summary
Short summary
The present study uses daily insurance losses and wind speeds to fit storm damage functions at the municipality level of Norway. The results show that the damage functions accurately estimate losses associated with extreme damaging events and can reconstruct their spatial patterns. However, there is no single damage function that performs better than another. A newly devised damage–no-damage classifier shows some skill in predicting extreme damaging events.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Andrew Brown, Andrew Dowdy, and Todd P. Lane
EGUsphere, https://doi.org/10.5194/egusphere-2024-322, https://doi.org/10.5194/egusphere-2024-322, 2024
Short summary
Short summary
A computer model that simulates the climate of south-eastern Australia is shown here to represent extreme wind events associated with convective storms. This is useful as it allows us to investigate possible future changes in the occurrences of these events, and we find in the year 2050 that our model simulates a decrease in the number of occurrences. However, the model also simulates too many events in the historical climate compared with observations, so these future changes are uncertain.
Faye Hulton and David M. Schultz
Nat. Hazards Earth Syst. Sci., 24, 1079–1098, https://doi.org/10.5194/nhess-24-1079-2024, https://doi.org/10.5194/nhess-24-1079-2024, 2024
Short summary
Short summary
Large hail devastates crops and property and can injure and kill people and livestock. Hail reports are collected by individual countries, so understanding where and when large hail occurs across Europe is an incomplete undertaking. We use the European Severe Weather Database to evaluate the quality of reports by year and by country since 2000. Despite its short record, the dataset appears to represent aspects of European large-hail climatology reliably.
Patrick Olschewski, Mame Diarra Bousso Dieng, Hassane Moutahir, Brian Böker, Edwin Haas, Harald Kunstmann, and Patrick Laux
Nat. Hazards Earth Syst. Sci., 24, 1099–1134, https://doi.org/10.5194/nhess-24-1099-2024, https://doi.org/10.5194/nhess-24-1099-2024, 2024
Short summary
Short summary
We applied a multivariate and dependency-preserving bias correction method to climate model output for the Greater Mediterranean Region and investigated potential changes in false-spring events (FSEs) and heat–drought compound events (HDCEs). Results project an increase in the frequency of FSEs in middle and late spring as well as increases in frequency, intensity, and duration for HDCEs. This will potentially aggravate the risk of crop loss and failure and negatively impact food security.
Xiaowei Zhao, Tianzeng Yang, Hongbo Zhang, Tian Lan, Chaowei Xue, Tongfang Li, Zhaoxia Ye, Zhifang Yang, and Yurou Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-45, https://doi.org/10.5194/nhess-2024-45, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
To effectively track and identify droughts, we developed a novel integrated drought index that combines the effects of precipitation, temperature, and soil moisture on drought. After comparison and verification, the integrated drought index shows superior performance to a single meteorological drought index or agricultural drought index in drought identification.
Alan Demortier, Marc Mandement, Vivien Pourret, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 24, 907–927, https://doi.org/10.5194/nhess-24-907-2024, https://doi.org/10.5194/nhess-24-907-2024, 2024
Short summary
Short summary
Improvements in numerical weather prediction models make it possible to warn of hazardous weather situations. The incorporation of new observations from personal weather stations into the French limited-area model is evaluated. It leads to a significant improvement in the modelling of the surface pressure field up to 9 h ahead. Their incorporation improves the location and intensity of the heavy precipitation event that occurred in the South of France in September 2021.
Timo Schmid, Raphael Portmann, Leonie Villiger, Katharina Schröer, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 24, 847–872, https://doi.org/10.5194/nhess-24-847-2024, https://doi.org/10.5194/nhess-24-847-2024, 2024
Short summary
Short summary
Hailstorms cause severe damage to buildings and cars, which motivates a detailed risk assessment. Here, we present a new open-source hail damage model based on radar data in Switzerland. The model successfully estimates the correct order of magnitude of car and building damages for most large hail events over 20 years. However, large uncertainty remains in the geographical distribution of modelled damages, which can be improved for individual events by using crowdsourced hail reports.
Colin Raymond, Anamika Shreevastava, Emily Slinskey, and Duane Waliser
Nat. Hazards Earth Syst. Sci., 24, 791–801, https://doi.org/10.5194/nhess-24-791-2024, https://doi.org/10.5194/nhess-24-791-2024, 2024
Short summary
Short summary
How can we systematically understand what causes high levels of atmospheric humidity and thus heat stress? Here we argue that atmospheric rivers can be a useful tool, based on our finding that in several US regions, atmospheric rivers and humid heat occur close together in space and time. Most typically, an atmospheric river transports moisture which heightens heat stress, with precipitation following a day later. These effects tend to be larger for stronger and more extensive systems.
Julia Moemken, Inovasita Alifdini, Alexandre M. Ramos, Alexandros Georgiadis, Aidan Brocklehurst, Lukas Braun, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-16, https://doi.org/10.5194/nhess-2024-16, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
European windstorms regularly cause damage to natural and human-made environments, leading to high socio-economic losses. For the first time, we compare estimates of these losses using a meteorological Loss Index (LI) and the insurance loss (catastrophe) model of Aon Impact Forecasting. We find that LI underestimates high impact windstorms compared to the insurance model. Nonetheless, due to its simplicity, LI is an effective index, suitable for estimating impacts and ranking storm events.
Lena Wilhelm, Cornelia Schwierz, Katharina Schröer, Mateusz Taszarek, and Olivia Martius
EGUsphere, https://doi.org/10.5194/egusphere-2024-371, https://doi.org/10.5194/egusphere-2024-371, 2024
Short summary
Short summary
In our study we used statistical models to reconstruct past haildays in Switzerland from 1959–2022. This new timeseries reveals a significant increase in hail occurrences over the last seven decades. We link this trend to climate factors, showcasing the impact of increasing moisture and instability in the atmosphere. The last two decades have seen a surge in early hailseason events. This time series can now be used to study what drives the strong year-to-year variability of Swiss hailstorms.
