The effect of material properties on the seismic performance of Arch Dams
Abstract. The paper investigates the effect of material properties on the seismic performance of arch dam-reservoir-foundation interaction systems based on the Lagrangian approach using demand-capacity ratios. Type-5 arch dam is selected as a numerical application. The linear time history analyses of the arch dam-reservoir-foundation interaction system are carried out for different material properties. The foundation is taken into account as massless; behaviour of the reservoir is assumed to be linearly elastic, inviscid and irrotational. The north-south component of the Erzincan earthquake in 1992 is chosen as a ground motion. Dynamic equations of motions obtained from 3-D finite element modelling of the coupled system are solved by using the Newmark integration algorithm. The damage levels of the coupled system for the different material properties are demonstrated by using demand-capacity ratios and cumulative inelastic durations. The time histories and maximum values of the displacements and principal stresses, and performance curves, are obtained from linear analyses. It is clearly seen from the study that the different material properties affect the seismic behaviour of the dam.