Articles | Volume 11, issue 2
https://doi.org/10.5194/nhess-11-367-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-11-367-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spatio-temporal avalanche forecasting with Support Vector Machines
A. Pozdnoukhov
National Centre for Geocomputation, National University of Ireland, Maynooth, Ireland
G. Matasci
Institute of Geomatics and Analysis of Risk, University of Lausanne, Lausanne, Switzerland
M. Kanevski
Institute of Geomatics and Analysis of Risk, University of Lausanne, Lausanne, Switzerland
R. S. Purves
Department of Geography, University of Zurich, Zurich, Switzerland
Viewed
Total article views: 3,320 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,417 | 1,807 | 96 | 3,320 | 258 | 113 |
- HTML: 1,417
- PDF: 1,807
- XML: 96
- Total: 3,320
- BibTeX: 258
- EndNote: 113
Cited
29 citations as recorded by crossref.
- Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland C. Pérez-Guillén et al. 10.5194/nhess-22-2031-2022
- Using machine learning to analyze air traffic management actions: Ground delay program case study Y. Liu et al. 10.1016/j.tre.2019.09.012
- Winter–Spring Prediction of Snow Avalanche Susceptibility Using Optimisation Multi-Source Heterogeneous Factors in the Western Tianshan Mountains, China J. Yang et al. 10.3390/rs14061340
- Combining modelled snowpack stability with machine learning to predict avalanche activity L. Viallon-Galinier et al. 10.5194/tc-17-2245-2023
- A divide-and-conquer method for space–time series prediction M. Deng et al. 10.1007/s10109-016-0241-y
- Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables S. Horton et al. 10.5194/nhess-20-3551-2020
- Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy) S. Angileri et al. 10.1016/j.geomorph.2016.03.018
- A new algorithm for redundancy minimisation in geo-environmental data M. Laib & M. Kanevski 10.1016/j.cageo.2019.104328
- Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy C. Ballabio & S. Sterlacchini 10.1007/s11004-011-9379-9
- Application of Hidden Markov Model for avalanche danger simulations for road sectors in North-West Himalaya J. Joshi et al. 10.1007/s11069-018-3343-7
- Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems N. Denissova et al. 10.3390/atmos15111343
- Advances in geocomputation (1996–2011) T. Cheng et al. 10.1016/j.compenvurbsys.2012.10.002
- Assessing the performance and explainability of an avalanche danger forecast model C. Pérez-Guillén et al. 10.5194/nhess-25-1331-2025
- A multi-model decision support system (MM-DSS) for avalanche hazard prediction over North-West Himalaya P. Kaur et al. 10.1007/s11069-021-04958-5
- Predicting Future Built-Up Land Cover from a Yearly Time Series of Satellite-Derived Binary Urban Maps F. O’Neill et al. 10.3390/land14081630
- Gully Erosion Susceptibility Mapping Using Multivariate Adaptive Regression Splines—Replications and Sample Size Scenarios N. Javidan et al. 10.3390/w11112319
- Parameter importance assessment improves efficacy of machine learning methods for predicting snow avalanche sites in Leh-Manali Highway, India A. Tiwari et al. 10.1016/j.scitotenv.2021.148738
- Estimating the danger of snow avalanches with a machine learning approach using a comprehensive snow cover model R. Fromm & C. Schönberger 10.1016/j.mlwa.2022.100405
- Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data S. Berkani et al. 10.1109/ACCESS.2023.3282545
- Addressing class imbalance in avalanche forecasting M. Kala et al. 10.1016/j.coldregions.2024.104411
- Outlier Detection for Observational Data of Automatic Meteorological Station Based on Least Square Support Vector Machine Z. Meng et al. 10.4028/www.scientific.net/AMM.295-298.945
- Fine assessment of tropical cyclone disasters based on GIS and SVM in Zhejiang Province, China W. Lou et al. 10.1007/s11069-012-0254-x
- Combining random forests and class-balancing to discriminate between three classes of avalanche activity in the French Alps P. Dkengne Sielenou et al. 10.1016/j.coldregions.2021.103276
- Heterogeneous Space–Time Artificial Neural Networks for Space–Time Series Prediction M. Deng et al. 10.1111/tgis.12302
- Avalanches en moyenne montagne : des représentations à l’occultation du risque G. Florie et al. 10.4000/vertigo.20525
- A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting A. Maissen et al. 10.5194/gmd-17-7569-2024
- Machine-Learning Algorithms for Mapping Debris-Covered Glaciers: The Hunza Basin Case Study A. Khan et al. 10.1109/ACCESS.2020.2965768
- Probability models to convert snowpack stability into the number of dry-snow avalanches in North Japan Y. Katsuyama et al. 10.1016/j.coldregions.2025.104480
- Forecasting wet-snow avalanche probability in mountainous terrain N. Helbig et al. 10.1016/j.coldregions.2015.07.001
Latest update: 06 Sep 2025