Joseph Smith, Cathryn Birch, John Marsham, Simon Peatman, Massimo Bollasina, and George Pankiewicz
Nat. Hazards Earth Syst. Sci., 24, 567–582, https://doi.org/10.5194/nhess-24-567-2024, https://doi.org/10.5194/nhess-24-567-2024, 2024
Short summary
Short summary
Nowcasting uses observations to make predictions of the atmosphere on short timescales and is particularly applicable to the Maritime Continent, where storms rapidly develop and cause natural disasters. This paper evaluates probabilistic and deterministic satellite nowcasting algorithms over the Maritime Continent. We show that the probabilistic approach is most skilful at small scales (~ 60 km), whereas the deterministic approach is most skilful at larger scales (~ 200 km).
Julia Miller, Andrea Böhnisch, Ralf Ludwig, and Manuela I. Brunner
Nat. Hazards Earth Syst. Sci., 24, 411–428, https://doi.org/10.5194/nhess-24-411-2024, https://doi.org/10.5194/nhess-24-411-2024, 2024
Short summary
Short summary
We assess the impacts of climate change on fire danger for 1980–2099 in different landscapes of central Europe, using the Canadian Forest Fire Weather Index (FWI) as a fire danger indicator. We find that today's 100-year FWI event will occur every 30 years by 2050 and every 10 years by 2099. High fire danger (FWI > 21.3) becomes the mean condition by 2099 under an RCP8.5 scenario. This study highlights the potential for severe fire events in central Europe from a meteorological perspective.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Dragan Petrovic, Benjamin Fersch, and Harald Kunstmann
Nat. Hazards Earth Syst. Sci., 24, 265–289, https://doi.org/10.5194/nhess-24-265-2024, https://doi.org/10.5194/nhess-24-265-2024, 2024
Short summary
Short summary
The influence of model resolution and settings on the reproduction of heat waves in Germany between 1980–2009 is analyzed. Outputs from a high-resolution model with settings tailored to the target region are compared to those from coarser-resolution models with more general settings. Neither the increased resolution nor the tailored model settings are found to add significant value to the heat wave simulation. The models exhibit a large spread, indicating that the choice of model can be crucial.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Tiberiu-Eugen Antofie, Stefano Luoni, Alois Tilloy, Andrea Sibilia, Sandro Salari, Gustav Eklund, Davide Rodomonti, Christos Bountzouklis, and Christina Corbane
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-220, https://doi.org/10.5194/nhess-2023-220, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This is the first study that uses spatial patterns (clusters/hot-spots) and meta-analysis in order to identify the regions at European level at risk to multi-hazards. The findings point out the socio-economic dimension as determinant factor for the risk potential to multi-hazard. The outcome provides valuable input for the Disaster Risk Management policy support and will assist national authorities on the implementation of a multi-hazard approach in the National Risk Assessments preparation.
Baruch Ziv, Uri Dayan, Lidiya Shendrik, and Elyakom Vadislavsky
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-215, https://doi.org/10.5194/nhess-2023-215, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
'Train effect' is related to convective cells that pass over the same place. Trains produce heavy rainfall, sometimes floods, and reported in N. America during spring and summer. In Israel, 17 trains were identified by radar images, associated with Cyprus Lows, sharing the following features: Found at the cold sector south of the low center, at the left flank of a maximum wind belt; they cross the Israeli coast, with a mean length of 45 km, last 1–3 hours and yield 35 mm rainfall, up to 60 mm.
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023, https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Short summary
This research presents a model for estimating extreme gusts associated with European windstorms. Using observed storm footprints we are able to calculate the return level of events at the 200-year return period. The largest gusts are found across NW Europe, and these are larger when the North Atlantic Oscillation is positive. Using theoretical future climate states we find that return levels are likely to increase across NW Europe to levels that are unprecedented compared to historical storms.
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023, https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Short summary
The paper deals with wind speeds of extreme wind events in Poland and the descriptions of their effects. Two recent estimations developed by the Institute of Meteorology and Water Management in Warsaw and by Halina Lorenc are presented and briefly described. The 37 annual maximum gusts of wind speeds measured between 1971 and 2007 are analysed. Based on the measured and estimated wind speeds, the authors suggest new estimations for extreme winds that may occur in Poland.
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023, https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Short summary
Hail and tornadoes are devastating hazards responsible for significant property damage and economic losses in the United States. Quantifying the connection between hazard events and mesoscale convective systems (MCSs) is of great significance for improving predictability, as well as for better understanding the influence of the climate-scale perturbations. A 14-year statistical dataset of MCS-related hazard production is presented.
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023, https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
Short summary
Lightning activity in China is analyzed. Low latitudes, undulating terrain, seaside, and humid surfaces are beneficial for lightning occurrence. Summer of the year or afternoon of the day is the high period. Large cloud-to-ground lightning frequency always corresponds to a small ratio and weak intensity of positive cloud-to-ground lightning on either a temporal or spatial scale. Interestingly, the discharge intensity difference between the two types of lightning shrinks on the Tibetan Plateau.
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023, https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary
Short summary
Cold fronts are often associated with areas of intense precipitation (cells) and sometimes with hazards such as flooding, hail and lightning. We find that cold-frontal cell days are associated with higher cell frequency and cells are typically more intense. We also show both spatially and temporally where cells are most frequent depending on their cell-front distance. These results are an important step towards a deeper understanding of cold-frontal storm climatology and improved forecasting.
Francesco Battaglioli, Pieter Groenemeijer, Ivan Tsonevsky, and Tomàš Púčik
Nat. Hazards Earth Syst. Sci., 23, 3651–3669, https://doi.org/10.5194/nhess-23-3651-2023, https://doi.org/10.5194/nhess-23-3651-2023, 2023
Short summary
Short summary
Probabilistic models for lightning and large hail were developed across Europe using lightning observations and hail reports. These models accurately predict the occurrence of lightning and large hail several days in advance. In addition, the hail model was shown to perform significantly better than the state-of-the-art forecasting methods. These results suggest that the models developed in this study may help improve forecasting of convective hazards and eventually limit the associated risks.
Rosa Claudia Torcasio, Alessandra Mascitelli, Eugenio Realini, Stefano Barindelli, Giulio Tagliaferro, Silvia Puca, Stefano Dietrich, and Stefano Federico
Nat. Hazards Earth Syst. Sci., 23, 3319–3336, https://doi.org/10.5194/nhess-23-3319-2023, https://doi.org/10.5194/nhess-23-3319-2023, 2023
Short summary
Short summary
This work shows how local observations can improve precipitation forecasting for severe weather events. The improvement lasts for at least 6 h of forecast.
Gerd Bürger and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 23, 3065–3077, https://doi.org/10.5194/nhess-23-3065-2023, https://doi.org/10.5194/nhess-23-3065-2023, 2023
Short summary
Short summary
Our subject is a new catalogue of radar-based heavy rainfall events (CatRaRE) over Germany and how it relates to the concurrent atmospheric circulation. We classify reanalyzed daily atmospheric fields of convective indices according to CatRaRE, using conventional statistical and more recent machine learning algorithms, and apply them to present and future atmospheres. Increasing trends are projected for CatRaRE-type probabilities, from reanalyzed as well as from simulated atmospheric fields.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 23, 2873–2893, https://doi.org/10.5194/nhess-23-2873-2023, https://doi.org/10.5194/nhess-23-2873-2023, 2023
Short summary
Short summary
Using a convection-permitting regional climate ensemble, the magnitude of heat waves (HWs) over Germany is projected to increase by 26 % (100 %) in a 2 °C (3 °C) warmer world. The increase is strongest in late summer, relatively homogeneous in space, and accompanied by increasing variance in HW length. Tailored parameters to climate adaptation to heat revealed dependency on major landscapes, and a nonlinear, exponential increase for parameters characterizing strong heat stress is expected.
Pauline Rivoire, Olivia Martius, Philippe Naveau, and Alexandre Tuel
Nat. Hazards Earth Syst. Sci., 23, 2857–2871, https://doi.org/10.5194/nhess-23-2857-2023, https://doi.org/10.5194/nhess-23-2857-2023, 2023
Short summary
Short summary
Heavy precipitation can lead to floods and landslides, resulting in widespread damage and significant casualties. Some of its impacts can be mitigated if reliable forecasts and warnings are available. In this article, we assess the capacity of the precipitation forecast provided by ECMWF to predict heavy precipitation events on a subseasonal-to-seasonal (S2S) timescale over Europe. We find that the forecast skill of such events is generally higher in winter than in summer.
Cited articles
Alpert, P., Neeman, B. U., and Shay-El, Y.: Climatological analysis of Mediterranean cyclones using ECMWF data, Tellus A, 42, 65–77, 1990a.
Alpert, P., Neeman, B. U., and Shay-El, Y.: Intermonthly Variability of Cyclone Tracks in the Mediterranean, J. Climate, 3, 1474–1478, 1990b.
Alpert, P., Tzidulko, M., Krichak, S., and Stein, U.: A multi-stage evolution of an ALPEX cyclone, Tellus A, 48, 209–220, 1996.
Amaro, J., Gayà, M., Aran, M., and Llasat, M. C.: Preliminary results of the Social Impact Research Group of MEDEX: the request database (2000–2002) of two Meteorological Services, Nat. Hazards Earth Syst. Sci., 10, 2643–2652, https://doi.org/10.5194/nhess-10-2643-2010, 2010.
Amengual, A., Romero, R., Gómez, M., Martín, A., and Alonso, S.: A hydro-meteorological modeling study of a flash flood event over Catalonia, Spain, J. Hydrometeorol., 8, 282–303, 2007.
Amengual, A., Romero, R., and Alonso, S.: Hydrometeorological ensemble simulations of flood events over a small-size basin of Majorca Island, Spain, Q. J. Roy. Meteorol. Soc., 134, 1221–1242, 2008.
Argence, S., Lambert, D., Richard, E., Söhne, N., Chaboureau, J.-P., Crépin, F., and Arbogast, P.: High resolution numerical study of the Algiers 2001 flash flood: sensitivity to the upper-level potential vorticity anomaly, Adv. Geosci., 7, 251–257, https://doi.org/10.5194/adgeo-7-251-2006, 2006.
Argence, S., Lambert, D., Richard, E., Chaboureau, J.-P., and Söhne, N.: Impact of initial condition uncertainties on the predictability of heavy rainfall in the Mediterranean: a case study, Q. J. Roy. Meteorol. Soc., 134, 1775–1788, 2008.
Argence, S., Lambert, D., Richard, E., Pierre Chaboureau, J., Arbogast, P., and Maynard, K.: Improving the numerical prediction of a cyclone in the Mediterranean by local potential vorticity modifications, Q. J. Roy. Meteorol. Soc., 135, 865–879, 2009.
Ayrault, F. and Joly, A.: The genesis of mid-latitude cyclones over the Atlantic ocean: a new climatological perspective, Compt. Rend. Acad. Sci. Paris, Earth Planet. Sc. Lett., 330, 173–178, 2000.
Berenger, M.: Essai d'etudes meteorologiques du Bassin Mediterraneen – Memorial de la Meteorologie Nationale No. 40, Meteorologie Nacional, Paris, 1955.
Berenger, M.: Les types de temps en Mediterranee – METMAR no. 29, Meteorologie Nationale, Paris, 1960.
Berto, A., Buzzi, A., and Zardi, D.: Back-tracking water vapour contributing to precipitation events over Trentino: a case study, Meteorol. Z., 13, 189–200, 2004.
Bougeault, P. and Jansa, A. (Eds.): INM/WMO International Symposium on Cyclones and Hazardous Weather in the Mediterranean, Universitat de les Illes Balears and Ministerio de Medio Ambiente, Palma de Mallorca, 841 pp., 1997.
Bougeault, P., Binder, P., Buzzi, A., Dirks, R., Kuettner, J., Houze, R., Smith, R. B., Steinacker, R., and Volkert, H.: The MAP special observing period, B. Am. Meteorol. Soc., 82, 433–462, 2001.
Bouttier, F., Vie, B., Nuissier, O., and Raynaud, L.: Impact of stochastic physics in a convection-permitting ensemble, Mon. Weather Rev., 140, 3706–3721, https://doi.org/10.1175/MWR-D-12-00031.1, 2012.
Buzzi, A., Tartaglione, N., and Malguzzi, P.: Numerical simulations of the 1994 Piedmont Flood: role of orography and moist processes, Mon. Weather Rev., 126, 2369–2383, 1998.
Buzzi, A., Richard, E., and Romero, R.: Summary Report on MEDEX Studies and Scientific Results on Mediterranean Cyclones Causing High Impact Weather, available at: http://medex.aemet.uib.es (last access: 2013), 2005.
Callado, A., Santos, C., Escribà, P., Santos-Muñoz, D., Simarro, J., and García-Moya, J. A.: Performance of multi-model AEMET-SREPS precipitation probabilistic forecasts over Mediterranean area, Adv. Geosci., 26, 133–138, https://doi.org/10.5194/adgeo-26-133-2011, 2011.
Campins, J., Jansà, A., Benech, B., Koffi, E., and Bessemoulin, P.: PYREX Observation and Model Diagnosis of the Tramontane Wind, Meteorol. Atmos. Phys., 56, 209–228, 1995.
Campins, J., Genoves, A., Jansa, A., Guijarro, J. A., and Ramis, C.: A catalogue and a classification of surface cyclones for the western Mediterranean, Int. J. Climatol., 20, 969–984, 2000.
Campins, J., Jansa, A., and Genoves, A.: Three-dimensional structure of Western Mediterranean cyclones, Int. J. Climatol., 26, 323–343, 2006a.
Campins, J., Jansà, A., and Genovés, A.: Heavy rain and strong wind events and cyclones in the Balearics, Adv. Geosci., 7, 73–77, https://doi.org/10.5194/adgeo-7-73-2006, 2006b.
Campins, J., Aran, M., Genovés, A., and Jansà, A.: High impact weather and cyclones simultaneity in Catalonia, Adv. Geosci., 12, 115–120, https://doi.org/10.5194/adgeo-12-115-2007, 2007.
Campins, J., Genoves, A., Picornell, M. A., and Jansa, A.: Climatology of Mediterranean cyclones using the ERA-40 dataset, Int. J. Climatol., 31, 1596–1614, 2011.
Campins, J., Navascués, B., Santos, C., and Amo-Baladrón, A.: Influence of targeted observations on short-term forecasts of high-impact weather events in the Mediterranean, Nat. Hazards Earth Syst. Sci., 13, 2891–2910, https://doi.org/10.5194/nhess-13-2891-2013, 2013.
Chaboureau, J.-P., Pantillon, F., Lambert, D., Richard, E., and Claud, C.: Tropical transition of a Mediterranean storm by jet crossing, Q. J. Roy. Meteorol. Soc., 138, 596–611, 2012.
Cohuet, J. B., Romero, R., Homar, V., Ducrocq, V., and Ramis, C.: Initiation of a severe thunderstorm over the Mediterranean Sea, Atmos. Res., 100, 603–620, 2011.
Cressman, G.: An operational objective analysis system, Mon. Weather Rev., 87, 367–374, 1959.
Davolio, S., Buzzi, A., and Malguzzi, P.: High resolution simulations of an intense convective precipitation event, Meteorol. Atmos. Phys., 95, 139–154, https://doi.org/10.1007/s00703-006-0200-0, 2007.
Davolio, S., Miglietta, M. M., Moscatello, A., Pacifico, F., Buzzi, A., and Rotunno, R.: Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea, Nat. Hazards Earth Syst. Sci., 9, 551–562, https://doi.org/10.5194/nhess-9-551-2009, 2009.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
De Zolt, S., Lionello, P., Nuhu, A., and Tomasin, A.: The disastrous storm of 4 November 1966 on Italy, Nat. Hazards Earth Syst. Sci., 6, 861–879, https://doi.org/10.5194/nhess-6-861-2006, 2006.
Doerenbecher, A. and Bergot, T.: Sensitivity to observations applied to FASTEX cases, Nonlin. Processes Geophys., 8, 467–481, https://doi.org/10.5194/npg-8-467-2001, 2001.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin, M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, B., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HyMeX-SOP1, the field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean, B. Am. Meteorol. Soc., https://doi.org/10.1175/BAMS-D-12-00244.1, early online release, 2013.
Flocas, H. A.: Diagnostics of Cyclogenesis Over the Aegean Sea Using Potential Vorticity Invesrion, Meteorol. Atmos. Phys., 73, 25–33, 2000.
Flocas, H. A. and Karacostas, T. S.: Cyclogenesis over the Aegean Sea: identifications and synoptic categories, Meteorol. Appl., 3, 53–61, 1996.
Flocas, H. A., Maheras, P., Karacostas, T., Patrikas, I., and Anagnostopoulou, C.: A 40-year climatological study of relative vorticity distribution over the Mediterranean, Int. J. Climatol., 21, 1759–1778, https://doi.org/10.1002/joc.705, 2001.
Flocas, H. A., Simmonds, J., Kouroutzoglou, J., Keay, K., Hatzaki, M., Bricolas, V., and Asimakopoulos, D.: On Cyclonic Tracks over the Eastern Mediterranean, J. Climate, 23, 5243–5257, 2010.
Fourrie, N., Marchal, D., Rabier, F., Chapnik, B., and Desroziers, G.: Impact study of the 2003 North Atlantic THORPEX Regional Campaign, Q. J. Roy. Meteorol. Soc., 132, 275–295, https://doi.org/10.1256/qj.05.31, 2006.
García-Moya, J. A., Callado, A., Escriba, P., Santos, C., and Santos-Muñoz, D.: Predictability of short-range forecasting: a multimodel approach, Tellus A, 63, 550–563, https://doi.org/10.1111/j.1600-0870.2010.00506.x, 2011.
Garcies, L. and Homar, V.: Ensemble sensitivities of the real atmosphere: application to Mediterranean intense cyclones, Tellus A, 61, 394–406, 2009.
Garcies, L. and Homar, V.: An optimized ensemble sensitivity climatology of Mediterranean intense cyclones, Nat. Hazards Earth Syst. Sci., 10, 2441–2450, https://doi.org/10.5194/nhess-10-2441-2010, 2010.
Garcies, L. and Homar, V.: Verification of objective sensitivity climatologies of Mediterranean intense cyclones: test against human judgement, Q. J. Roy. Meteorol. Soc., 137, 1467–1481, https://doi.org/10.1002/qj.872, 2011.
Garcies, L. and Homar, V.: Are current sensitivity products suficiently informative in targeting campaigns?, A DTS-MEDEX-2009 case study, Q. J. Roy. Meteorol. Soc., 140, 525–538, https://doi.org/10.1002/qj.2148, 2014.
Genoves, A. and Jansa, A.: Diabatic processes contribution to the November 2001 storm, in: Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain, October 2002, Universitat de les Illes Balears, Mallorca, Spain, 2003.
Genovés, A., Campins, J., and Jansà, A.: Intense storms in the Mediterranean: a first description from the ERA-40 perspective, Adv. Geosci., 7, 163–168, https://doi.org/10.5194/adgeo-7-163-2006, 2006.
Gil, V. E., Genoves, A., Picornell, M. A., and Jansa, A.: Automated Database Of Cyclones from the ECMWF Model: Preliminary Comparison Between West And East Mediterranean Basins, Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain, October 2002, Universitat de les Illes Balears, Mallorca, Spain, 2003.
Guijarro, J. A., Jansà, A., and Campins, J.: Time variability of cyclonic geostrophic circulation in the Mediterranean, Adv. Geosci., 7, 45–49, https://doi.org/10.5194/adgeo-7-45-2006, 2006.
Hamadache, B., Terchi, A., and Brachemi, O.: Study of the meteorological situation which affected the west and the center of Algeria in general and Bab-el-Oued in particular on the 10th November 2001, in: Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain, October 2002, Universitat de les Illes Balears, Mallorca, Spain, 2003.
Homar, V. and Stensrud, D. J.: Sensitivities of an intense Mediterranean cyclone: analysis and validation, Q. J. Roy. Meteorol. Soc., 130, 2519–2540, 2004.
Homar, V., Romero, R., Ramis, C., and Alonso, S.: Numerical study of the October 2000 torrential precipitation event over eastern Spain: analysis of the synoptic-scale stationarity, Ann. Geophys., 20, 2047–2066, https://doi.org/10.5194/angeo-20-2047-2002, 2002a.
Homar, V., Ramis, C., and Alonso, S.: A deep cyclone of African origin over the Western Mediterranean: diagnosis and numerical simulation, Ann. Geophys., 20, 93–106, https://doi.org/10.5194/angeo-20-93-2002, 2002b.
Homar, V., Romero, R., Stensrud, J., Ramis, C., and Alonso, S.: Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: dynamical versus boundary factors, Q. J. Roy. Meteorol. Soc., 129, 1459–1490, 2003.
Homar, V., Jansà, A., Campins, J., Genovés, A., and Ramis, C.: Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones, Nat. Hazards Earth Syst. Sci., 7, 445–454, https://doi.org/10.5194/nhess-7-445-2007, 2007.
Horvath, K., Fita, L., Romero, R., and Ivancan-Picek, B.: A numerical study of the first phase of a deep Mediterranean cyclone: cyclogenesis in the lee of the Atlas Mountains, Meteorol. Z., 15, 133–146, 2006.
Horvath, K., Lin, Y.-L., and Ivancan-Picek, B.: Classification of cyclone tracks over the Apennines and the Adriatic Sea, Mon. Weather Rev., 136, 2210–2227, 2008.
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and significance of isentropic potential vorticity maps, Q. J. Roy. Meteorol. Soc., 111, 877–946, 1985.
Houssos, E. E. and Bartzokas, A.: Extreme precipitation events in NW Greece, Adv. Geosci., 7, 91–96, https://doi.org/10.5194/adgeo-7-91-2006, 2006.
Houssos, E. E., Lolis, C. J., and Bartzokas, A.: Atmospheric circulation patterns associated with extreme precipitation amounts in Greece, Adv. Geosci., 17, 5–11, https://doi.org/10.5194/adgeo-17-5-2008, 2008.
ICSU/WMO: ALPEX Preliminary Scientific Results, GARP-ALPEX No. 7, Geneva, 1982.
ICSU/WMO: Scientific Results of the Alpine Experiment (ALPEX): Scientific Papers Presented at the Conference, Venice, Italy, 28 October–1 November 1985, WCRP, ICSU/WMO/GARP JSC – GARP Publications Series No. 27, Geneva, 1986.
INM (A. Genoves, coord.): Boletin PEMMOC, Database on Mediterranean Cyclones and Hazardous Weather, available at: AEMET, Delegation in the Balearic Islands, Palma de Mallorca, Spain, 1992–1995.
Jansa, A.: Distribution of the Mistral. A satellite observation, Meteorol. Atmos. Phys., 36, 201–214, 1987.
Jansa, A.: A general view about Mediterranean meteorology: cyclones and hazardous weather, in: INM/WMO International Symposium on Cyclones and Hazardous Weather in the Mediterranean, Universitat de les Illes Balears and Ministerio de Medio Ambiente, Mallorca, Spain, 33–42, 1997.
Jansa, A. and Homar, V.: Climatology of Sensitivities of High Impact weather in the Mediterranean, EUCOS Report, EUCOS Studies Programme, Reading, UK, 2006.
Jansa, A., Garcia-Moya, J. A., and Rodriguez, E.: Numerical experiments on heavy rain and Mediterranean cyclones, WMO/TD No. 420, WMO, Geneva, 37–47, 1991.
Jansa, A., Genoves, A., and Garcia-Moya, J. A.: Western Mediterranean cyclones and heavy rain, Part 1: Numerical experiment concerning the Piedmont flood case, Meteorol. Appl., 7, 323–333, 2000a.
Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., and the other members of the MISC: Preliminary Research Proposal to the WWRP: Cyclones That Produce High Impact Weather in the Mediterranean, MEDEX, available at: http://medex.aemet.uib.es (last access: 2013), 2000b.
Jansa, A., Genoves, A., Picornell, M. A., Campins, J., Riosalido, R., and Carretero, O.: Western Mediterranean cyclones and heavy rain, Part 2: Statistical approach, Meteorol. Appl., 8, 43–56, 2001a.
Jansa, A., Alpert, P., Buzzi, A., Arbogast, P., Doyle, J., Hoinka, K. P., Kotroni, V., Ramis, C., Richard, E., and Speranza, A.: Cyclones that Produce High Impact Weather In The Mediterranean, MEDEX (Phase 1), available at: http://medex.aemet.uib.es (last access: 2013), 2001b.
Jansa, A., Romero, R., Homar, V., and Arbogast, P.: MEDEX-EUCOS Report 2003, internal document, available at: http://medex.aemet.uib.es (last access: 2013), 2004.
Jansa, A. with the members of the MSSC and the MEDEX community: MEDEX Second Phase: Design and Implementation Plan, available at: http://medex.aemet.uib.es (last access: 2013), 2005.
Jansa, A., Arbogast, P., Doerenbecher, A., Garcies, L., Genoves, A., Homar, V., Klink, S., Richardson, D., and Sahin, C.: A new approach to sensitivity climatologies: the DTS-MEDEX-2009 campaign, Nat. Hazards Earth Syst. Sci., 11, 2381–2390, https://doi.org/10.5194/nhess-11-2381-2011, 2011.
Joly, B. and Arbogast, P.: A refined cyclogenesis tracking climatology in the Mediterranean for charactrerisation and predictability perspectives of automnal intense wind events, available at: http://www.hymex.org/public/workshops/4/Presentations/WED-morning/W1.1_Oral Hymex.HC.pdf, 4th HyMeX Workshop, 8–10 June 2010, Bologna, Italy, 2010.
Kotroni, V., Lagouvardos, K., Kallos, G., and Ziakopoulos, D.: Severe flooding over central and southern Greece associated with pre-cold frontal orographic lifting, Q. J. Roy. Meteorol. Soc., 125, 967–991, 1999.
Kotroni, V., Lagouvardos, K., Defer, E., Dietrich, S., Porcu, F., Medaglia, C. M., and Demirtas, M.: The Antalya 5 December 2002 storm: observations and model analysis, J. Appl. Meteorol., 45, 576–590, 2005.
Kouroutzoglou, J., Flocas, H. A., Keay, K., Simmonds, I., and Hatzakia, M.: Climatological aspects of explosive cyclones in the Mediterranean, Int. J. Climatol., 31, 1785–1802, https://doi.org/10.1002/joc.2203, 2011.
Kouroutzoglou, J., Flocas, H. A., Hatzaki, M., Keay, K., and Simmonds, I.: On the Dynamics of Mediterranean Explosive Cyclogenesi, in: Advances in Meteorology, Climatology and Atmospheric Physics, Springer Atmospheric Sciences, edited by: Helmis, C. G. and Nastos, P. T., Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-29172-2_80, 2012.
Lagouvardos, K., Kotroni, V., Dobricic, S., Nickovic, S., and Kallos, G.: On the storm of 21–22 October 1994 over Greece: observations and model results, J. Geophys. Res., 101, 26217–26226, 1996.
Lagouvardos, K., Kotroni, V., Nickovic, S., Jovic, D., and Kallos, G.: Observations and model simulations of a winter sub-synoptic vortex over the Central Mediterranean, Meteorol. Appl., 6, 371–383, 1999.
Lagouvardos, K., Kotroni, V., and Defer, E.: The 21–22 January 2004 explosive cyclogenesis over the Aegean Sea: observations and model analysis, Q. J. Roy. Meteorol. Soc., 133, 1519–1531, 2007.
Lagouvardos, K., Kotroni, V., and Kallos, G.: An extreme cold surge over the Greek Peninsula, Q. J. Roy. Meteorol. Soc., 124, 2299–2328, 1998.
Lana, A., Campins, J., Genovés, A., and Jansà, A.: Atmospheric patterns for heavy rain events in the Balearic Islands, Adv. Geosci., 12, 27–32, https://doi.org/10.5194/adgeo-12-27-2007, 2007.
Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S., Jansa, A., Maheras, P., Sanna, A., Trigo, I. F., and Trigo, R.: Cyclones in the Mediterranean region: climatology and effects on the environment, in: Mediterranean Climate Variability, edited by: Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R., Elsevier, Amsterdam, the Netherlands, 325–372, 2006.
Llasat, M. C., López, L., Barnolas, M., and Llasat-Botija, M.: Flash-floods in Catalonia: the social perception in a context of changing vulnerability, Adv. Geosci., 17, 63–70, https://doi.org/10.5194/adgeo-17-63-2008, 2008.
Llasat, M. C., Llasat-Botija, M., and López, L.: A press database on natural risks and its application in the study of floods in Northeastern Spain, Nat. Hazards Earth Syst. Sci., 9, 2049–2061, https://doi.org/10.5194/nhess-9-2049-2009, 2009.
Llasat, M. C., Llasat-Botija, M., Prat, M. A., Porcú, F., Price, C., Mugnai, A., Lagouvardos, K., Kotroni, V., Katsanos, D., Michaelides, S., Yair, Y., Savvidou, K., and Nicolaides, K.: High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database, Adv. Geosci., 23, 47–55, https://doi.org/10.5194/adgeo-23-47-2010, 2010.
Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., and Boissier, L.: Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project, Nat. Hazards Earth Syst. Sci., 13, 1337–1350, https://doi.org/10.5194/nhess-13-1337-2013, 2013.
Maheras, P., Flocas, H., Patrikas, I., and Anagnostopoulou, C.: A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution, Int. J. Climatol., 21, 109–130, https://doi.org/10.1002/joc.599, 2001.
Maheras, P., Flocas, H., Anagnostopoulou, C., and Patrikas, I.: On the vertical structure of composite surface cyclones in the Mediterranean region, Theor. Appl. Climatol., 71, 199–217, 2002.
Malguzzi, P., Grossi, G., Buzzi, A., Ranzi, R., and Buizza, R.: The 1966 "century" flood in Italy: a meteorological and hydrological revisitation, J. Geophys. Res., 111, D24106, https://doi.org/10.1029/2006JD007111, 2006.
Martín, A., Romero, R., Homar, V., Luque, A., Alonso, S., Rigo, T., and Llasat, M. C.: Sensitivities of a flash flood event over Catalonia: a numerical analysis, Mon. Weather Rev., 135, 651–669, 2006.
Martinez, C., Campins, J., Jansa, A., and Genoves, A.: Heavy rain events in the Western Mediterranean: an atmospheric pattern classification, Adv. Sci. Res., 2, 61–64, 2008.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., Renggli, D., Ulbrich, S., and Ulbrich, U.: Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns, Nat. Hazards Earth Syst. Sci., 10, 1379–1391, https://doi.org/10.5194/nhess-10-1379-2010, 2010.
Nuissier, O., Ducrocq, V., Ricard, D., Lebeaupin, C., and Anquetin, S.: A numerical study of three catastrophic precipitating events over southern France, I: Numerical framework and synoptic ingredients, Q. J. Roy. Meteorol. Soc., 134, 111–130, 2008.
Nuissier, O., Joly, B., Joly, A., Ducrocq, V., and Arbogast, P.: A statistical downscaling to identify the large-scale circulation patterns associated with heavy precipitation events over southern France, Q. J. Roy. Meteorol. Soc., 137, 1812–1827, https://doi.org/10.1002/qj.866, 2011.
Papagiannaki, K., Lagouvardos, K., and Kotroni, V.: A database of high-impact weather events in Greece: a descriptive impact analysis for the period 2001–2011, Nat. Hazards Earth Syst. Sci., 13, 727–736, https://doi.org/10.5194/nhess-13-727-2013, 2013.
Petterssen, S.: Weather Analysis and Forecasting, in: Vol. 1, Motion and Motion Systems, McGraw Hill, New York, 428 pp., 1956.
Picornell, M. A., Jansà, A., Genovés, A., and Campins, J.: Automated database of mesocyclones from the HIRLAM (INM)-0.5_analyses in the western Mediterranean, Int. J. Climatol., 21, 335–354, 2001.
Picornell, M. A., Carrassi, N. A., and Jansa, A.: A study on the forecast quality of the Mediterranean cyclones, in: Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain, October 2002, Universitat de les Illes Balears, Mallorca, Spain, 2003.
Picornell, M. A., Jansà, A., and Genovés, A.: A tool for assessing the quality of the Mediterranean cyclone forecast: a numerical index, Nat. Hazards Earth Syst. Sci., 11, 1787–1794, https://doi.org/10.5194/nhess-11-1787-2011, 2011.
Prates, C., Richardson, D., and Sahin, C.: Final Report of the Preview Observation Data Targeting System (DTS), ECMWF Tech. Memo., ECMWF, Reading, UK, 581 pp., 2009.
Radinovic, D.: Mediterranean cyclones and their influence on the weather and climate, PSPM Report Series No. 24, WMO, Geneva, 1987.
Radinovic, D.: The basic concept of the methodologies of Mediterranean cyclones and adverse weather phenomena studies, in: INM/WMO International Symposium on Cyclones and Hazardous Weather in the Mediterranean, Universitat de les Illes Balears and Ministerio de Medio Ambiente, Mallorca, Spain, 45–53, 1997.
Ramis, C., Llasat, M. C., Genovés, A., and Jansà, A.: The October-1987 floods in Catalonia: synoptic and mesoscale mechanisms, Meteorol. Appl., 1, 337–350, 1994.
Ramis, C., Romero, R., and Homar, V.: The severe thunderstorm of 4 October 2007 in Mallorca: an observational study, Nat. Hazards Earth Syst. Sci., 9, 1237–1245, https://doi.org/10.5194/nhess-9-1237-2009, 2009.
Reale, M. and Lionello, P.: Synoptic climatology of winter intense precipitation events along the Mediterranean coasts, Nat. Hazards Earth Syst. Sci., 13, 1707–1722, https://doi.org/10.5194/nhess-13-1707-2013, 2013.
Riosalido, R., Rivera, A., and Martin, F.: Development of a mesoscale convective system in the Spanish Mediterranean Area, in: Proc. 7th Meteosat Scientific Users' Meeting, Madrid, 27–30 September 1988, EUMETSAT, Darmstadt, 375–378, 1988.
Rivera, A. and Riosalido, R.: Mediterranean convective systems as viewed by Meteosat, a case study, in: Proc. 6th Meteosat Scientific Users Meeting, Amsterdam, 25–27 November 1986, EUMETSAT, Darmstadt, 101–104, 1986.
Romero, R.: A method for quantifying the impacts and interactions of potential vorticity anomalies in extratropical cyclones, Q. J. Roy. Meteorol. Soc., 134, 385–402, 2008.
Romero, R., Ramis, C., and Alonso, S.: Numerical simulation of an extreme rainfall event in Catalonia: Role of orography and evaporation from the sea, Q. J. Roy. Meteorol. Soc., 123, 537–559, 1997.
Romero, R., Doswell, C. A., and Ramis, C.: Mesoscale numerical study of two cases of longlived quasi-stationary convective system over eastern Spain, Mon. Weather Rev., 128, 3731–3751, 2000.
Romero, R., Martín, A., Homar, V., Alonso, S., and Ramis, C.: Predictability of prototype flash flood events in the Western Mediterranean under uncertainties of the precursor upper-level disturbance: the HYDROPTIMET case studies, Nat. Hazards Earth Syst. Sci., 5, 505–525, https://doi.org/10.5194/nhess-5-505-2005, 2005.
Sánchez, J. L., Fernández, M. V., Fernández, J. T., Tudurí, E., and Ramis, C.: Analysis of mesoscale convective systems with hail precipitation, Atmos. Res., 67–68, 573–588, 2003.
Sénési, S., Bougeault, P., Chèze, J. L., Cosentino, P., and Thepenier, R. M.: The Vaison-La-Romaine flash flood: mesoscale analysis and predictability issues, Weather Forecast., 11, 417–442, 1996.
Speranza, A. and Tartaglione, N.: Extreme events in the Mediterranean area: a mixed deterministic statistical approach, Nuovo Cimento, 29C, 81–88, 2006.
Stein, U. and Alpert, P.: Factor separation in numerical simulations, J. Atmos. Sci., 50, 2107–2115, 1993.
Tartaglione, N., Speranza, A., Dalan, F., Nanni, T., Brunetti, M., and Maugeri, M.: The mobility of Atlantic baric depressions leading to intense precipitation over Italy: a preliminary statistical analysis, Nat. Hazards Earth Syst. Sci., 6, 451–458, https://doi.org/10.5194/nhess-6-451-2006, 2006.
Tartaglione, N., Maugeri, M., Dalan, F., Brunetti, M., Nanni, T., and Speranza, A.: Searching for resemblance between large-scale sea level pressure patterns leading to "intense" precipitation events over Italy, Theor. Appl. Climatol., 95, 183–196, 2009.
Tolika, K., Anagnostopoulou, Chr., Maheras, P., and Kutiel, H.: Extreme precipitation related to circulation types for four case studies over the Eastern Mediterranean, Adv. Geosci., 12, 87–93, https://doi.org/10.5194/adgeo-12-87-2007, 2007.
Toreti, A., Xoplaki, E., Maraun, D., Kuglitsch, F. G., Wanner, H., and Luterbacher, J.: Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns, Nat. Hazards Earth Syst. Sci., 10, 1037–1050, https://doi.org/10.5194/nhess-10-1037-2010, 2010.
Tous, M., Romero, R., and Ramis, C.: Surface heat fluxes influence on medicane trajectories and intensification, Atmos. Res., 123, 400–411, 2013.
Trigo, I., Davies, T., and Bigg, G.: Objective climatology of cyclones in the Mediterranean region, J. Climate, 12, 1685–1696, 1999.
Trigo, I., Bigg, G., and Davies, T.: Climatology of cyclogenesis mechanisms in the Mediterranean, Mon. Weather Rev., 130, 549–569, https://doi.org/10.1007/s00382-005-0065-9, 2002.
Tsidulko, M. and Alpert, P.: Synergism of upper-level potential vorticity and mountains in Genoa lee cyclogenesis – a numerical study, Meteorol. Atmos. Phys., 78, 261–285, 2001.
Tsonevsky, I., Campins, J., Genoves, A., and Jansa, A.: Atmospheric patterns for heavy precipitation in Bulgaria, Roman. J. Meteorol., 10, 1–12, 2010.
Tudurí, E., Romero, R., López, L., García, E., Sánchez, J. L., and Ramis, C.: The 14th July 2001 hailstorm in northeastern Spain: diagnosis of the meteorological situation, Atmos. Res., 67–68, 541–558, 2003.
Ulbrich, U., Lionello, P., Belusic, D., Jacobeit, J., Knippertz, P., Kuglitsch, F. G., Leckebusch, C., Lutebacher, J., Maugeri, M., Maheras, P., Nissen, K. M., Pavan, M., Pinto, J. G., Saaroni, H., Seubert, S., Toreti, A., Xoplaki, E., and Ziv, B.: Climate of the Mediterranean: Synoptic Patterns, Temperature, Precipitation, Winds, and Their Extremes, in: The Climate of the Mediterranean Region: from the Past to the Future, edited by: Lionello, P., Elsevier, Amsterdam, the Netherlands, 301–346, 2012.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Q. J. Roy. Meteorol. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
Vich, M., Romero, R., and Brooks, H. E.: Ensemble prediction of Mediterranean high-impact events using potential vorticity perturbations, Part I: Comparison against the multiphysics approach, Atmos. Res., 102, 227–241, 2011a.
Vich, M., Romero, R., and Homar, V.: Ensemble prediction of Mediterranean high-impact events using potential vorticity perturbations, Part II: Adjoint-derived sensitivity zones, Atmos. Res., 102, 311–319, 2011b.
Vich, M., Romero, R., Richard, E., Arbogast, P., and Maynard, K.: Perturbing the potential vorticity field in mesoscale forecasts of two Mediterranean heavy precipitation events, Tellus A, 64, 17224, https://doi.org/10.3402/tellusa.v64i0.17224, 2012.
WMO/PSPM: Report of the Informal Consultation on Mediterranean Cyclones, Sofia, 28 November–1 December 1983, PSPM Publication Series No. 3, WMO, Geneva, 1984.
WMO/PSPM: Report of the Steering Group Meeting on Mediterranean Cyclones Study Project, Palma, Mallorca, 25–29 November 1985, PSPM Report Series No. 20, WMO/TD No. 128, WMO, Geneva, 1986.
WMP/PSPM: Papers presented at the WMO Workshop on Limited-Area Fine Mesh Models for the Mediterranean Region, Erice, 17–20 November 1986, PSPM Report Series No. 26, WMO, Geneva, 1987.
WMO/PSPM: Report on the Third Session of the Steering Group of Mediterranean Cyclones Study Project, Barcelona, Spain, 17 March 1989, PSPM Report Series No. 31, WMO/TD No. 298, WMO, Geneva, 1989.
WMO/PSPM: Report of the Fourth Session of the Steering Group of Mediterranean Cyclones Study Project, Sofia, Bulgaria, 25–28 March 1991, PSPM Report Series No. 33, WMO/TD No. 420, WMO, Geneva, 1991.
WMO/PWPR: Report of the Fifth Session of the Steering Group of Mediterranean Cyclones Study Project, Palma de Mallorca, Spain, 1–3 December 1993, PWPR Report Series Project No. 4, WMO/TD No. 600, WMO, Geneva, 1994.
Xoplaki, E., Luterbacher, J., Burkard, R., Patrikas, I., and Maheras, P.: Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime, Climate Res., 14, 129–146, 2000.
Ziv, B., Dayan, U., Kushnir, Y., Rothb, C., and Enzelb, Y.: Regional and global atmospheric patterns governing rainfall in the Southern Levant, Int. J. Climatol., 26, 55–73, 2006.
Special issue
Altmetrics
Final-revised paper
Preprint